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Author Note

This book is an attempt to compile together my notes for Digital Systems (ENGIN-2213 at the College of

DuPage). I want students to have a free resource that they can use instead of paying hundreds of dollars for

a book that they may not read and does not align exactly with my course content.

I also want to include other resources that I’ve created for students, such as tutorial videos. In addition,

I want to include sample circuits that students can build in their free time to add to their knowledge and

enjoyment of the topic. Personally, I love building circuits, and I want my students to love it too!

That said, this book will always be a work in progress. I’m sure I will keep adding content to it over time.

And I cannot guarantee that it is free from typos. I will, however, do my best to implement your feedback

if you find any issues with the text. Feel free to e-mail me at pasqualea185@cod.edu with your notes.

Special Thanks

Special thanks go to all of my students who have contributed to this textbook by finding typos, suggesting

new sections to include, and providing feedback on its layout and structure.

Resources

My YouTube Channel has a playlist for Digital Systems related videos. There are many videos with content

that supplements the topics covered in this book.
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1 Number Systems and Binary Arithmetic

1.1 Digital Signals

This book is called digital systems. The important word to note is “digital.” A digital signal is quantized;

that is to say that it can only take on one of a certain number of particular values. This is opposed to analog

signals, which can take on any one of a continuum of values.

A good example of a digital value would be to ask how many people are in a room, or how many marbles

are in a jar. Because there cannot be half people or third-of-a-marbles, or negative people, the number of

values that could be listed in these scenarios are defined: positive integers.

An analog value would be the collective weight of a roomful of people. There is no reason that our scale

couldn’t read 10,102.574 lbs, or 9,942.3 lbs, for example. Any one of an infinite possibility of positive real

numbers could define the weight of a roomful of people.

In electrical engineering classes, we are interested in digital vs. analog signals. A signal would be the

voltage measured over a particular circuit element. A digital signal is one that can only take on particular

values. Particularly, in this book, digital signals will only be 0 V or 5 V. There are no other possible values

that are compatible with our digital electronic system. Figure 1.1 is an example of a digital signal.

0 1 2 3 4 5 6 7 8 9 10
0

5

time (ms)

vo
lt
ag
e
(V

)

Figure 1.1: An example of a digital signal.

Digital systems are generally easier to design than analog systems and require much less math to analyze

and understand.

As we will see later in this book, even digital signals are truly analog at heart. But for the most part,

we can “hand-wave” away the analog nature of things in this course and focus on the digital.

1.2 Foundation of Digital Systems

To be able to design a digital circuit, we need to progress in stages.

First, we need to understand binary. As our signals can take on only one of two values, we use the binary

number system to quantify information. Therefore, this book starts by teaching how to convert between

number systems with the goal of being able to derive binary numbers.

Second, we need to understand Boolean algebra. If binary forms the “words” then Boolean algebra is

the “language” that links them together. Boolean algebra is how we start to create logical systems, and we
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1 Number Systems and Binary Arithmetic 1.3 Number Systems

will spend considerable effort into learning how to create Boolean expressions and how to minimize them so

that they are easy to build.

Third, we will learn about logic gates. Logic gates form the building blocks of our digital circuits.

From these simple building blocks we can create circuits from something very simple to something very

complicated. Remember: your computer, at heart, is built from these simple building blocks!

1.3 Number Systems

Digital systems make use of the binary number system. Many students are nervous about learning a new

number system. They are comfortable with and familiar with decimal (base 10) because it is so commonly

used in our lives. So to provide you with some comfort, I’d like to point out how many number systems you

are familiar with.

• Base 10 (decimal) – this is the standard number system that you use all the time in your math

classes, to figure out how much money it will cost to buy several things at the store, or to do pretty

much any arithmetic.

• Base 12 – the month that I am currently writing this in is September. What month will it be ten

months from now? How do we know that ten months after September comes July? There are twelve

months in a year, so we are using a base 12 number system when we do this reasoning. If it is currently

5:04 p.m., what time will it be eight hours from now? Our 12-hour clock is also a base 12 system!

• Base 24 – if you are familiar with the 24-hour clock, then you have used this number system to

determine how many hours it will be, say, thirteen hours from now.

• Base 7 – today is Thursday, so what day will it be four days from now? As there are seven days in a

week, we have to use a base 7 number system any time we do this type of reasoning.

Hopefully you get the idea that you are already used to many different number systems, most of which

relate to our strange time-keeping systems (365 days in a year – most of the time, twelve months in a year,

twenty-eight/twenty-nine/thirty/thirty-one days in a month, seven days in a week, fifty-two weeks in a year,

twenty-four hours in a day, sixty minutes in an hour, sixty seconds in a minute, etc).

Why is it that computers and digital signals are binary? Why not decimal, to make things simpler? It

is difficult to make things take on three or more distinct values. The electrical switches (transistors) that

are used only create two values: 0 V (represented as the binary number 0) and 5 V (represented as the

binary number 1). In the past, punched cards were used to create computers going back to the 1800s when

the Jacuqard loom was created. These punch cards have holes in particular locations. A hole can either be

present or absent, which corresponds to a binary system.
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1 Number Systems and Binary Arithmetic 1.4 Decimal (Base 10)

A benefit of digital systems derives from their digital nature. Analog signals are very susceptible to noise,

which is not so for digital signals. It is very easy to differentiate between 0 V and 5 V. It is not so easy to

differentiate between (say) 3.1 V and 3.12 V in an analog system.

1.4 Decimal (Base 10)

To understand number systems in general, let’s first review the decimal number system. Each numeral in a

decimal number is actually related to a power of ten. Take a look at the example shown below in Figure 1.2.

The number is 358.917, but each of the numerals has a meaning.

358.917

thousandths place: 7× 10−3

hundredths place: 1× 10−2

tenths place: 9× 10−1

hundreds place: 3× 102

tens place: 5× 101

ones place: 8× 100

Figure 1.2: The base 10 system explained.

Each of the numerals is related to a power of ten. That power of ten gives the numeral its weight. The

3, for example, isn’t just 3. It’s 300, or 3× 102. The 5 is actually 50, or 5× 101.

To determine the power of ten that each number corresponds to, determine how far away from the decimal

point it is. To the left, the powers of ten increase from zero upward. To the right, the powers of ten decrease

from negative one downward.

In general, all numbers in different number systems are just numerals that can be raised to powers of

their base. If the base is seven, then each numeral relates to powers of seven. In binary, each numeral relates

to powers of two.

1.5 Converting to Decimal

This realization that all number systems are composed of raising numbers to powers of the base can be

used to convert numbers from any number system to decimal. Following are some examples. The subscripts

following the number indicate the number system (or base).
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1 Number Systems and Binary Arithmetic 1.6 Efficiency of Number Systems

Example: Converting from base 4 to decimal

Convert 1312.01 from base 4 to decimal.

1312.014 = (1× 43) + (3× 42) + (1× 41) + (2× 40) + (0× 4−1) + (1× 4−2)

= 64 + 48 + 4 + 2 + 0.0625

= 118.062510

Example: Converting from base 2 to decimal

Convert 11011.1101 from binary to decimal.

11011.11012 = (1× 24) + (1× 23) + (0× 22) + (1× 21) + (1× 20) + (1× 2−1) + (1× 2−2)

+ (0× 2−3) + (1× 2−4)

= 16 + 8 + 2 + 1 + 0.5 + 0.25 + 0.0625

= 27.812510

Example: Converting from base 16 to decimal

Some number systems have bases that are greater than ten. In that case, we need to use different

symbols to represent numbers that are larger than nine. The purpose of a number system is to

represent each of the numerals in only one digit. For example, the number ten in decimal is not a

single digit. It is two digits (a one and a zero). Hexadecimal, which can represent numerals from zero

through fifteen in one digit, needs to “squeeze” the numbers larger than nine into one digit. After

nine, the letters A–F are used instead of numbers.

4F30.A16 = (4× 163) + (F × 162) + (3× 161) + (0× 160) + (A× 16−1)

= (4× 163) + (15× 162) + (3× 161) + (0× 160) + (10× 16−1)

= 16384 + 3840 + 48 + 0.625

= 20272.62510

1.6 Efficiency of Number Systems

If we look at numbers in various number systems, we can see that number systems with a large base are

more efficient than number systems with a small base. In other words: we can pack more information into

less space (fewer digits) using something like base 16 over using a number system like base 2 or base 3.

The numbers in table 1.1 are all identical, but the ones represented in number systems with a smaller

base require more digits to express the number than the number systems with a larger base.
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Base Number
2 10000100000
3 1110010
4 100200
5 13211
6 4520
7 3036
8 2040
9 1403
10 1056
16 420

Table 1.1: The number 105610 expressed in several different number systems.

1.7 Converting From Decimal

As noted, binary forms the basis for digital circuits, because there are only two possible values for the logic

signals. We can picture binary values as numbers (0 or 1), as a signal value (LOW or HIGH), as the status

of an electrical switch (which is ON or OFF), as a voltage (0 V or 5 V), or as notation that you would see

on a circuit diagram (Vcc, GND). These are depicted in table 1.2.

Binary Value Signal Value Switch Status Voltage Circuit Notation
0 LOW OFF (open) 0 V GND
1 HIGH ON (closed) 5 V Vcc

Table 1.2: Binary values, signal value, switch status, voltages, and circuit notation in digital logic.

It is therefore important to learn how to convert numbers from decimal to binary. (You might be

wondering what to do if you have a number in any other base and need to convert it to binary. Convert it

to decimal, and then convert that to binary.)

Rather than multiplying by powers of the base, we now divide by the base and find remainders to obtain

the solution. Let’s start with a decimal number to understand the process before moving to binary.

To convert 35810 to our desired base (which is ten), we divide repeatedly by ten. The remainders provide

the digits of our converted number.

Decimal – Decimal
10

)
358

10
)
35 R: 8 → LSB

10
)
3 R: 5

0 R: 3 → MSB

3 5 8
MSB LSB

The first remainder that we get from our division is called the LSB, which stands for least significant bit.

It gives the ones place, the digit that is closest to the decimal point all the way to the right.

The MSB is the most significant bit. It is the digit that is farthest left from the decimal point. It has

the most weight of all of the digits in the number.

How do we know when we are done converting? We are done when the quotient of our division step is
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zero. In fact, we could keep dividing, and obtain a lot more zeros to place to the left of our M.S.B. We know

from algebra that placing zeros to the left of a number does not change its value.

Let’s now divide 35810 by two to obtain a binary number. (Remember: we want to obtain a base 2

number, so we divide by the base, which in this case is two.) Just as before, the first remainder is the LSB

and the last remainder is the MSB.

35810 – Binary
2
)
358

2
)
179 R: 0 → LSB

2
)
89 R: 1

2
)
44 R: 1

2
)
22 R: 0

2
)
11 R: 0

2
)
5 R: 1

2
)
2 R: 1

2
)
1 R: 0

0 R: 1 → MSB

1 0 1 1 0 0 1 1 02
MSB LSB

This process of successive division can be used to convert numbers into any base, not just binary.

To convert a number to base 5, for example, just divide by five repeatedly and find the remainders. The

first remainder will always be the LSB.

23010 – Base 5
5
)
230

5
)
46 R: 0 → LSB

5
)
9 R: 1

5
)
1 R: 4

0 R: 1 → MSB

1 4 1 05
MSB LSB

Note that this method only works for integer values. If a number has a fractional component, we need

to use a different system to convert it, as will be discussed later.

Remember: the procedure for converting from a number that is not in base 10, to another number that

is not in base 10, is to convert to decimal in between. For example, to convert 1526 to base 9, you need to

first convert to decimal.

