'147, 'LS147

- Encode 10-Line Decimal to 4-Line BCD
- Applications Include:
 - Keyboard Encoding
 - Range Selection

SN54147, SN54LS147 . . . J OR W PACKAGE SN74147, SN74LS147 . . . D OR N PACKAGE (TOP VIEW)

SN54LS147 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

'148, 'LS148

- Encode 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:
 - n-Bit Encoding
 - Code Converters and Generators

SN54148, SN54LS148 . . . J OR W PACKAGE SN74148, SN74LS148 . . . D, N, OR NS PACKAGE (TOP VIEW)

SN54LS148 . . . FK PACKAGE (TOP VIEW)

TYPE	TYPICAL DATA DELAY	TYPICAL POWER DISSIPATION
'147	10 ns	225 mW
'148	10 ns	190 mW
'LS147	15 ns	60 mW
'LS148	15 ns	60 mW

NOTE: The SN54147, SN54LS147, SN54148, SN74147, SN74LS147, and SN74148 are obsolete and are no longer supplied.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

STRUMENTS

description/ordering information

These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The '147 and 'LS147 devices encode nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition requires no input condition, as zero is encoded when all nine data lines are at a high logic level. The '148 and 'LS148 devices encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input El and enable output EO) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level. All inputs are buffered to represent one normalized Series 54/74 or 54/74LS load, respectively.

ORDERING INFORMATION

TA	PACKAG	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS148N	SN74LS148N
	0010 D	Tube	SN74LS148D	10440
0°C to 70°C	SOIC - D	Tape and reel	SN74LS148DR	LS148
	SOP - NS	Tape and reel	SN74LS148NSR	74LS148
	CDIP – J	Tube	SNJ54LS148J	SNJ54LS148J
−55°C to 125°C	CFP – W	Tube	SNJ54LS148W	SNJ54LS148W
	LCCC - FK	Tube	SNJ54LS148FK	SNJ54LS148FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE - '147, 'LS147

				INPUTS						OUTI	PUTS	
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	L	Н	Н	L
Х	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	Н	Н
Х	Χ	Χ	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
Х	Χ	Χ	Χ	Χ	L	Н	Н	Н	Н	L	L	Н
Х	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	Н	L
Х	Χ	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Х	Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
Х	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = high logic level, L = low logic level, X = irrelevant

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS SDLS053B - OCTOBER 1976 - REVISED MAY 2004

FUNCTION TABLE - '148, 'LS148

				INPUTS	}					C	OUTPUT	S	
EI	0	1	2	3	4	5	6	7	A2	A 1	Α0	GS	EO
Н	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Н	Н	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	Н
L	Х	Χ	Χ	Χ	Χ	Χ	L	Н	L	L	Н	L	Н
L	Х	Χ	Χ	Χ	Χ	L	Н	Н	L	Н	L	L	Н
L	Х	Χ	Χ	Χ	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Χ	Χ	L	Н	Н	Н	Н	Н	L	L	L	Н
L	Х	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = high logic level, L = low logic level, X = irrelevant

'147, 'LS147 logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

'148, 'LS148 logic diagram (positive logic)

Pin numbers shown are for D, J, N, NS, and W packages.

