Name: \qquad

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (25 points) Given the following circuit diagram, fill out the timing diagram for X, Y and Z. Each AND gate has a delay of 2 ns , and each OR gate has a delay of 1 ns .

2. (15 points) Using only 2 to 1 multiplexers, draw a circuit diagram for a 5 to 1 MUX. Include a truth table.
3. (20 points) Use a 4 to 1 MUX and a minimum number of external gates to realize the function $F(A, B, C, D)=\Sigma m(3,5,7,12,14)+\Sigma d(0,1,4,6,15)$. Draw a circuit diagram and write the corresponding MUX equation.

	$A B$			
$C D$	00	01	11	10
00				
01				
11				
10				

$$
F=
$$

\qquad
4. (15 points) Use the following 4 to 16 decoder and a minimum number of external gates to realize the function $F(A, B, C, D)=\Sigma m(1,3,5,7,12,14)+\Sigma d(4,8,11,13)$. (In other words, draw the circuit diagram below using the decoder inputs and/or outputs.) Assume that you have access to gates with only two inputs.

5. (15 points) Fill out the following timing diagram for a falling-edge triggered $J K$ flip-flop. Ignore propagation delays. The value of Q is initially equal to 1 .

6. (15 points) Fill out the following timing diagram for a rising-edge triggered T flip-flop. Ignore propagation delays. The value of Q is initially equal to 0 .

7. (30 points) Design a 3 -bit counter that counts in the sequence ($001,101,010,110,000,011 \ldots$) using T flip-flops and a minimum number of external gates. Determine the logic required on the input of each flip-flop, then draw the circuit diagram.

A	B	C	A^{+}	B^{+}	C^{+}	T_{A}	T_{B}	T_{C}
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