1526 = (1× 62) + (5× 61) + (2× 60)

= 36 + 30 + 2

= 6810

Once we have converted to decimal, we now divide by nine to find the number in base 9. We see that

1526 = 6810 = 759.
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6810 – Base 9
9
)
68

9
)
7 R: 5 → LSB

9
)
0 R: 7 → MSB

1.8 Converting to/from Binary, Octal, and Hexadecimal

The only exception to the rule of going to decimal in between is when you are converting binary to/from

octal or hexadecimal. This has to do with the fact that all of these number systems are powers of two. If

you forget this fact, you can always use decimal as your in-between number, but it is faster not to.

Every hexadecimal digit corresponds to four bits of binary (called a nibble), as shown in table 1.3.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 1.3: Decimal, binary, and hexadecimal conversions.

Therefore, if you have a binary number, you can break it up into nibbles, starting with the four least

significant bits (the bits closest to the decimal point, all the way to the right). Each of those nibbles will be

represented by a single hexadecimal digit, as shown in Figure 1.3. In other words, 11010100011100011112 =

6A38F16.

0 1 1 0

6

1 0 1 0

A

0 0 1 1

3

1 0 0 0

8

1 1 1 1

F

Figure 1.3: Converting binary to hexadecimal is as easy as splitting up the nibbles.

The reverse process is also true. A binary number can be generated by taking each hexadecimal digit

and expanding it into the corresponding four binary bits.

FCA0116 = 1111 1100 1010 0000 00012
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1 Number Systems and Binary Arithmetic 1.9 Constraints of Binary Numbers

Binary can be converted to octal by splitting up the number into groups of three bits, as shown in

Figure 1.4. In other words, 11010100011100011112 = 15216178.

0 0 1

1

1 0 1

5

0 1 0

2

0 0 1

1

1 1 0

6

0 0 1

1

1 1 1

7

Figure 1.4: Converting binary to octal occurs in groups of three bits.

As with hexadecimal, the reverse conversion (octal to binary) occurs by taking the octal digit and

expanding it into the corresponding three binary bits.

1.9 Constraints of Binary Numbers

Now that we have an understanding of how to convert numbers to binary, we need to understand the

constraints of digital systems using binary. Digital systems are designed to work with a certain number of

bits. For example, the Arduino microcontroller is an 8-bit system, so all of the data that it deals with come

in groups of eight bits. Your computer is probably a 64-bit system, which is capable of dealing with much

larger numbers. Either way, there is a constraint to the largest possible number that can be portrayed in

a given number of bits. It will be important for us to understand this limitation whenever we are doing

arithmetic with binary numbers.

Table 1.4 shows the maximum decimal number that can be represented, given a certain number of bits

both with unsigned (only positive) binary numbers, and with signed (binary numbers can be either positive

or negative). We will discuss how to create negative binary numbers later in this chapter. As you can see,

the number of bits that we have relates to the largest possible number that we can represent in binary.

Bits Decimal Range (Unsigned) Decimal Range (Signed)
1 0 → 1 N/A
2 0 → 3 −2 → 1
3 0 → 7 −4 → 3
4 0 → 15 −8 → 7
5 0 → 31 −16 → 15
6 0 → 63 −32 → 31
8 0 → 255 −128 → 127
16 0 → 65,535 −32,768 → 32,767
n 0 → 2n − 1 −2n−1 → 2n−1 − 1

Table 1.4: The range of decimal numbers for signed and unsigned binary numbers of differing numbers of bits.

1.10 Representation of Non-Integers in Binary

Frequently, we need to express non-integer quantities. If we purchase something that is $14.25, how can we

store that number in a computer? Binary numbers can only be expressed with two characters: zero and one.

There is no decimal point in binary. Fractional numbers are expressed in computer systems using something
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called floating-point math. However, floating-point conversions are beyond the scope of this book. We will

use a different method to come up with fractional numbers in binary, for now using a decimal point and

ignoring that it would not be allowed in a true computer or microcontroller system.

Converting a number that has both integer and fractional parts from decimal to binary should always

occur in two steps. First, convert the integer part using the process above. Second, convert the fractional

part using the process described below.

To derive the integer binary number from a decimal number, divide by two. To derive the fractional

part, multiply by two. The integer part of the product represents the digit that should go after the decimal

point. Continue to multiply the fractional parts by the base (two for binary) until you end up with zero.

Let’s convert from decimal to decimal once more just to understand the process. Repeatedly multiply

the fractional part of the number by the base (in this case, ten).

0.25× 10 = 2.5 (2 is the most significant fractional bit)

− 2.0

= 0.5

0.5× 10 = 5.0 (5 is the next fractional bit)

− 5.0

= 0.0 (result is 0, you can stop)

Example: Non-integer binary number

Convert 0.25 from decimal to binary.

0.25× 2 = 0.5 (0 is the most significant fractional bit)

− 0.0

= 0.5

0.5× 2 = 1.0 (1 is the next fractional bit)

− 1.0

= 0.0 (result is 0, you can stop)

0.2510 = 0.012

Sometimes, numbers that have non-repeating fractional parts in decimal have repeating fractional parts

in binary. Numbers can be strange when you convert to and from different number systems! When doing the

fractional conversion, if you notice a number repeating itself, it means if you were to continue multiplying,

you would be stuck in a loop forever, continuing to multiply. At the point where you reach the repeat

number, simply draw the overbar over the repeating part to represent the repeating fraction, as you would

cbna Alyssa J. Pasquale, Ph.D. 21 Last updated: 2025/05/12



1 Number Systems and Binary Arithmetic 1.11 Negative Numbers in Binary

in decimal.

Example: Repeating fraction in binary

Convert 0.410 to binary.

0.4× 2 = 0.8− 0.0 = 0.8

0.8× 2 = 1.6− 1.0 = 0.6

0.6× 2 = 1.2− 1.0 = 0.2

0.2× 2 = 0.4− 0.0 = 0.4

Note that the result is 0.4, which is the number we started with. Therefore,

0.410 = 0.01102

1.11 Negative Numbers in Binary

Just as fractional numbers are difficult to represent in binary (because there is no ‘.’ included in a number

system that only understands zero and one), it is also not possible to express negative numbers by sticking

a negative sign ‘−’ in front of them. We therefore need to find a number system that satisfies the following

requirements.

1. All numbers (both positive and negative) only consist of zeros and ones.

2. We can add, subtract, multiply, and divide with the numbers (both positive and negative) and obtain

meaningful results.

There are many ways to satisfy the first criterion, but very few ways to satisfy the second criterion. For

example, we could take binary numbers and just stick a zero at the beginning to signify that the number is

positive, or stick a one at the beginning to signify that the number is negative. This is known as a sign and

magnitude number. For example, if we have a 5-bit binary system and wanted to define +1410 and −1410:

1410 = 011102

−1410 = 111102

To test to see if our number system is useful, we could add together both of these numbers and hope that

we obtain zero. That would not be the case. That means that this system for representing signed (positive

and negative) numbers is not useful.

The number system that satisfies both of the above criteria for a useful signed number system is called

2’s complement. It enables us to quickly establish if a number is positive or negative, and also enables us to
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1 Number Systems and Binary Arithmetic 1.12 Binary Addition

carry out the arithmetic operations of addition, subtraction, multiplication, and division.

To generate a number in 2’s complement, simply follow the steps below.

1. Start with an n-bit positive binary number (if you are working with eight bits, that means an 8-bit

positive binary number).

2. If you want a positive number, you’re done! Positive numbers are universal (meaning they are both

“normal” binary and also 2’s complement simultaneously).

3. To obtain a negative number, simply

(a) invert all of the bits (zeros become ones and vice versa), and

(b) add one to the result.

For example, let’s represent the number 410 as a 2’s complement number using six bits.

410 = 0001002

Representing positive numbers in 2’s complement is as easy as ensuring that we have a sufficient number

of bits in the value. Let’s represent −410 as a 2’s complement number using six bits.

−410 =

= 000100 (start with +4 in 6-bit binary)

= 111011 (flip all of the bits)

= 111100 (add one)

1.12 Binary Addition

Being able to perform arithmetic in binary is essential to creating microcontrollers and computers. As

seemingly simple as it is, addition is a critical building block in arithmetic and logic units (ALUs) in

computers.

We start by considering a 1-bit binary adder (that is, the adder sums together two 1-bit binary numbers).

Remembering from our primary school days, we know that we have a sum and also a carry term that might

possibly result from our addition. A truth table helps us to understand the outputs that result when we add

together two numbers. Table 1.5 shows the possible results for F = S1 + S2, with COUT representing the

carry out term.

When adding numbers in binary, it is important to understand how many bits our system is. All of the

numbers that we add together must be comprised of that many bits. (For example: if we have an 8-bit

system, we must add together two 8-bit numbers. It is not OK to add together a 3-bit number to a 4-bit

number in an 8-bit system. The math will not work out if there are negative numbers involved!)
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S1 S2 F COUT

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 1.5: Truth table for binary addition.

Just as with adding numbers together in decimal, start by taking two binary numbers, line them up

together, and start from the rightmost column. Any carry out then gets cascaded into the next column. For

this reason, it is important to understand how to add together three numbers: S1, S2, and CIN (the carry

in term from the previous column). Table 1.6 shows the truth table for addition with a carry in term.

S1 S2 CIN F COUT

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 1.6: Truth table for binary addition with a carry in term.

It is also important to understand whether or not the answer is valid. As seen in a previous section of this

book, there is a limit to how large each binary number can be when expressed in a certain number of bits.

When adding together two large numbers, it is possible to get an answer that is too large to represent in

the number of bits allotted. This situation is called an overflow, and we need to understand how to identify

when they occur. Overflows occur in addition when

• the addition of two positive binary numbers results in a negative sum, or

• the addition of two negative binary numbers results in a positive sum.

Using 2’s complement, any carries that are generated by the leftmost column get ignored. It is a feature

of the 2’s complement number system that we can ignore any final carry out terms. This is very important

to note, because a frequent misunderstanding of students is that a carry out term represents an overflow

situation. That is not true. Overflow can only be checked by testing the above criteria. Carry out terms are

ignored.

Now that we understand how to add, and how to identify an overflow situation, let’s look at some

examples. In each example, the numbers in gray at the top represent the carry terms from previous columns.
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1 Number Systems and Binary Arithmetic 1.12 Binary Addition

Example: Binary addition without overflow and no final carry out

In a 5-bit system, add 310 to 510.

1 1 1

0 0 0 1 1

+ 0 0 1 0 1

0 1 0 0 0

Example: Binary addition without overflow and with a final carry out

In a 4-bit system, add 410 to −210 (Note that there is a carry out term from the leftmost column here

that we will ignore. There is no overflow because adding a positive and a negative number cannot

possibly result in an overflow!)

1 1

0 1 0 0

+ 1 1 1 0

0 0 1 0

Example: Binary addition with overflow and no final carry out

In a 4-bit system, add 410 to 510. (Note that we would expect a positive result, but the sum is

negative, which indicates an overflow.)

1

0 1 0 0

+ 0 1 0 1

1 0 0 1

Example: Binary addition with overflow and a final carry out

In a 4-bit system, add −610 to −310. (We would expect the result of this operation to be negative,

but our sum is positive, indicating an overflow.)

1

1 0 1 0

+ 1 1 0 1

0 1 1 1
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1.13 Binary Subtraction

A similarly important basic operation to perform with binary numbers is subtraction. A truth table can be

used to represent the operation F = S1 − S2. And just as with decimal subtraction, at times we need to

borrow a digit from columns over to the left. That borrow is represented as the B column on the truth table

shown in table 1.7.

S1 S2 F B
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Table 1.7: Truth table for binary subtraction.

It is possible to subtract two binary numbers and obtain an invalid result (overflow). Overflows occur in

subtraction when

• subtracting a negative number from a positive number results in a negative sum, or

• subtracting a positive number from a negative number results in a positive sum.

