Name: _

F =

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (20 points) You receive two 2-bit numbers designated as AB and CD. If $AB \ge CD$, an LED should turn on. The output of this function, F, will therefore be 1 if the LED should be on. Otherwise F will be 0. Implement this using a 4 to 1 MUX and a minimum number of external gates. Fill in the corresponding circuit diagram. Clearly indicate your control bits, and include your multiplexer equation at the bottom of the page.

	AB							
CD	00	01	11	10				
00								
01								
01								
11								
10								
10								
	$\left[\right]$							
		4 + - 1						
		4 to 1 MUX	<u> </u>					

2. (20 points) Your buddy wired up a 3 to 8 decoder using only 2 to 4 decoders as follows. The MSB of the control bits is A, and the LSB of the control bits is C. Label the circuit diagram with the correct outputs from $F_0 - F_7$.

3. (25 points) A sensor on a car tire sends a 5-bit binary signal (ABCDE) that represents the tire pressure in PSI. The output L (low pressure) should be 1 if the pressure is less than 19. The output P (puncture) should be 1 if the pressure is less than 3. Use the following PAL diagram to implement outputs L and P. You will **not** need to add any gates to the PAL diagram!

4. (10 points) Fill out the following timing diagram for a D latch with an active-low enable bit. Ignore all gate delays. Q(0) = 0.

5. (10 points) Fill out the following timing diagram for a rising-edge triggered JK flip-flop. Ignore all gate delays. Q(0) = 1.

6. (25 points) Design a 3-bit counter that counts in the sequence given in the state diagram below. Use D flip-flops and a minimum number of external gates. Write each flip-flop equation, then draw the circuit diagram using the template below. K-maps are provided on the next page.

BC	0	1	BC	0	1	BC		
00			00			00	,	
01			01			01	-	
11			11			11		
10			10			10		