Nome: SOLUTIONS

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (20 points) You receive two 2-bit numbers designated as AB and CD. If $AB \ge CD$, an LED should turn on. The output of this function, F, will therefore be 1 if the LED should be on. Otherwise F will be 0. Implement this using a 4 to 1 MUX and a minimum number of external gates. Fill in the corresponding circuit diagram. Clearly indicate your control bits, and include your multiplexer equation at the bottom of the page.

		0	A	2	
	CD	00	01	11	10
0	00	1	1		1
1	01	0	1	1	1
3	11	0	0	1	0
2	10	0	0	1	1

F = AC'(D'+B) + A'C(0) + AC'(1) + AC(D'+B)

2. (20 points) Your buddy wired up a 3 to 8 decoder using only 2 to 4 decoders as follows. The MSB of the control bits is A, and the LSB of the control bits is C. Label the circuit diagram with the correct outputs from $F_0 - F_7$.

3. (25 points) A sensor on a car tire sends a 5-bit binary signal (ABCDE) that represents the tire pressure in PSI. The output L (low pressure) should be 1 if the pressure is less than 19. The output P (puncture) should be 1 if the pressure is less than 3. Use the following PAL diagram to implement outputs L and P. You will **not** need to add any gates to the PAL diagram!

Exam 3

5. (10 points) Fill out the following timing diagram for a rising-edge triggered JK flip-flop. Ignore all gate delays. Q(0) = 1.

6. (25 points) Design a 3-bit counter that counts in the sequence given in the state diagram below. Use T flip-flops and a minimum number of external gates. Write each flip-flop equation, then draw the circuit diagram using the template below.

	\boldsymbol{A}	В	C	A^+	B^+	C^+	T_A	T_B	T_C
Q	0	0	0	0	1	0	0	1	0
- (0	0	1	X	X	×	X	X	X
3	0	1	1	t	0	1	f	1	0
2	0	1	0	1	-	Q	- 1	0	0
4	1	0	0	0	- 1	1	1	1	1
5	1	0	1	0	0	0	L	0	1
7	1	1	1	×	×	×	X	Х	X
6	1	1	0	1	0	0	0	l	0