Because it is possible to subtract a negative number from a positive number, at times we need to borrow

when we are in the left-most column of numbers. While it appears that there is nowhere to borrow from, a

feature of 2’s complement is that we can create a borrow (conjured out of thin air) and borrow from it. One

of the examples, below, shows this seemingly magical borrowing process.

Example: Binary subtraction without overflow

In a 5-bit system, subtract 510 from 1410.

0 10

0 1 1 1 0

− 0 0 1 0 1

0 1 0 0 1

Example: Binary subtraction without overflow

In a 4-bit system, subtract −310 from −210

0 10

1 1 1 0

− 1 1 0 1

0 0 0 1
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Example: Binary subtraction with overflow

In a 4-bit system, subtract 410 from −510. (Note that we would expect a negative number from this

result, but we get a positive number indicating that there was an overflow.)

0 10

1 0 1 1

− 0 1 0 0

0 1 1 1

Example: Binary subtraction with overflow

In a 5-bit system, subtract −610 from 1010.

0

1 10

0 1 0 1 0

− 1 1 0 1 0

1 0 0 0 0

1.14 Binary Multiplication

Multiplication is the last type of arithmetic that we will discuss in this book. We will use a truth table to

represent how to perform the multiplication process of F = S1 × S2. Note that in multiplication, there are

no borrows or carries shown on the truth table. (However, in multiplication, there are addition steps that

need to be performed, so carries may still need to be used later in the process.) The truth table for binary

multiplication is shown in table 1.8.

S1 S2 F
0 0 0
0 1 0
1 0 0
1 1 1

Table 1.8: Truth table for binary multiplication.

Multiplication is a difficult process, both for humans and for computers. Particularly cumbersome is the

need to be able to determine if an overflow occurs. Because it is not clear from doing regular multiplication

if an overflow occurred, we need to do a special process in multiplication.

1. Start with an n-bit 2’s complement number, using the process discussed earlier in this chapter to

generate 2’s complement.
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2. Double the number of bits. These new bits (called overflow bits) will go to the left of the 2’s complement

number.

(a) If the number is positive, these overflow bits will all be zero.

(b) If the number is negative, these overflow bits will all be one.

It cannot be emphasized enough that the use of these overflow bits is mandatory. You simply cannot get

an accurate result if you do not use them. Now that we have generated overflow bits, we can use them to

check if there is an overflow. An overflow results if

• all of the overflow bits of the final result do not agree with each other, or

• the overflow bits all agree with each other, but they disagree with the sign bit of the non-overflow bits

of the result.

At times, multiplying in binary can lead to a lot of addition steps. To minimize the number of addition

steps, place the number with the fewest number of ones on the bottom row of your multiplication. (For every

one in the binary number on the bottom row, you will have that many terms to add together.) Because

addition is commutative, it doesn’t matter if you do 2×−1 or −1× 2. Secondly, if you do still have many

addition steps, it can be difficult to deal with the number of carries that you will generate. In that case, add

the first two numbers together, then add to that the third number, and so on. (In other words: add your

addition steps in groups of two rather than trying to add them all at once.)

Example: Binary multiplication of positive numbers without overflow

In a 4-bit system, multiply 310 and 210.

0 0 0 0 0 0 1 1

× 0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0

Example: Binary multiplication of negative numbers without overflow

In a 4-bit system, multiply −310 and −210.
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1 1 1 1 1 1 0 1

× 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

+ 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

Binary multiplication of positive numbers with overflow

In a 4-bit system, multiply 510 and 310. (Note that even though the four overflow bits agree with

each other, they indicate a positive number, whereas the sign bit of the result indicates a negative

number. This is an overflow situation.)

0 0 0 0 0 1 0 1

× 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

+ 0 0 0 0 1 0 1 ×

0 0 0 0 1 1 1 1

Binary multiplication of negative numbers with overflow

In a 4-bit system, multiply 510 and −410. It will be much easier to place the negative number on the

top row of our multiplication, because it will mean far fewer numbers to add together in the second

step of our multiplication process.

1 1 1 1 1 1 0 0

× 0 0 0 0 0 1 0 1

1 1 1 1 1 1 0 0

+ 1 1 1 1 0 0 × ×

1 1 1 0 1 1 0 0
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1.15 Binary Codes

To conclude this chapter, we will learn about different types of binary codes that might be encountered when

designing digital systems. Each binary code is used for particular applications.

1.15.1 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is used to represent decimal numbers in a binary format (hence the name).

Each nibble of binary data is used to encode a single decimal digit. This is extremely useful when displaying

numbers, such as the time, on displays. If the time is 9:52, it is much easier to send the nine, the five, and

the two to their own separate displays rather than encode 95210 as a binary number (11101110002) and then

decode that back into ones and tens places for both minutes and hours.

Instead, we would represent 9:52 in BCD. Because there are four decimal numbers in the time (the leading

zero is usually left off when we write numbers in 12-hour time), we would need sixteen bits to represent the

time in BCD, as shown in Figure 1.5.

0 0 0 0

010

1 0 0 1

910

0 1 0 1

510

0 0 1 0

210

Figure 1.5: The decimal number 952 represented in BCD.

1.15.2 Weighted Binary Codes (BCD)

A weighted code just means that each digit in the binary number is assigned some type of weight. The

“normal” binary code that we have already used is a weighted code. It is called 8-4-2-1 code in that those

are the weights of each digit in a nibble (23-22-21-20).

Some other weighted codes were devised by mathematicians or engineers for specific purposes. These

other codes can be judged to be complete or not (in other words: can you generate all decimal numbers from

zero through nine in the weighted code to express numbers in BCD).

One complete weighted code is 6-3-1-1. Rather than the powers of two that we are accustomed to from

8-4-2-1 binary, the MSB of the nibble is multiplied by six. The next bit is multiplied by three, and the

least significant two bits are multiplied by one. This can then be used as a BCD code to represent different

decimal numbers. These 6-3-1-1 values are shown in table 1.9.
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Decimal 6-3-1-1 Expansion
0 0000
1 0001 (1×1)
2 0011 (1×1) (1×1)
3 0100 (1×3)
4 0101 (1×3) (1×1)
5 0111 (1×3) (1×1) (1×1)
6 1000 (1×6)
7 1001 (1×6) (1×1)
8 1011 (1×6) (1×1) (1×1)
9 1100 (1×6) (1×3)

Table 1.9: 6-3-1-1 weighted code.

The number 95210 is shown converted to 6-3-1-1 BCD in Figure 1.6.

0 0 0 0

010

1 1 0 0

910

0 1 1 1

510

0 0 1 1

210

Figure 1.6: The decimal number 952 represented in 6-3-1-1 BCD.

Another possible weighted code could be 6-2-1-1. Remember that the completeness of a binary code is

determined by whether or not it is able to represent all decimal numbers from zero through nine. It is not

possible to generate the number 510 using this code. Therefore it is not a complete binary code.

1.15.3 Gray Code

Gray code represents a non-weighted code. It is useful in that from moving from any one binary number

to the next, the number of bits that change in the process is only one. We will see why that is useful later

in this book when we use Karnaugh maps to solve Boolean algebra expressions, and when we use a similar

type of mapping to minimize expressions in sequential logic.

The way that we will use Gray code, each binary number has exactly the same representation in our

8-4-2-1 weighted code as before. The only difference is in the order that the numbers are arranged.

To generate the ordering of Gray code, we start with 1-bit Gray code (which is exactly the same as 1-bit

binary). 0–1. Only one bit changes going from the first number to the second.

To generate 2-bit Gray code, start with the 1-bit Gray code. Think of it as existing on a mirrored surface,

where it sees its reflection beneath. Then, take the top digits and place a zero in front. The digits “under

the mirror” get a one in front. This is 2-bit Gray code, and this generation process is shown in Figure 1.7.

0
1
1
0

→

0 0
0 1
1 1
1 0

Figure 1.7: Generating 2-bit Gray code.
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A similar process is used to generate 3-bit Gray code, and is shown in Figure 1.8.

0 0
0 1
1 1
1 0
1 0
1 1
0 1
0 0

→

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

Figure 1.8: Generating 3-bit Gray code.

1.15.4 ASCII

ASCII is a binary code that takes numbers, letters, and other characters such as punctuation and encodes

them into binary numbers. When you type words into your computer, they need to be stored as binary

numbers as your computer does not understand anything that is not a zero or a one. If you do an Internet

search for “ASCII character table,” you will see all of the encodings for each alphanumeric character.
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1.16 Example Problems

Number System Conversions

1. Convert 413.15 to unsigned binary. Express the non-integer part exactly, indicating any repeat digits.

2. Express −12010 as an 8-bit 2’s complement number.

3. Convert 27.7710 as an unsigned binary number, rounding the non-integer component to fit into three

spaces.

4. Convert AF013C16 to a base 4 number.

5. Convert 101101.112 to a base 7 number. Express the non-integer part exactly, indicating any repeat

digits.

Binary Addition

1. In a 5-bit system, add 1510 and −410. If there is an overflow, indicate how you identified it.

2. In a 5-bit system, add −1310 and 510. If there is an overflow, indicate how you identified it.

3. In a 5-bit system, add −610 and 810. If there is an overflow, indicate how you identified it.

4. In a 5-bit system, add 1210 and 1010. If there is an overflow, indicate how you identified it.

5. In a 5-bit system, add −1410 and 710. If there is an overflow, indicate how you identified it.

Binary Subtraction

1. In a 5-bit system, subtract 1010 from −810. If there is an overflow, indicate how you identified it.

2. In a 4-bit system, subtract −110 from 010. If there is an overflow, indicate how you identified it.

3. In a 6-bit system, subtract −710 from −2410. If there is an overflow, indicate how you identified it.

4. In a 4-bit system, subtract −510 from 210. If there is an overflow, indicate how you identified it.

5. In a 4-bit system, subtract −710 from 510. If there is an overflow, indicate how you identified it.

Binary Multiplication

1. In a 5-bit system, multiply 1010 and −310. If there is an overflow, indicate how you identified it.

2. In a 4-bit system, multiply 210 and −410. If there is an overflow, indicate how you identified it.

3. In a 5-bit system, multiply 910 and −110. If there is an overflow, indicate how you identifed it.

4. In a 5-bit system, multiply −810 and 310. If there is an overflow, indicate how you identified it.

5. In a 6-bit system, multiply −610 and 310. If there is an overflow, indicate how you identified it.
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Binary Codes

1. Express 35210 as an 8-4-2-1 BCD number.

2. Express 35210 as a 6-3-1-1 BCD number.

3. Look up the ASCII encoding for lowercase q and express as a 7-bit binary number.

4. List the numbers in 4-bit Gray code, in order.

5. Is 2-4-2-1 a complete binary code? If so, list the encodings for numbers zero through nine. If not,

which numbers cannot be encoded in this binary code?
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2 Boolean Algebra

Boolean algebra gives us a method to take our ideas for a digital circuit and turn them into a reality. For now,

we will create circuits that can be expressed in three forms. Any one of the forms is enough to completely

identify the circuit.

• Circuit diagram – a schematic drawing of how the circuit looks, using logic gates as building blocks.

• Truth table – a table showing all of the different combinations of inputs and their corresponding

outputs.

• Boolean algebra expression – an equation that acts as a shorthand for the circuit.

Each of these representations is useful in its own right. A circuit diagram is the most useful when you

are building a circuit on a breadboard and need to know which logic gates to use. A Boolean expression

takes up the least amount of space to write and is very concise while still containing all of the information

needed to identify the circuit. A truth table can be a valuable way to understand how a circuit works before

reducing it to an expression or drawing a circuit diagram.

2.1 Logic Gates

Logic gates are devices that carry out certain Boolean (logical) functions. They are represented by a pictorial

digram, called a circuit symbol, that goes into a circuit diagram. The four basic, universal logic gates are

described in this section. (Universal means that we can make any digital logic circuit using only these gates,

regardless of how complicated the circuits are.)

