Name: \qquad

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Assume that you have access to gates with as many inputs as you need to create minimum cost circuits. Point values are as indicated.

1. $F(A, B, C)=\Sigma m(0,1,3,4,6)$
(a) (5 points) Using a K-map, find the minimum SOP expression.

	A	
$B C$	0	1
00		
01		
11		
10		

$$
F_{S O P}=
$$

\qquad
(b) (5 points) Draw the circuit diagram.
(c) (5 points) Determine the number of gates and inputs in this circuit:

Gates: \qquad
Inputs: \qquad
(d) (5 points) Find the minimum POS expression.

$$
F_{P O S}=
$$

\qquad
(e) (5 points) Draw the circuit diagram.
(f) (5 points) Determine the number of gates and inputs in this circuit:

Gates: \qquad
Inputs: \qquad
(g) (5 points) Draw the circuit diagram of the equivalent NAND-NAND expression.
2. $F(A, B, C, D)=\Pi M(0,3,4,8,9,10,14)$
(a) (5 points) Using a K-map, find the minimum SOP expression.

	$A B$			
$C D$		01	11	10
00				
01				
11				
10				

$$
F_{S O P}=
$$

\qquad
(b) (5 points) Draw the circuit diagram.
(c) (5 points) Determine the number of gates and inputs in this circuit:

Gates: \qquad
Inputs: \qquad
(d) (5 points) Find the minimum POS expression.

$$
F_{P O S}=
$$

\qquad
(e) (5 points) Draw the circuit diagram.
(f) (5 points) Determine the number of gates and inputs in this circuit:

Gates: \qquad
Inputs: \qquad
(g) (5 points) Draw the circuit diagram of the equivalent NOR-NOR expression.
3. Use the Quine-McCluskey method to find the minimum SOP expression for the following expression. Each column containing implicants is worth 5 points. The Prime Implicant table is worth an additional 5 points.

$$
F(A, B, C)=\Sigma m(1,3,4,5)
$$

Column 1	Column 2	Column 3

Prime Implicants	

(a) (5 points) Write the minimum SOP expression.

$$
F_{S O P}=
$$

\qquad
4. Use the Quine-McCluskey method to find the minimum SOP expression for the following expression. Each column containing implicants is worth 5 points. The Prime Implicant table is worth an additional 5 points.

$$
F(A, B, C, D)=\Sigma m(0,2,8,9,10,11)
$$

Column 1	Column 2	Column 3	Column 4

Prime Implicants	

(a) (5 points) Write the minimum SOP expression.

$$
F_{S O P}=
$$

\qquad
5. $F(A, B, C, D)=\Sigma m(1,3,4,5,7,13)$
(a) (5 points) Draw the minimum SOP circuit.
(b) (5 points) Draw the equivalent NAND-NAND circuit.
(c) (5 points) Draw the equivalent OR-NAND circuit.
(d) (5 points) Draw the equivalent NOR-OR circuit.