schematics of inputs and outputs

'147, '148

'LS147, 'LS148

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		7 V
Input voltage, V _I : '147, '148		
'LS147, 'LS148		7 V
Inter-emitter voltage: '148 only (see Note 2) .		5.5 V
Package thermal impedance θ _{JA} (see Note 3)	: D package	73°C/W
	N package	67°C/W
	NS package	64°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values, except inter-emitter voltage, are with respect to the network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. For '148 circuits, this rating applies between any two of the eight data lines, 0 through 7.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			SN54'			SN74'		SN54LS'		SN74LS'			LINUT	
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	4.5	5	5.5	4.75	5	5.25	V
loh	High-level output current			-800			-800			-400			-400	μΑ
loL	Low-level output current			16			16			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	-55		125	0		70	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAME	TED	TEGT CO	NDITIONST		'147			'148		LIAUT
PARAME	IEK	IESI CO	NDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
High-level input ve	oltage			2			2			V
Low-level input voltage						0.8			0.8	V
Input clamp voltag	ge	V _{CC} = MIN,	$I_{ } = -12 \text{ mA}$			-1.5			-1.5	V
High-level output	voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -800 μA	2.4	3.3		2.4	3.3		V
Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
Input current at m voltage	aximum input	V _{CC} = MIN,	V _I = 5.5 V			1			1	mA
High-level input	0 input		V 04V						40	
current	Any input except 0	V _{CC} = MAX,	V _I = 2.4 V			40			80	μА
Low-level input	0 input	V MAY	V 04V						-1.6	A
current	Any input except 0	V _{CC} = MAX,	V ₁ = 0.4 V			-1.6			-3.2	mA
Short-circuit output	ut current§	$V_{CC} = MAX$		-35		-85	-35		-85	mA
CC Supply current	V _{CC} = MAX	Condition 1		50	70		40	60	mA	
		(See Note 5) Condition 2	42	62		35	55	IIIA		
	High-level input voltage High-level output Low-level output Low-level output voltage Input current at movoltage High-level input current Low-level input current Short-circuit output	Input clamp voltage High-level output voltage Low-level output voltage Input current at maximum input voltage High-level input current Any input except 0 Short-circuit output current§	High-level input voltage Low-level input voltage Input clamp voltage VCC = MIN, VIL = 0.8 V, Low-level output voltage VCC = MIN, VIL = 0.8 V, Input current at maximum input voltage High-level input current Any input except 0 Short-circuit output current VCC = MAX, VCC = MAX	High-level input voltage Low-level input voltage Input clamp voltage High-level output voltage Low-level output voltage Low-level output voltage VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MAX, VIH = 0.4 V VCC = MAX VIH = -12 mA VIH = 2 V, IOH = -800 µA VCC = MIN, VIH = 2 V, IOH = -800 µA VCC = MAX, VIH = 0.4 V VCC = MAX, VIH = 0.4 V VCC = MAX VCC = MAX VCC = MAX VCC = MAX Condition 1	High-level input voltage Low-level input voltage Input clamp voltage VCC = MIN, VIH = 2 V, VIL = 0.8 V, VIH = 2 V, VIL = 0.8 V, VIL = 0.8 V, VIL = 16 mA Input current at maximum input voltage High-level output voltage VCC = MIN, VIH = 2 V, VIL = 0.8 V, VIL = 16 mA VCC = MIN, VIL = 0.8 V, VIL = 16 mA VCC = MIN, VIH = 2 V, VIL = 16 mA VCC = MIN, VIH = 2 V, VIL = 16 mA VCC = MIN, VI = 5.5 V VCC = MAX, VI = 2.4 V VCC = MAX, VI = 0.4 V Short-circuit output current§ VCC = MAX, VI = 0.4 V Supply current Condition 1	High-level input voltage Low-level input voltage Input clamp voltage VCC = MIN, VIH = 2 V, IOH = -800 μA Low-level output voltage VCC = MIN, VIH = 2 V, IOH = -800 μA Low-level output voltage VCC = MIN, VIH = 2 V, IOH = -800 μA Low-level output voltage VCC = MIN, VIH = 2 V, IOH = -800 μA VCC = MIN, VIH = 0.4 V VCC = MAX, VIH = -12 MA VIH = -12 MA VCC = MIN, VIH = 2 V, IOH = -800 μA VCC = MAX, VIH = -12 MA VCC = MAX VIH = -12 MA VIH = -12 MA VCC = MIN, VIH = 2 V, IOH = -800 μA VCC = MAX VIH = -12 MA VCC = MIN, VIH = -12 MA VCC = MAX VII = -12 MA VII	PARAMETERTEST CONDITIONS†MIN TYP‡ MAXHigh-level input voltage2Low-level input clamp voltage $V_{CC} = MIN$, $V_{II} = -12 \text{ mA}$ -1.5High-level output voltage $V_{CC} = MIN$, $V_{IL} = 0.8 \text{ V}$, $I_{OH} = -800 \mu A$ 2.43.3Low-level output voltage $V_{CC} = MIN$, $V_{II} = 2 \text{ V}$, $I_{OL} = 16 \text{ mA}$ 0.20.4Input current at maximum input voltage $V_{CC} = MIN$, $V_{I} = 5.5 \text{ V}$ 1High-level input current0 input Any input except 0 $V_{CC} = MAX$, $V_{I} = 2.4 \text{ V}$ 40Low-level input current0 input Any input except 0 $V_{CC} = MAX$, $V_{I} = 0.4 \text{ V}$ -1.6Short-circuit output current§ $V_{CC} = MAX$ Condition 15070	High-level input voltage 2	High-level input voltage CC = MIN, V _I = 2 V, V _I = 0.8 V, V _I = 0.8 V, V _I = 0.8 V, V _I = 16 mA V _I = 0.8 V, V _I = 5.5 V V _I = 0.4 V V _I =	High-level input voltage Conditions Min Typ MAX Min Typ MAX

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5: For '147, I_{CC} (Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For '148, I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

SN54147, SN74147 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A	A	la abasa sata d			9	14	
t _{PHL}	Any	Any	In-phase output	CL = 15 pF,		7	11	ns
tPLH	Any	Any	Out of phase output	$R_L = 400 \Omega$		13	19	no
t _{PHL}	Any	Any	Out-of-phase output			12	19	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

SN54148, SN74148 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	4 7	40.44 40	la abasa sata d			10	15	
^t PHL	1–7	A0, A1, or A2	In-phase output			9	14	ns
^t PLH	4 7	AO A1 or AO	Out of phase output			13	19	20
^t PHL	1–7	A0, A1, or A2	Out-of-phase output			12	19	ns
^t PLH	0.7	F0	Out of phase submut			6	10	
^t PHL	0–7	EO	Out-of-phase output			14	25	ns 25
^t PLH	0.7	00	la abasa sata d	$C_L = 15 pF$,		18	30	
^t PHL	0–7	GS	In-phase output	$R_L = 400 \Omega$		14	25	ns
^t PLH	F1	AO A4 a A0	la abasa sutaut			10	15	
^t PHL	EI	A0, A1, or A2	In-phase output			10	15	ns
^t PLH	Е	00	la abasa sutaut			8	12	
tPHL	El	GS	In-phase output		_	10	15	ns
tPLH		EI EO In-phase o	In phase output]		10		no
tPHL			EO In-phase output		_	17	30	ns