Each logic gate will be expressed as a switch circuit (a circuit built out of switches), a circuit symbol, a

truth table, and a Boolean expression. Recall from the previous chapter that binary is used in computation

because of the ability to express the two possible states of our logic devices, as described in table 1.2.

For each of the following gates, the switch circuit can be interpreted as follows: each switch corresponds

to an input. The status of the switch corresponds to the binary value. If a connection between 5 V and

ground exists from one end of the LED to the other, then the LED would be on and the output of the logic

gate is a one. If the connection between 5 V and ground is broken, the LED would be off and the output of

the logic gate is a zero.

2.1.1 Buffer

A buffer takes an input signal and passes it through to the output unchanged. While this might seem like

something we could do with a wire, without having to use an actual logic gate, an actual buffer in a circuit

has the benefit of boosting the amount of current in the circuit, which maintains sufficient signal strength

in a circuit with a lot of elements in it. A buffer is shown in Figure 2.1.
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A F A F
0 0
1 1

Figure 2.1: A buffer represented as a switch circuit, a circuit symbol, and a truth table.

2.1.2 Inverter

The inverter is also known as a NOT gate. It takes the complement (opposite) of the input and passes it

through to the output. The small bubble indicates complement.

The Boolean expression for an inverter is F = A′. The ′ symbol is called “prime” and indicates that a

complement is occurring. The inverter is shown in Figure 2.2.

A F A F
0 1
1 0

Figure 2.2: An inverter represented as a switch circuit, a circuit symbol, and a truth table.

Note in the switch circuit for the inverter, when the switch is closed (logical one), a short circuit is

created, causing all of the current to flow through the wire including the switch, and none of the current to

flow through the wire that contains the LED.

2.1.3 AND

An AND gate is a logic gate that has an output of one only when all of the inputs are one.

The Boolean expression for a 2-input AND gate is F = AB. While this may look similar to an arithmetic

operation (multiplication), it is not multiplication. It is an AND operation. To determine when you should

multiply and when you should perform this Boolean AND operation, look at the context. In this book,

you will always be asked to “multiply” when you need to multiply. If you see two variables together in

an expression such as Z = XY , then an AND operation is taking place. A 2-input AND gate is shown in

Figure 2.3.
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A

B
F

A B F
0 0 0
0 1 0
1 0 0
1 1 1

Figure 2.3: An AND gate represented as a switch circuit, a circuit symbol, and a truth table.

2.1.4 OR

An OR gate is a logic gate that has an output of one any time one or more inputs is one.

The Boolean expression for a 2-input OR gate is F = A + B. This might look similar to addition, but

it is NOT arithmetic. It is a Boolean (logical) operation. In this book, it will be very clear when you need

to add two numbers together, as the word “add” will be used. Any time you see the + sign connecting

two variable names together, you can be sure that it is an OR operation. A 2-input OR gate is depicted in

Figure 2.4.

A

B
F

A B F
0 0 0
0 1 1
1 0 1
1 1 1

Figure 2.4: An OR gate represented as a switch circuit, a circuit symbol, and a truth table.

2.2 Multi-Level Circuits and Boolean Expressions

More complicated circuits can be represented by stringing logic gates together. We will start by representing

these circuits as circuit diagrams and Boolean algebra expressions, and then we will learn how to include

truth tables in the mix.

It is important to point out that there are many different Boolean algebra expressions that correspond

to any given circuit. However, we usually want to find a minimized form, as the minimization allows us to

build the circuit with the fewest number of logic gates. We will start by considering Boolean expressions in

general, and then we will learn how to reduce them to their minimum forms.

2.2.1 Converting a Circuit Diagram to a Boolean Expression

A circuit diagram is read roughly from left to right until an expression is created. Essentially, you find the

output of each logic gate (using the expressions for each individual logic gate, given above) and then cascade

those outputs into the next logic gates, and so on.
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For now, the goal is to obtain a Boolean expression. Later on we will worry about making it a minimized

expression.

There are three different ways to represent a complemented (inverted, primed) input to a logic gate. The

preference used in this book is to use a bubble on any inverted input. However, there are two other ways to

do this. These three ways are shown in Figure 2.5.

A

B
F

A′

B
F

A

B
F

Figure 2.5: Using an OR gate to express the function F = A′+B, with the inversion of A represented in three
different ways: a bubble, a prime symbol (′), and an input inverter.

Be careful not to do any two of these at once. If you take the complement of a complement, you wind

up with what you started with!

Example: Obtaining a Boolean expression from a circuit diagram

A

B

AB′

C
F = AB′ + C

Starting from the left, we find that the output of the AND gate is AB′. That output is then fed

into an OR gate along with C, leading to an output of F = AB′ + C.

Example: Obtaining a Boolean expression from a circuit diagram

C

A

B

AB

A

D A′D

AB +A′D + C (AB +A′D + C)′

D
F

This example is slightly more complicated, but still uses the same methodology to determine the

Boolean expression. The AND gates all the way to the left are analyzed, and the outputs of AB and

A′D are determined. Those outputs then go into the OR gate which has an output of AB+A′D+C,

which feeds into an inverter (AB +A′D +C)′, and into an AND gate along with D to give the final

expression of F = D(AB +A′D + C)′.

For now, we lack the ability to deal with inverters that occur at the output of any logic gate (whether

it be an AND gate or an OR gate) other than to just put the preceding terms into parenthesis and stick a

prime at the end. We will learn how to reduce inverted outputs once we get further into this chapter.
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2.2.2 Converting a Boolean Expression to a Circuit Diagram

We will now do the reverse operation from what we did above. Now we would like to take a circuit diagram

and obtain from it a Boolean expression. Rather than going from left to right, we are now going to go from

“inside-out” to obtain our circuit diagram.

Identify the operation that occurs nested within the most parenthesis, and draw that logic gate with its

inputs first. Then determine what type of logic gate that goes into, and draw that. Continue until you have

created a logic gate for every term in the expression.

Example: Obtaining a circuit diagram from a Boolean expression

Draw a circuit diagram corresponding to F (A,B,C,D,E) = [A(C + D)]′ + BE. Going from the

inside-out, start with the OR gate with inputs C and D. That then feeds into an AND gate with

another input of A. All of that feeds into a NOT gate, which is then one input into an OR gate. The

OR gate has a second input of B and E. The red wires indicate an incomplete connection at each

step.

C

D

C

D
A

C

D
A

C

D
A

C

D
A

B

E

F

Example: Obtaining a circuit diagram from a Boolean expression

Draw a circuit diagram corresponding to F (A,B,C) = (A+C)′(A′+B′C). Start with an AND gate

with inputs B′ and C. This feeds into an OR gate along with A′. There is also an OR gate with A

and C as inputs. This is complemented and sent to an AND gate with the previous statement. The
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incomplete connections are depicted in red in the intermediate steps.

B

C

B

C
A

B

C
A

B

C
A

A

C

F

2.3 Truth Tables

Truth tables show all possible combinations of input values for a circuit and their corresponding outputs.

You may also include other columns that show intermediate steps if it is helpful to do so.

Truth tables are important in that they can fully identify a circuit in a way that a Boolean expression

cannot. Two expressions that have identical truth tables are said to be equivalent. They may have different

Boolean expressions, but if the truth tables are the same, then the circuits are functionally identical.

To determine how many different possible combinations of inputs there are, we can identify the relation-

ship between the number of inputs in a circuit and the number of rows in a truth table. When there are

two inputs, there are four possible outputs (truth table rows). When there are three inputs, there are eight

possible outputs. When there are four inputs, there are sixteen possible outputs. Therefore, if there are n

inputs, there are 2n rows on the truth table. Later on in this chapter we will learn a shorthand that makes

identifying circuits easier than drawing out truth tables that may have many rows.

2.3.1 Converting a Boolean Expression to a Truth Table

To convert a Boolean expression to a truth table, first draw out all of the rows of the truth table and all of

the input combinations. Analyze each of the input values and determine what the output(s) to each Boolean

expression would be. If it helps to include intermediate steps in the truth table, then include those!
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Example: Obtaining a truth table from a Boolean expression

Derive a truth table for the expression F = AB′ + C.

A B C B’ AB’ F

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 1

2.3.2 Converting a Circuit Diagram to a Truth Table

To convert a circuit diagram to a truth table, either first convert that circuit diagram to a Boolean expression

and then follow the steps above, or simply determine what the output of every logic gate would be in each

case and follow the signals through to the output.

Figure 2.6 depicts F = AB + C ′ for all of the eight different possible combination of input values. Each

of the HIGH signals are depicted with red wires, and each of the LOW signals are depicted with black wires.

A truth table can then be created with all of this data.

A

B

C

F

0

1

0

1

0

1

1

0

1

0

0

0

0

0

0

0

0

1

0

1

1

0

0

0

1

1

0

1

1

1

0

0

1

0

0

0

1

0

0

1

0

1

1

1

1

1

1

0

Figure 2.6: Deriving a truth table from F = AB+C ′ by analyzing the circuit diagram for each combination of
input values.

cbna Alyssa J. Pasquale, Ph.D. 41 Last updated: 2025/05/12



2 Boolean Algebra 2.4 Boolean Expression Forms

2.3.3 Determining Function Equivalence

As mentioned, a truth table can be used to identify equivalent circuits. If the original expression is F =

AB′ + C, we can see if either one of the following expressions is equivalent by creating truth tables.

• F = (A+ C)(A+B′)

• F = (A+ C)(B′ + C)

The truth table for (A + C)(A + B′) is shown in table 2.1, along with AB′ + C. As you can see, the

outputs are not identical for all of the different input combinations. Therefore the two expressions are not

equivalent.

A B C A+C A+B’ (A+C)(A+B’) AB’+C
0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 0 0 0 0
0 1 1 1 0 0 1
1 0 0 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 0
1 1 1 1 1 1 1

Table 2.1: Comparisons of the truth tables of (A+ C)(A+B′) and AB′ + C.

The truth table for the second expression, (A + C)(B′ + C) is shown in table 2.2 along with AB′ + C.

These two expressions are equivalent, because they have identical outputs for every possible combination of

input values. The Boolean algebra expressions are different, but the truth tables are identical.

A B C A+C B’+C (A+C)(B’+C) AB’+C
0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 0 0 0 0
0 1 1 1 1 1 1
1 0 0 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 0 0 0
1 1 1 1 1 1 1

Table 2.2: Comparisons of the truth tables of (A+ C)(B′ + C) and AB′ + C.

2.4 Boolean Expression Forms

Before we determine how to create Boolean expressions from a truth table, we need to learn about different

ways to format those Boolean expressions. There are two main types of formats that can be used. It is

important to understand that while there are many different ways to express Boolean expressions, these are

two very formal types of expressions. They therefore come with particular rules.
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2.4.1 Sum of Products

The first type of Boolean expression is called sum of products (SOP). Based on the logic symbols that we

use to express AND and OR operations, sum of products implies that the expression consists of AND gates

that output into an OR gate, as depicted in Figure 2.7.

Figure 2.7: Template of an example sum of products (SOP) expression.

In an SOP expression, all of the truth table outputs that are one are analyzed. Any time there is an

output of one, it implies that the OR gate in the circuit has at least one input that is equal to one. In

order to generate a value of one from an AND gate, all of the inputs to that AND gate must be one. In this

manner, we can look at every output on a truth table that is one and determine how the inputs must be

entered into an AND gate to create an output of one. That is called the product expression. Each product

expression is then OR’d together (summed) to obtain the final SOP expression.

The procedure for deriving an SOP expression from a truth table is therefore to

1. identify the rows in the truth table that have an output of one,

2. determine what product term would have to exist for the inputs in that row to give an output of one

in an AND gate (this is called the product term for that row), and then

3. sum together all of the product terms to obtain the SOP expression.

