Name: \qquad

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (20 points) You receive two 2 -bit numbers designated as $A B$ and $C D$. If $A B \geq C D$, an LED should turn on. The output of this function, F, will therefore be 1 if the LED should be on. Otherwise F will be 0 . Implement this using a 4 to 1 MUX and a minimum number of external gates. Fill in the corresponding circuit diagram. Clearly indicate your control bits, and include your multiplexer equation at the bottom of the page.

	$A B$			
$C D$	00	01	11	10
00				
01				
11				
10				

$$
F=
$$

\qquad
2. (20 points) Your buddy wired up a 3 to 8 decoder using only 2 to 4 decoders as follows. The MSB of the control bits is A, and the LSB of the control bits is C. Label the circuit diagram with the correct outputs from $F_{0}-F_{7}$.

3. (25 points) A sensor on a car tire sends a 5-bit binary signal $(A B C D E)$ that represents the tire pressure in PSI. The output L (low pressure) should be 1 if the pressure is less than 19. The output P (puncture) should be 1 if the pressure is less than 3 . Use the following PAL diagram to implement outputs L and P. You will not need to add any gates to the PAL diagram!

4. (10 points) Fill out the following timing diagram for a D latch with an active-low enable bit. Ignore all gate delays. $\mathrm{Q}(0)=0$.

5. (10 points) Fill out the following timing diagram for a rising-edge triggered JK flip-flop. Ignore all gate delays. $\mathrm{Q}(0)=1$.

6. (25 points) Design a 3-bit counter that counts in the sequence given in the state diagram below. Use D flip-flops and a minimum number of external gates. Write each flip-flop equation, then draw the circuit diagram using the template below. K-maps are provided on the next page.

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{A}^{+}	\boldsymbol{B}^{+}	\boldsymbol{C}^{+}
0	0	0			
0	0	1			
0	1	1			
0	1	0			
1	0	0			
1	0	1			
1	1	1			
1	1	0			

	A $B C$ 	
00		
01		
11		
10		

	A	
$B C$	0	1
00		
01		
11		
10		

	A	
$B C$	0	1
00		
01		
11		
10		