[†] tpLH = propagation delay time, low-to-high-level output. tpHL = propagation delay time, high-to-low-level output.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445			n Tionst	5	N54LS	,	5	SN74LS	,	
	PARAME	IER	TEST CON	IDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{IH}	High-level input vo	oltage			2			2			V
V _{IL}	Low-level input vo	ltage					0.7			0.8	V
٧ _{IK}	Input clamp voltag	nput clamp voltage		I _I = -18 mA			-1.5			-1.5	V
VOH	High-level output	voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = -400 \mu A$	2.5	3.4		2.7	3.4		V
.,			V _{CC} = MIN,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	.,
VOL	Low-level output v	roltage	$V_{IH} = 2 V$, $V_{IL} = V_{IL} MAX$	$I_{OL} = 8 \text{ mA}$					0.35	0.5	V
	Input current at	'LS148 inputs 1–7					0.2			0.2	
li	maximum input voltage	All other inputs	$V_{CC} = MAX$,	$V_I = 7 V$			0.1			0.1	mA
	High-level input	'LS148 inputs 1–7	.,,				40			40	
lн	current	All other inputs	$V_{CC} = MAX,$	$V_{I} = 2.7 \text{ V}$			20			20	μΑ
	Low-level input	'LS148 inputs 1–7	.,,				-0.8			-0.8	
IIL	current	All other inputs	$V_{CC} = MAX,$	$V_{I} = 0.4 V$			-0.4			-0.4	mA
los	Short-circuit outpu	ıt current§	V _{CC} = MAX		-20		-100	-20		-100	mA
la a	Supply current	V _{CC} = MAX	Condition 1		12	20		12	20	mA	
ICC		(See Note 6)	Condition 2		10	17		10	17	IIIA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 6: For 'LS147, I_{CC} (Condition 1) is measured with input 7 grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open. For 'LS148, I_{CC} (Condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open; I_{CC} (Condition 2) is measured with all inputs and outputs open.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

SN54147, SN54148, SN54LS147, SN54LS148 SN74147, SN74148 (TIM9907), SN74LS147, SN74LS148 10-LINE TO 4-LINE AND 8-LINE TO 3-LINE PRIORITY ENCODERS

SDLS053B - OCTOBER 1976 - REVISED MAY 2004

SN54LS147, SN74LS147 switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A	A	la abasa sata d			12	18	
^t PHL	Any	Any	In-phase output	CL = 15 pF,		12	18	ns
t _{PLH}	Any	Any	Out-of-phase output	$R_L = 2 k\Omega$		21	33	no
t _{PHL}		Any				15	23	ns

SN54LS148, SN74LS148 switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	1–7	AO A4 a AO	In about subsub			14	18	
^t PHL	1-7	A0, A1, or A2	In-phase output			15	25	ns
^t PLH	4 7	AO A4 a AO	Out of phase subject			20	36	
t _{PHL}	1–7	A0, A1, or A2	Out-of-phase output			16	29	ns
^t PLH	0.7	F0	Out of phase subject			7	18	
^t PHL	0–7	EO	Out-of-phase output			25	40	ns
^t PLH	0.7	00	In about subsub	C _L = 15 pF,		35	55	
^t PHL	0–7	GS	In-phase output	$R_L = 2 k\Omega$		9	21	ns
^t PLH	П	AO A4 a AO	In about subsub			16	25	ne
^t PHL	EI	A0, A1, or A2	In-phase output			12	25	ns
^t PLH	F1	00	la abasa sata d			12	17	
^t PHL	EI	GS	In-phase output	-	·	14	36	ns
^t PLH	El	EO	In-phase output		·	12	21	ns
^t PHL	LI LI	LO	in-priase output			23	35	115

[†] tpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION **SERIES 54/74 DEVICES**

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tp1 H, tpH1, tpH7, and tp1 7; S1 is open, and S2 is closed for tp7H; S1 is closed, and S2 is open for tp7I.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{\Omega} \approx 50 \Omega$; t_{r} and $t_{f} \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tp1 H, tpH1, tpH7, and tp1 7; S1 is open, and S2 is closed for tp7H; S1 is closed, and S2 is open for tp7I.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

APPLICATION INFORMATION

Figure 3. Priority Encoder for 16 Bits

Because the '147/'LS147 and '148/'LS148 devices are combinational logic circuits, wrong addresses can appear during input transients. Moreover, for the '148/'LS148 devices, a change from high to low at EI can cause a transient low on GS when all inputs are high. This must be considered when strobing the outputs.