We will use the truth table in table 2.3 as an example for deriving an SOP expression from a truth table.
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A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 2.3: Example truth table for deriving an SOP expression.

The rows in the truth table that have an output of one are rows one, three, six, and seven. Let us

identify what the outputs of AND gates would be for each of these rows. Then let us determine how we

could reconfigure those inputs to obtain AND gate outputs of ones.

Figure 2.8 shows row one as is inputted into an AND gate. It would lead to an output of zero. If,

however, A and B were primed, then the output of the AND gate would be a one. Therefore, the product

term for row one is A′B′C.

A = 0
B = 0
C = 1

0
A′ = 1
B′ = 1
C = 1

1

Figure 2.8: Row one (ABC=001) and how to generate an output of one from an AND gate given the inputs.

The product term for row three, shown in Figure 2.9 shows that the product term is A′BC.

A = 0
B = 1
C = 1

0
A′ = 1
B = 1
C = 1

1

Figure 2.9: Row three (ABC=011) and how to generate an output of one from an AND gate given the in-
puts.

The product term for row six, shown in Figure 2.10 shows that the product term is ABC ′.

A = 1
B = 1
C = 0

0
A = 1
B = 1
C ′ = 1

1

Figure 2.10: Row six (ABC=110) and how to generate an output of one from an AND gate given the inputs.

Row seven, as depicted in Figure 2.11 does not require any modification to obtain the product term

ABC.
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A = 1
B = 1
C = 1

1

Figure 2.11: Row seven (ABC=111) and how to generate an output of one from an AND gate given the in-
puts.

The sum of products expression for the truth table given in table 2.3 is F = A′B′C+A′BC+ABC ′+ABC.

This is not a minimized expression, but it is an SOP expression nonetheless.

If you notice, creating a product term for each row requires either taking an input variable as is if it has

a value of one, or taking the prime if it has a value of zero. Therefore row one, 001, becomes A′B′C, forcing

the A and B to take on values of one.

2.4.2 Product of Sums

The second type of Boolean expression is called product of sums (POS). Based on the logic symbols that we

use to express AND and OR operations, product of sums implies that the expression consists of OR gates

that output into an AND gate, as depicted in Figure 2.12.

Figure 2.12: Template of an example product of sums (POS) expression.

In a POS expression, the idea is to analyze the outputs of the truth table for that expression that are

equal to zero. Any time there is an output of zero, it implies that the AND gate in the circuit has at least

one input that is equal to zero. In order to generate a value of zero from an OR gate, all of the inputs to

that OR gate must be zero. In this manner, we can look at every output on a truth table that is zero and

determine how the inputs must be entered into an OR gate to create an output of zero. That is called the

sum expression. Each sum expression is then AND’d together to obtain the final POS expression.

The procedure for deriving an POS expression from a truth table is therefore to

1. identify the rows in the truth table that have an output of zero,

2. determine what sum term would have to exist for the inputs in that row to give an output of zero in

an OR gate (this is called the sum term for that row), and then
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3. AND together all of the sum terms to obtain the POS expression.

We will use the same truth table as above, table 2.3, as an example for deriving a POS expression from

a truth table. The rows in the truth table that have an output of zero are rows zero, two, four, and five.

Let us identify what the outputs of OR gates would be for each of these rows. Then let us determine how

we could reconfigure those inputs to obtain OR gate outputs of zeros.

Figure 2.13 shows row zero as is inputted into an OR gate. It requires no change to obtain an output

value of zero. Therefore, the sum term for row zero is (A+B + C).

A = 0
B = 0
C = 0

0

Figure 2.13: Row zero (ABC=000) in the truth table, and how to generate an output of zero from an OR
gate given the inputs.

The sum term for row two, shown in Figure 2.14 shows that the product term for row two needs to be

(A+B′ + C) in order to generate an output of zero on the OR gate.

A = 0
B = 1
C = 0

1
A = 0
B′ = 0
C = 0

0

Figure 2.14: Row two (ABC=010) in the truth table, and how to generate an output of zero from an OR
gate given the inputs.

Row four requires variable A to be primed in order to obtain an output of zero on the OR gate, as shown

in Figure 2.15. Its corresponding sum term is therefore (A′ +B + C).

A = 1
B = 0
C = 0

1
A′ = 0
B = 0
C = 0

0

Figure 2.15: Row four (ABC=100) in the truth table, and how to generate an output of zero from an OR
gate given the inputs.

Lastly, row five, as depicted in Figure 2.16 has a sum term of (A′ +B + C ′).

A = 1
B = 0
C = 1

1
A′ = 0
B = 0
C ′ = 0

0

Figure 2.16: Row five (ABC=101) in the truth table, and how to generate an output of zero from an OR
gate given the inputs.

Therefore, the product of sums expression for the truth table given in table 2.3 is F = (A+B +C)(A+

B′ + C)(A′ +B + C)(A′ +B + C ′).

If you notice, creating a sum term for each row requires either taking an input variable as is if it has a
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value of zero, or taking the prime if it has a value of one. Therefore row two, 010, becomes (A + B′ + C),

forcing the B to take on values of zero.

2.4.3 Identifying SOP and POS Expressions

It is important to identify what is SOP and what is POS, as these formats will be used frequently in this

book. Both of these formats are defined very formally. While many valid Boolean expressions may exist,

only certain conditions of variables are considered SOP or POS.

Of the following expressions, both of them are equivalent, but only one is SOP.

• F = A(B + C) + C ′D′ +B′D – this is not SOP because one of the terms has been factored out

• F = AB +AC + C ′D′ +B′D – this is SOP

Of the following expressions, both are equivalent, but only one is POS.

• Z = (A+D)(A+B′)(B + E + F ) – this is POS

• Z = (A+B′D)(B + E + F ) – this is not POS because one of the terms has been factored out

If it is not clear to you if an expression is in SOP or POS format, draw a circuit diagram. If there are

more than just two levels of logic gates (AND leading into OR, or OR leading into AND), then it is not in

SOP or POS format.

Expressions with only one term are both SOP and POS. For example, F = AB is simultaneously in SOP

and POS format. F = A+B is similarly both SOP and POS.

2.5 Minimizing Boolean Expressions

When actually building a circuit, it is in our best interest to use as few logic gates as possible. For this

reason, we want to find minimum Boolean expressions. First, we find our SOP or POS expression. Then,

we can use the rules of Boolean algebra to minimize the expression. We will expend considerable effort to

find minimized SOP and POS expressions.

The rules of Boolean algebra are given below. These rules can be applied to expressions to find a minimum

expression.

Operations with 0 and 1:

X + 0 = X

X + 1 = 1

X · 0 = 0

X · 1 = X

Idempotent laws:

X +X = X

X ·X = X

Involution law:

(X ′)′ = X
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Complementary laws:

X +X ′ = 1

X ·X ′ = 0

Commutative laws:

X + Y = Y +X

XY = Y X

Associative laws:

(X + Y ) + Z = X + (Y + Z)

= X + Y + Z

(XY )Z = X(Y Z)

= XY Z

Distributive laws:

X(Y + Z) = XY +XZ

X + Y Z = (X + Y )(X + Z)

DeMorgan’s laws:

(X + Y )′ = X ′Y ′

(XY )′ = X ′ + Y ′

Uniting theorem:

XY +XY ′ = X

(X + Y )(X + Y ′) = X

Absorption theorem:

X +XY = X

X(X + Y ) = X

Elimination theorem:

X +X ′Y = X + Y

X(X ′ + Y ) = XY

Consensus theorem:

XY +X ′Z + Y Z =

XY +X ′Z

(X + Y )(X ′ + Z)(Y + Z) =

(X + Y )(X ′ + Z)

Many of these rules of Boolean algebra look different from the “normal” rules of “regular” algebra that

you are used to. If you aren’t sure how they are derived, then you can create a truth table for both sides of

the equation and convince yourself that both sides of the equation are equivalent.

Some of the rules of Boolean algebra can be verified just by applying some of the other rules. For example,

the second distributive law X+Y Z = (X+Y )(X+Z) (which students generally have a hard time believing,

as it is so different from “regular” algebra), is derived below.

X + Y Z = (X + Y )(X + Z)

= XX +XZ +XY + Y Z (first distributive law)

= X +XZ +XY + Y Z (idempotent law)

= X(1 + Z + Y ) + Y Z (first distributive law)

= X + Y Z (operations with 1 and 0)

The procedure for minimizing Boolean algebra expressions is to apply any of the possible rules that are

given above. Continue until none of the rules can be applied, then the expression is minimized. Now we are

able to derive minimum SOP and POS expressions from circuit diagrams or from truth tables, closing the

circle of circuit diagrams / Boolean expressions / truth tables.
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2.5.1 Converting a Circuit Diagram to a Minimum SOP or POS Expression

There are always two options when confronted with a circuit diagram and asked to generate a minimum

SOP or POS expression. The first option is to create a truth table. The second option is to generate a

non-minimized Boolean expression and then minimize it using the rules of Boolean algebra.

Figure 2.17 shows a circuit diagram that is clearly not minimized.

F
A

B

A

B

B
A

B

Figure 2.17: A non-minimum circuit diagram.

It is possible to derive an expression for F by using the procedure outlined above. Then, the rules of

Boolean algebra are applied to obtain a minimum expression.

(AB′ + (AB +B))B +A =

(AB′ +B)B +A = (absorption theorem)

(A+B)B +A = (elimination theorem)

AB +BB +A =

AB +B +A =

B +A = (absorption theorem)

= A+B

2.5.2 Converting a Truth Table to a Minimum SOP or POS Expression

Deriving a minimum SOP or POS expression from a truth table is as straightforward as deriving an SOP or

POS expression and then using the rules of Boolean algebra to obtain a minimum form. Uniting, elimination,

and consensus are most commonly used. Start by finding uniting terms. Then look for elimination steps.

Continue to look for more uniting and elimination steps until you cannot use those steps any more. If there

are three or more terms, look for and eliminate any consensus terms.

We will use the truth table given in table 2.4 to derive a minimum SOP expression, starting by finding

the SOP expression and reducing it down.
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A B C F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Table 2.4: Example truth table for deriving a minimum SOP expression.

The Boolean algebra steps are shown below.

F = A′B′C ′ +A′B′C +A′BC +AB′C ′ +AB′C

= A′B′ +A′BC +AB′ (uniting)

= A′(B′ +BC) +AB′

= A′(B′ + C) +AB′ (elimination)

= A′B′ +A′C +AB′

= B′ +A′C (uniting)

A similar process is used for finding a minimum POS expression. The truth table given in table 2.5 will

be used as an example.

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 2.5: Example truth table for deriving a minimum POS expression.

The Boolean algebra steps are shown below.

F = (A+B + C)(A+B + C ′)(A′ +B + C)(A′ +B + C ′)(A′ +B′ + C)

= (A+B)(A′ +B)(A′ +B′ + C) (uniting)

= (B)(A′ +B′ + C) (uniting)

= (B)(A′ + C) (elimination)
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2.5.3 Checking for Consensus Terms

Consensus is generally the most difficult Boolean algebra rule to use. However, it is very important in

ensuring that an expression is minimized. Consensus terms are terms in a Boolean expression that do not

add anything useful to the expression. They are completely redundant. (We will see in a later chapter that

they somtimes have a use, but not for now.)

The best way that I have found to teach students how to check for consensus terms is to derive a consensus

table. In a consensus table, every variable will be noted along with its complement. In an SOP expression,

any terms that contain the variable or its complement will be compared and AND’d together. The result

of that AND operation will determine what the consensus terms, if any, are. As an example, let’s consider

F = A′B′C + A′CD + A′BD + BC ′D + ABC ′, which cannot be reduced using uniting, elimination, or

absorption steps. There are four terms in the expression, so we will need four rows in our consensus table,

shown in table 2.6.

