Name: .

SOLUTIONS

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (25 points) Given the following circuit diagram, fill out the timing diagram for E, F, G and H given the values of inputs A, B, C, and D. Indicate any hazards, given that H should be logic HIGH the entire duration of this timing diagram. Each XOR gate has a delay of 1 ns, each AND gate has a delay of 5 ns, and each OR gate has a delay of 3 ns.

2. Your buddy (who may or may not be any good at digital systems), shows you the following diagram of a circuit they wired up.

(a) (5 points) What is the MUX equation corresponding to the above circuit?

(AD)

(5 points) What is the MUX equation corresponding to the above circuit?

$$F = \frac{B'C'(A'+O') + B'C(A'D') + BC'(AD') + BC(A'D')}{AD'}$$

(b) (5 points) Fill out the following K-map based on the above equation.

(c) (10 points) Find a MUX implementation of this circuit that requires a minimum number of gates. Write the MUX equation and fill out the corresponding circuit diagram.

3. Your buddy from question 2 wired up a 3 to 8 decoder using only 2 to 4 decoders as follows.

(a) (7 points) Label the above circuit diagram with outputs from $F_0 - F_7$.

(b) (3 points) Using only the decoder outputs, and a minimum number of **2-input gates**, use the above schematic to draw a circuit diagram to implement the following function: $\underline{\Pi M}(1,2,5) + \underline{\Pi D}(3,4)$.

Em(0,6,7)

4. (10 points) Fill out the following timing diagram for a rising-edge triggered K flip-flop. Ignore propagation delays. The value of Q is initially equal to 1.

5. (30 points) Design a 3-bit counter that counts in the sequence (001, 101, 010, 110, 000, 011...) using T flip-flops and a minimum number of external gates. Determine the logic required on the input of each flip-flop, then draw the circuit diagram using the template below.

		i :	1 1	ne.		e e	77		g.			
	A	В	C	A^+	B^+	C ⁺	T_A	T_B	T_C			
	0	0	0	0	l	1	0		1			
	0	0	1		0	1	1	0	10			
	0	1	0		1	0		ð	0			
	0	1	1	0	0	1	0		0			
	1	0	0	×	×	×	×	×	×			
	1	0	1	0	l	0	1	1	1			
i i	1	1	0	0	0	0	1/		0			
	¹	1	1	×	×	X	X	\x/	X			
	BCO	0	X	BC O	0	B'C	-		RO	1		
	01		DB'	C			A+B	AC B	00 0	A	B'C't	•
	- ii	0	X B		TI.	D BC			11/0	X	B'A B'(At	
	101			10	0 [AA-			00	0	B'(At	(')
() L	T_A	$A \mid$	7	T	$^{\prime}_{B}$ $^{\prime}_{B}$		TP	T_C	C	7		
		\overline{A}	P		_ 7	₹ 0-	P					
				TE					\overline{C}			
										- -		
CLK -							100					