Variable Complement Consensus Term(s)
AA’ BC’ BD, CD, B’C BC’D, 0, 0
BB’ A’D, AC’ A’C A’CD
CC’ A’B’ AB 0 (none)
DD’ A’B 0 (none) 0 (none)

Table 2.6: An example of a consensus table for an SOP expression.

In the first row of the consensus table, we identify the terms that contain an A and the terms that contain

an A′. The terms that contain an A are ABC ′, we factor out the A and obtain BC ′ and stick it in the first

cell of the table. We then identify the terms that contain an A′. These terms are A′B′C, A′CD, and A′BD.

The A′ is factored of each, and these terms are placed in the second cell of the table. We then AND together

every combination of these terms.

(BC ′)(BD) = BC ′D

(BC ′)(CD) = 0

(BC ′)(B′C) = 0

In this AND process, we have identified a consensus term: BC ′D. We remove it from our expression

and do not have to include it in the next rows of our table. Our newly simplified expression is F =

A′B′C +A′CD+A′BD+ABC ′. We are not done checking for consensus terms until the table is complete.

In the next row, we find terms A′D and AC ′ as being associated with B. We find A′C as being associated

with B′. We then AND all of these combinations together and identify a second consensus term: A′CD.

(A′D)(A′C) = A′CD

(AC ′)(A′C) = 0
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Our newly simplified expression is F = A′B′C + A′BD + ABC ′. We are still not finished checking for

consensus terms, however.

In the next row, we find term A′B′ associated with C, and AB associated with C ′. ANDing these two

terms together we obtain no consensus terms. In the final row, we see that there are no terms associated

with D′, and therefore there are no consensus terms created by that variable.

Our final minimum SOP expression is therefore F = A′B′C +A′BD +ABC ′.

Let’s do one more example with a consensus check for a POS expression. The process is much the same,

but now ORing will occur rather than ANDing. Our initial expression is F = (A′+C+D)(A′+B′+C)(B′+

D′). Because it has at least three terms, it is possible for there to be consensus terms in the expression.

There are four variables, so there will be four rows in the consensus table, shown in table 2.7.

Variable Complement Consensus Term(s)
AA’ 1 (none) C+D, B’+C 1 (none)
BB’ 1 (none) A’+C, D’ 1 (none)
CC’ A’+D, A’+B’ 1 (none) 1 (none)
DD’ A’+C B’ A’+B’+C

Table 2.7: An example of a consensus table for a POS expression.

There are no terms in the expression that contain an A, therefore A does not contribute any consensus

terms. This is similar to what we find with the variable B and with C ′. However, both D and D′ have

terms associated with them. When we OR them together we identify (A′ + B′ + C) as a consensus term.

Our minimum POS expression is therefore F = (A′ + C +D)(B′ +D′).

2.6 Converting POS to SOP

At times, it is advantageous to convert an expression from POS to SOP, or vice versa. There are two options:

one option is to create a truth table and re-derive the expression in the other format. The second option is

to use a conversion method. Sometimes conversion is much simpler than creating a truth table, especially if

there are more than four variables in the expression!

Converting from POS to SOP is by far the simpler direction to go. (We will cover SOP to POS in the

next section.) Conversion from POS to SOP takes place using the following steps.

1. Ensure that the POS expression is minimized. If not, minimize it.

2. Look for second distributive terms. If possible, do as many second distributive steps as you can.

3. “Multiply” out all of the terms using the distributive law.

4. Simplify to minimum SOP using uniting, absorption, elimination, and consensus.

As an example, convert F = (A′ + C)(B + C ′)(C ′ + D)(B′ + C + D′) to SOP. First, verify that it

is minimized. For practice, you should create a consensus table and convince yourself that there are no

consensus terms.
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The next step is to look for second distributive law steps. The second two terms can be combined with

this law, as can the first and last terms. This reduces the number of “multiplication” steps that we have to

do, and thus reduces our chances for making a mistake. Then we can multiply out the terms and reduce.

F = (C ′ +BD)(C + (A′)(B′ +D′))

= (C ′ +BD)(C +A′B′ +A′D′)

= A′B′C ′ +A′C ′D′ +BCD

Again, a consensus table should be created to relieve all doubts that there are no consensus terms. Once

you have convinced yourself of that, you have found the minimum SOP expression.

Note how long the conversion process takes if you do not use second distributive law steps.

F = (A′ + C)(B + C ′)(C ′ +D)(B′ + C +D′)

= (A′B +A′C ′ +BC)(C ′ +D)(B′ + C +D′)

= (A′BC ′ +A′BD +A′C ′ +A′C ′D +BCD)(B′ + C +D′)

= (A′BD +A′C ′ +BCD)(B′ + C +D′) (absorption)

= A′BCD +A′B′C ′ +A′C ′D′ +BCD

= A′B′C ′ +A′C ′D′ +BCD (absorption)

2.7 Converting SOP to POS

By far the more difficult direction is to convert SOP to POS. As always, you have the option to use a truth

table rather than doing a conversion. But that is not always going to save time. The process for converting

SOP to POS follows.

1. Ensure that the SOP expression is minimized. If not, minimize it.

2. Apply DeMorgan’s law to obtain F ′.

3. Reduce F ′ to a minimum SOP form.

4. Apply DeMorgan’s law to obtain F .

As an example, let’s convert F = A′C ′ + C ′D′ + ACD + AB′C to POS. There is a consensus term

(AB′D′), but it is not in our expression, so our expression meets the requirement in step one to find a
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minimized SOP expression. We then use DeMorgan’s law to find F ′ and reduce it to a minimum SOP form.

F ′ = (A′C ′ + C ′D′ +ACD +AB′C)′

= (A′C ′)′(C ′D′)′(ACD)′(AB′C)′

= (A+ C)(C +D)(A′ + C ′ +D′)(A′ +B + C ′)

= (C +AD)(A′ + C ′ +BD′)

= A′C +BCD′ +AC ′D

Now that we have found F ′ as a minimum SOP expression, we simply do one more DeMorgan’s step to

find F as a minimum POS expression.

F = (A′C +BCD′ +AC ′D)′

= (A′C)′(BCD′)′(AC ′D)′

= (A+ C ′)(B′ + C ′ +D)(A′ + C +D′)

2.8 Exclusive OR and Equivalence

There are two more logic gates that will be introduced in this section. Note that these logic gates are not

part of the SOP or POS family, but are still well-defined and often-used logic functions.

2.8.1 Exclusive OR (XOR)

A two-input exclusive OR (XOR) gate gives an output of one only when the two inputs are different from

each other. This can be represented, as with all logic functions, as a circuit diagram, a truth table, and an

expression (F = A⊕B). The circuit diagram and truth tables are shown below in Figure 2.18.

A

B
F

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.18: XOR portrayed as a circuit diagram and a truth table.

As mentioned, XOR is not a formal sum of products or product of sums expression. However it can be

a convenient tool to use if you are not being restrained by the rigidity of the SOP and POS systems. It is,

however, possible to obtain SOP or POS expressions by analyzing the truth table and using the methodology
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explained earlier in this chapter.

FSOP = AB′ +A′B

FPOS = (A+B)(A′ +B′)

There are Boolean rules regarding the use of XOR expressions. They are not necessarily helpful in terms

of minimizing expressions but in understanding how XOR works, especially if you need to deal with an XOR

operation with a zero or one, or inverting an XOR gate, or figuring out how a 3-input XOR gate would work.

Operations with 0 and 1:

X ⊕ 0 = X

X ⊕ 1 = X ′

X ⊕X = 0

X ⊕X ′ = 1

Commutative law:

X ⊕ Y = Y ⊕X

Distributive law:

X(Y ⊕ Z) = XY ⊕XZ

Associative law:

(X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z)

= X ⊕ Y ⊕ Z

DeMorgan’s law:

(X ⊕ Y )′ =

= X ⊕ Y ′

= X ′ ⊕ Y

= XY +X ′Y ′

2.8.2 Equivalence (XNOR)

A two-input equivalence (XNOR) gate gives an output of one when the two inputs are the same. The circuit

diagram and truth table for the XNOR operation are shown in Figure 2.19, and the expression is F = A ≡ B.

The ≡ sign is called “equivalence.”

A

B
F

A B F
0 0 1
0 1 0
1 0 0
1 1 1

Figure 2.19: XNOR portrayed as a circuit diagram and a truth table.

Note the bubble on the output of what otherwise looks like an XOR gate. This implies that an XNOR

is the complement of an XOR. XOR and XNOR are simply complements of each other.

(A⊕B)′ = A ≡ B

XNOR is also not a formal SOP or POS expression. However, we can use the truth table to derive SOP
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and POS expressions for XNOR.

FSOP = AB +A′B′

FPOS = (A′ +B)(A+B′)

2.8.3 Simplifying XOR and XNOR Expressions

At times, we may want to simplify an expression that contains an XOR or XNOR operation. Or we may

want to find the expression in minimum SOP or POS form. As with all things, we always have options in

how we choose to do this. We can opt to create a truth table and derive a minimum expression from that.

Or we can find a Boolean expression and use the rules of Boolean algebra, as well as the SOP/POS formats

of XOR/XNOR, to derive a minimum expression.

Example: Using a circuit diagram to simplify XOR/XNOR

A

B
C

A
F

The expression, which contains an XOR, will be reduced to minimum SOP by using the relation-

ship X ⊕ Y = X ′Y +XY ′ that we derived previously in this section.

F = (A⊕B)C +A

= (AB′ +A′B)C +A

= AB′C +A′BC +A

= A+A′BC

= A+BC

Example: Simplifying a more complicated XOR/XNOR circuit

F

A

C

B

C

D

cbna Alyssa J. Pasquale, Ph.D. 56 Last updated: 2025/05/12



2 Boolean Algebra 2.9 Building Circuits

The circuit has both an XOR and an XNOR gate. Using the logical relationships we can find a

minimum SOP expression.

F = (B ⊕ C ′D′) + (A ≡ C)

= (B′C ′D′ +B(C ′D′)′) + (AC +A′C ′)

= B′C ′D′ +B(C +D) +AC +A′C ′

= B′C ′D′ +BC +BD +AC +A′C ′

2.9 Building Circuits

Circuit diagrams, Boolean expressions, and truth tables define our circuits. To build circuits, we need to

use actual, physical logic devices and connect them together in a meaningful way. Digital logic chips are

connected together on a breadboard or printed circuit board (PCB).

2.9.1 TTL Logic

The types of logic chips featured in this book are part of the 7400 series of integrated circuits that was

initially developed and manufactured by Texas Instruments. These devices are all compatible with each

other and are based on TTL (transistor-transistor logic) that uses a particular type of transistor known as

a bipolar junction transistor (BJT). The basic physics behind the BJT will be discussed in chapter 8. A

second type of digital logic using CMOS architecture is also available. The exact voltages used for a HIGH

and LOW signal are not generally compatible between the two types of devices.

TTL chips have particular advantages and disadvantages compared to CMOS chips, which are explained

below.

• TTL chips are generally less expensive than CMOS chips.

• TTL chips are less susceptible to damage from electrostatic discharge than CMOS chips.

• TTL chips consume more power than CMOS chips.

• A LOW signal on a TTL input is registered when the voltage is between 0 V and 0.8 V.

• A HIGH signal on a TTL input is registered when the voltage is between 2 V and 5 V.

Because TTL chips, and the 7400 series, is so standardized, many companies manufacture chips that are

virtually identical. As long as the part number is the same, any TTL logic chip can be replaced by one from

another manufacturer with identical functionality of the circuit.
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2.9.2 7400 Series

The 7400 series has to do with the numbering system for the digital logic chips. The chips are all numbered

74–××.

The 74 prefix indicates that the devices are part of the TTL series of logic devices. If the prefix is 54,

it means that the device is military grade (which usually indicates that it is capable of operating at larger

extremes of temperature). There may be letters in front of the 74, which just indicates the manufacturer,

and can be ignored.

The last two, three, or four numbers (indicated by ××in the 74–××) identifies the exact part. A 7408

chip contains four AND gates, whereas a 7432 chip contains four OR gates. At times there may be a final

letter stamped after the part number. This indicates the type of packaging used. (Common is N for DIP

architecture, which will be explained below.)

There may be an infix of letters between the 74 and the part number ××. These letters indicate the

exact architecture of the transistors that are built inside the chip. Two common infixes are listed below.

• LS – low-power Shottkey, these chips consume less power than chips that do not have the LS infix.

• HCT – high-speed CMOS / TTL compatable, these chips are able to interface between both types of

logic families: TTL and CMOS.

2.9.3 Input and Output Types

The 7400 series of digital logic chips features some chips with special types of inputs and outputs.

Open-collector outputs are a particular output type where the output of the digital signal has no

internal connection to Vcc. On its own, the signal output of the chip cannot be driven high without an

external connection to high voltage through an external pull-up resistor. This can be connected to a signal

that differs from the internal logic signal for Vcc, enabling connections to voltages higher than 5 V. This

was particularly useful when output devices such as Nixie tubes and fluorescent displays were common and

required connections to 50 V, 100 V, or more. Those voltages would damage the logic gate but were required

for the operation of such displays. Open-collector outputs can also be used to interface chips of different

logic families together so that they will work properly.

A schematic of an open-collector output is shown in Figure 2.20. On the left is a representation of the

output circuitry of an open-collector chip. On the right is a schematic of how that could be connected to a

power supply using an external pull-up resistor.
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Vcc

GND

output
IC

output

external supply voltage

Figure 2.20: Open-collector output schematic (left) and connection to a supply voltage using an external pull-
up resistor (right).

Tri-state outputs are a type of output signal that is capable of taking on one of three output values:

logic HIGH, logic LOW, and what’s known as a high-Z state (also known as a tri-state or third state). This

tri-state is an electrical disconnection of the output signal. It is very useful when working with hardware

where multiple chips need to be connected to a single output signal. They are discussed in more detail in

section 10.1.

Schmitt trigger inputs are inputs that connect to a device known as a Schmitt trigger. A Schmitt

trigger is a device that uses hysteresis. That is to say, a certain threshold of voltage must be reached before

the output signal will change from HIGH to LOW or vice versa. Hysteresis is used to remove noise from a

signal. Therefore, a Schmitt trigger device is used when there may be noise present in an input signal that

should be filtered out. These devices are also useful when creating a switch debounce circuit. Logic chips

that feature Schmitt trigger inputs have a circuit symbol similar to that shown in Figure 2.21, where the

logic gate is overlaid with a symbol representing the hysteresis property.

Figure 2.21: Circuit symbol of a buffer featuring a Schmitt trigger input.

2.9.4 Dual In-Line Package (DIP)

The dual in-line package (DIP) architecture is used in all of the devices that will be used as examples in

this book. It is convenient to use because it fits into a standard breadboard without any need for soldering.

A DIP chip has two (dual) sets of pins set in parallel (in-line) columns, as illustrated in Figure 2.22. Each

of the pins in a DIP chip is unique, so it is important to ensure that the pins on each side of the chip are

electrically isolated. This is accomplished by straddling the DIP chips across the trench that is featured in

the center of a breadboard.
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7 8

6 9

5 10

4 11

3 12

2 13

1 14

Figure 2.22: Illustration of a DIP chip with fourteen pins.

Each chip features a notch or a dot at the top. This indicates which way is “up” and helps to identify

each of the pins on the logic chip. A datasheet or a pinout diagram is used to determine how to wire each

of the chips to successfully connect them in a circuit.

2.9.5 DIP Switches

DIP switches are used to control several inputs without the need to move wires around on a breadboard,

and also prevents the inconvenience of having to use multiple toggle switches or pushbuttons. It is simply

a convenient package that contains multiple switches that can be turned on and off. DIP switches require

connections to power and ground, and use a pull-down resistor to prevent short circuits.

2.9.6 Output Devices

Most digital logic devices have some type of output. Perhaps we just want to turn an LED on and off

under different conditions. Or maybe we are interested in displaying different numbers on a display. For this

reason, we need to connect the outputs of our circuits to an LED or a 7-segment display. (There are other

outputs that can be used, such as LCD screens, but they are quite difficult to use without a microcontroller.)

LED stands for light-emitting diode, which is a semiconductor that emits light when current travels

through in a particular direction (from anode to cathode). If the anode of an LED is connected to the

output of a circuit, and the cathode is connected to ground, then when the output of the circuit is HIGH,

current will flow and the LED will illuminate. When the output of the circuit is LOW, current will not

flow and the LED will remain off. A current-limiting resistor is used to prevent an exess of current from

damaging the LED. (They can and will melt if too much current passes through, causing them to heat up.)

A 7-segment display contains several LEDs inside of the package and is able to illuminate decimal numbers

from zero through nine. A 7-segment display is depicted in Figure 2.23.
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Figure 2.23: Illustration of a 7-segment display.

7-segment displays will play a role in several of our discussions in this book. They are particularly useful

devices because they represent digital logic outputs in a number system that humans are familiar with:

base 10. They are commonly used in clocks and consumer appliances such as microwaves, ovens, and DVD

players.
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Circuit Project: 7-Segment Display

A circuit project that you can try to become familiar with the 7-segment display, breadboards,

and DIP switches is to create a circuit where each segment of the display is toggled on and off by the

DIP switch. You will need:

• 1– Breadboard

• 1– 5 V power supply or battery pack

• 1– DIP switch

• 14– 220 Ω resistors

• 1– 7-segment display

The display used for the schematic included here is a common cathode display which means that

the common pin gets connected to ground and a voltage of 5 V will illuminate each segment. (A

common anode display will work in the opposite manner; 5 V is connected to the common pin, and

0 V applied to a segment will cause it to illuminate.)

cbna Alyssa J. Pasquale, Ph.D. 62 Last updated: 2025/05/12



2 Boolean Algebra 2.10 Example Problems

2.10 Example Problems

Circuit Diagrams, Truth Tables, and Boolean Expressions

1. Draw F = A′B +A′C ′ +AB′C as a circuit diagram.

2. Determine if F and G are equivalent. Explain your reasoning. F = AC + A′C ′ + BC + A′B. G =

(A′ +B + C)(A′ +B′ + C)(A+B + C ′)

3. Determine if F and G are equivalent. Explain your reasoning. F = A⊕BC. G = A′BC +AB′ +AC ′

4. Create a truth table for F = B(A′ + C) +AC.

5. Express the circuit diagram given in Figure 2.24 as a Boolean expression.

G
A

B

C

B

C

Figure 2.24: Circuit to be expressed as a Boolean expression.

Minimum Sum of Products Expressions

1. Express the truth table given in table 2.8 as a minimum SOP expression.

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Table 2.8: Truth table to be expressed as minimum SOP.

2. Convert F = (C +D)(C ′ +D′)(A′ +B +D′) to a minimum SOP expression.

3. Convert F = (B′ + C ′ +D)(A′ +B + C ′)(C +D)(A+B + C) to a minimum SOP expression.

4. Convert F = (A+B + C)(B′ + C +D)(A′ +B +D′)(A′ + C ′ +D) to a minimum SOP expression.

5. Express F = A′BC ′D′ +A′BC ′D +ABC ′D as a minimum SOP expression.
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Minimum Product of Sums Expressions

1. Express the truth table given in table 2.9 as a minimum POS expression.

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Table 2.9: Truth table to be expressed as minimum POS.

2. Convert F = BC ′ +A′B′ + CD′ +AD to a minimum POS expression.

3. Convert F = BC + C ′D′ +A′B′C ′ to a minimum POS expression.

4. Express the circuit diagram given in Figure 2.25 as a minimum POS expression.

F

A

B

A

C

Figure 2.25: Circuit to be expressed as minimum POS.

5. Express F = AB′D +A′BC ′ +A′C ′E′ +AB′C as a minimum POS expression.

XOR and XNOR Circuits

1. Express the circuit diagram given in Figure 2.26 as a minimum POS expression.

A

C
B

A
B
D

A
C
D

F

Figure 2.26: XOR circuit to be expressed as minimum POS.
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2. Create a truth table corresponding to the circuit diagram given in Figure 2.27.

F
BA

C

A

B

B

C

Figure 2.27: XOR circuit to be expressed as a truth table.

3. Express F as a minimum POS expression. F = (A ≡ B′)(CD ⊕B′) +ABCD

4. Express F as a minimum SOP expression. F = (A ≡ D)(CD ⊕B) +ABCD

5. Express F as a minimum POS expression. F = (W ≡ Z)(Y Z ⊕X)
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3 Applications of Boolean Algebra

Now that we understand Boolean algebra expressions, we can use them to realize useful logic functions. There

are three types of problems we’ll learn to solve. The first involves open-ended design. The second involves

translating written parameters to Boolean algebra. The third involves using a truth table to implement a

problem with numeric constraints.

The first step in all cases is to define all of the variables involved in the process. What are the output

variables? Give them names, and define what a zero and a one correspond to. What are all of the input

variables? Give them names, and define what a zero and a one correspond to.

3.1 Open-Ended Design

In open-ended design, you are asked to design something. The exact parameters are up to you. Think about

all of the possible inputs and outputs that should play a role in the project. Define them clearly and include

exactly what a zero and a one should mean. Because Boolean values of zero and one imply logical opposites,

the definitions of the zero and the one should be logical opposites of each other. For example: the logical

opposite of hot is not cold; the logical opposite of hot is not hot.

Example: Car alarm

Let’s say you’re tasked with designing a car alarm. There are so many different ways that you could

go about designing this. I am only going to provide you with one possible interpretation. The output

of the car alarm is an alarm. Let’s call it A. A value of 0 means the alarm will not go off. A value

of 1 means the alarm will go off. There could be many different inputs. Here are a few possibilities.

• Force (F ) – 0 means that not a lot of force was applied to the car; 1 means that a lot of force

was applied.

• Key (K) – 0 means that the key was not used to unlock the doors; 1 means that the key was

used to unlock the doors.

• Passenger (P ) – 0 means that there is nobody in the car; 1 means that there is somebody in

the car.

• Window (W ) – 0 means that the window is closed; 1 means that the window is open.

• Key Fob Button (B) – 0 means that the alarm button on the key fob was not pressed; 1 means

that the alarm button on the key fob was pressed.

Again, while there are many possible interpretations of this design problem, one possible Boolean
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expression could be what follows.

A = F +K ′WP ′ +B

In other words, the alarm will go off if too much force is applied to the car, or if the key is not

used to unlock the door while nobody is inside and the window is open, or if the alarm button is

pressed on the key fob.

3.2 Written or Verbal Parameters

In these types of questions, you are given written or verbal parameters. Read them carefully, paying attention

to words such as and, or and not. The same procedure still applies. You must consider all of the input and

output variables and what zero and one correspond to for each variable.

Example: Laughing at a joke

You should laugh at a joke if it is funny and not offensive to others, or if it was told by your professor

(regardless of if it was funny, but only if it’s not offensive to others). The output variable here is

whether or not your should laugh. We’ll call it L. When it is 0, you should not laugh. When it is 1,

it means that you should laugh. The input values are given below.

• Funny (F ) – 0 means that the joke was not funny; 1 means that the joke was funny.

• Offensive (O) – 0 means that the joke was not offensive; 1 means that the joke was offensive.

• Professor (P ) – 0 means that the joke was told by somebody who is not your professor; 1 means

that the joke was told by your professor.

The Boolean expression in this case is given below.

L = FO′ + PO′

3.3 Numeric Parameters

In these types of design problems, you are given numeric parameters. The different values of the numbers

result in different output values, depending on how the question is formatted. In this case, the input is usually

a binary number (signed or unsigned, depending on how the question is asked). The output, however, still

needs to be defined as far as what a zero and one means.
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Example: Refrigerator warning

The temperature sensor on a refrigerator gives a 4-bit 2’s complement number as a value corresponding

to the temperature in degrees Celsius. If the temperature is greater than or equal to 3 ◦C, then an

overheat warning light needs to go on. If the temperature is less than −2 ◦C, then a freeze warning

light needs to go on. First, both of the output variables need to be defined.

• Overheat Warning (OW ) – 0 means that the overheat warning will not go on; 1 means that the

overheat warning will go on.

• Freeze Warning (FW ) – 0 means that the freeze warning will not go on; 1 means that the freeze

warning will go on.

The outputs are best considered by using a truth table. It is no longer sufficient to “reason

through” to come up with a Boolean expression. The truth table is given below.

T (◦C) A B C D OW FW

0 0 0 0 0 0 0

1 0 0 0 1 0 0

2 0 0 1 0 0 0

3 0 0 1 1 1 0

4 0 1 0 0 1 0

5 0 1 0 1 1 0

6 0 1 1 0 1 0

7 0 1 1 1 1 0

−8 1 0 0 0 0 1

−7 1 0 0 1 0 1

−6 1 0 1 0 0 1

−5 1 0 1 1 0 1

−4 1 1 0 0 0 1

−3 1 1 0 1 0 1

−2 1 1 1 0 0 0

−1 1 1 1 1 0 0

You may use SOP or POS to implement the function. Minimum SOP expressions for each OW

and FW are given below.

OW = A′CD +A′B

FW = AB′ +AC ′
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3.4 Binary Adders

Binary adders are a particularly useful application of Boolean algebra. They form the basis for computer

arithmetic and logic units. While adders can be built that can sum together very large numbers, the building

block of an adder is quite simple. There are two types of adders: full adders and half adders.

3.4.1 Half Adder

A half adder takes two binary input bits (A and B) and outputs a sum (S) and carry out (COUT ) term. The

truth table for a half adder is given in table 1.5 in chapter 1. We can use this truth table to derive Boolean

algebra expressions for both the sum and the carry out terms.

S = A⊕B

COUT = AB

We can therefore build a half adder circuit using an XOR gate and an AND gate. This circuit is shown

in Figure 3.1.

S

COUT

A

B

Figure 3.1: Half adder circuit diagram.

3.4.2 Full Adder

As we saw in the chapter about addition, a half adder is not sufficient when we need to add binary numbers

that contain more than one bit. What if there’s a carry from a previous column? In that case, we need to

consider a full adder which includes a third input variable, CIN . The full adder truth table is table 1.6 in

chapter 1. Now that we understand Boolean algebra, we can derive an expression for the sum (S).

S = A′B′CIN +A′BC ′
IN +AB′C ′

IN +ABCIN

= A′(B′CIN +BC ′
IN ) +A(B′C ′

IN +BCIN )

= A′(B ⊕ CIN ) +A(B ≡ CIN )

= A′(B ⊕ CIN ) +A(B ⊕ CIN )′

= A⊕B ⊕ CIN

cbna Alyssa J. Pasquale, Ph.D. 69 Last updated: 2025/05/12



3 Applications of Boolean Algebra 3.4 Binary Adders

We can also derive an expression for the carry out (COUT ).

COUT = A′BCIN +AB′CIN +ABC ′
IN +ABCIN

= A′BCIN +AB′CIN +AB

= A′BCIN +A(B′CIN +B)

= A′BCIN +A(CIN +B)

= A′BCIN +ACIN +AB

= CIN (A′B +A) +AB

= CIN (B +A) +AB

= BCIN +ACIN +AB

We can now build a full adder using two XOR gates, three AND gates and an OR gate. This circuit

diagram is given in Figure 3.2.

S

COUT

A

B

CIN

Figure 3.2: Circuit diagram for a full adder.

3.4.3 Ripple Carry Adder

What happens when we want to add binary numbers that contain more than one bit? We cascade 1-bit

adders together to create an adder that can add together binary numbers with more than one bit. This

type of adder is called a ripple carry adder, as the carry bit ripples from one bit to another. It performs

addition much the same way that we do when we use pencil and paper. Start at the LSB and continue with

the addition steps until the MSB has been reached. A 4-bit ripple carry adder is depicted schematically in

Figure 3.3. The adder performs the arithmetic shown in table 3.1 is performed out.

A serious drawback to ripple carry adders is the time it takes to add numbers together. Each bit adds

one at a time (just as we do with pencil and paper), and the second bit cannot be added until the first is
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CIN

+ A3 A2 A1 A0

+ B3 B2 B1 B0

= C4 S3 S2 S1 S0

Table 3.1: Addition performed in a ripple carry adder.

S0

A0 B0

CIN

S1

A1 B1

C1

S2

A2 B2

C2

S3

A3 B3

C3C4

Figure 3.3: 4-bit ripple carry adder.

completed. The third bit cannot be added until the second is completed, and so on. Therefore, the more bits

that are being added, the longer it takes to obtain a completed sum. This long time delay occurs because

the carry bits need to ripple from one bit to another. More complicated logic circuits have been created to

sum numbers together more quickly at the expense of taking up more space on a chip.

3.5 Parity Checking

Another useful application of Boolean algebra is in parity checking. Parity refers to the number of ones in

a variable. If there are an even number of ones, then the variable is said to have even parity. If there are an

odd number of ones, then the variable is said to have odd parity. For example, A′B′C corresponds to 001,

which has a single one, and therefore odd parity.

Parity checking is a simple way to check for errors in transmitting a signal from point A to point B. A

message of a certain bit length is generated. Before it is sent, a parity bit is added to either the beginning

or the end of the message. Both the transmitting and receiving parties have agreed on which parity (odd or

even) will be expected beforehand.

Let’s say for that you and a friend have decided on a 3-bit messaging system, shown in table 3.2.
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Circuit Project: 4-Bit Unsigned Adder

This circuit project uses an adder chip to add two unsigned 4-bit binary numbers together, and

display the 5-bit binary result on LEDs. Later in this book we’ll learn how to use something called

a decoder to turn the result into a decimal number to display onto a 7-segment display.

• 1– Breadboard

• 1– 5 V power supply or battery pack

• 1– DIP switch (8 switches, or 2 DIP switches with 4 switches each)

• 13– 220 Ω resistors

• 1– 74LS283 4-bit adder chip

• 5– LEDs

A B C Message
0 0 0 Come over at 7 tonight
0 0 1 Don’t come over tonight
0 1 0 Bring nachos when you visit
0 1 1 How are you doing?
1 0 0 I’m doing great
1 0 1 I am not doing great
1 1 0 Have you received my message?
1 1 1 I have received your message

Table 3.2: Truth table corresponding to your 3-bit messaging system.
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Before you send your message, you want to include a parity bit at the end of the message. This would

include a fourth bit to be tacked on to the end of your message. Depending on if you choose even or odd

parity, you will need different hardware to do this. The parity bits that you would need to use in each case

are given in table 3.3.

A B C Even Odd
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

Table 3.3: Truth table corresponding to the parity bits needed for your 3-bit messaging system.

3.5.1 Parity Generation

If you look carefully, you may notice the XOR configuration related to your even parity bit. To generate

an even parity bit, you would therefore need to wire up the hardware of PBEV EN = A ⊕ B ⊕ C. If you

want an odd parity bit, you would need to wire up the hardware using XNOR. The expression would be

PBODD = A ≡ B ≡ C.

Let’s say that you and your friend have decided on even parity. You wish to send the message “bring

nachos when you visit.” The full signal that you send is therefore 0101 (the first three bits contain the

message, and the parity bit is at the end of the message).

3.5.2 Parity Detection

If your friend successfully receives the transmission, then they will test the parity. To test for even parity,

XNOR will be used. To test for odd parity, XOR will be used. Because you decided on even parity, your

friend will send your signal through XNOR hardware:

A ≡ B ≡ C ≡ D = 0 ≡ 1 ≡ 0 ≡ 1

= 0 ≡ 0

= 1

This one indicates that the received message has even parity. Your friend then inspects the first three

bits of the message and buys nachos.

Let’s assume that there was electrical noise introduced somewhere in the transmission process. Instead

of receiving 0101, your friend received the message 0111. When your friend uses their hardware to check the
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parity of the message, they will use their XNOR hardware:

A ≡ B ≡ C ≡ D = 0 ≡ 1 ≡ 1 ≡ 1

= 0 ≡ 1

= 0

This zero indicates that the message had odd parity. Your friend immediately knows that there was an

issue with the message transmission process, and sends you a text message instead to see what you want.

3.5.3 Benefits and Drawbacks to Parity Checking

Parity checking is a very simple way to check for transmission errors. It only requires one extra bit added to

your message, and requires minimal hardware on the generation and detection ends. It is therefore a “cheap

and easy” way to check for transmission errors.

However, parity checking has a serious drawback. If an odd number of bits are flipped in the transmission

process (due to electrical noise or other reasons), then the incorrect transmission will be indicated. How-

ever, if an even number of bits are flipped in the transmission process, the detection will generate a false

positive transmission. Therefore, parity checking is capable of creating false positive situations (although it

is incapable of creating a false negative situation).

3.6 Incompletely Specified Circuits

At times, it is possible that there are inputs (or combinations of inputs) to a circuit that will never show up

under any circumstance. In that case, we do not care what the output should be in those cases. The output

could be a zero or it could be a one without impacting the functionality of the circuit. We call these outputs

don’t cares and they are represented on a truth table with an ×.

Finding a minimized expression when there are don’t care terms requires a slightly different protocol.

1. Use all of the zero terms to find a minimum POS expression or use all of the one terms to find a

minimum SOP expression. Do not consider the don’t care terms.

2. Inspect each of the don’t care terms individually and see if it will help to minimize the expression

further by removing a variable from a term, or removing a term. If so, include it in your expression.

If not, do not include it in your expression.

Do not just include the don’t care terms without considering whether or not they will help to reduce the

expression. If you include them and they don’t help to minimize the expression, then you no longer have a

minimum SOP or POS expression!

We will see that incompletely specified circuits result frequently from using 4-bit binary to represent

BCD characters on 7-segment displays. There are sixteen possible binary values that can be represented in
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four bits (zero through fifteen), but only ten decimal values (zero through nine) will ever be displayed. The

other six outputs would therefore be don’t care values.

Example: Alarm clock

Consider a real-time clock. It is a chip that keeps track of the time, day of the week, month, day,

and year. You wish to configure an alarm that goes off on work nights. The day of the week is given

as a 3-bit binary number. There are only seven days of the week, and there are eight 3-bit binary

numbers, so one of the 3-bit numbers is unused.

Day of Week A B C ALRM

– 0 0 0 ×

Sun 0 0 1 1

Mon 0 1 0 1

Tue 0 1 1 1

Wed 1 0 0 1

Thu 1 0 1 1

Fri 1 1 0 0

Sat 1 1 1 0

We would like to find a minimum SOP expression. The first step is to consider only the terms

that have an output of one on the truth table.

ALRM = A′B′C +A′BC ′ +A′BC +AB′C ′ +AB′C

= A′B′C +A′B +AB′

= A′B +A′C +AB′

This is as minimum as we can make the expression under the circumstances. We can then consider

the don’t care term, A′B′C ′, and determine if it will help minimize the expression further.

ALRM = A′B +A′C +AB′ +A′B′C ′

= A′(B + C +B′C ′) +AB′

= A′(B + C + C ′) +AB′

= A′ +AB′

= A′ +B′

The don’t care does indeed minimize the expression further, so we will include it in the imple-

mentation of this alarm project.
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Example: Deriving SOP and POS expressions for an incompletely specified circuit

Derive both minimum SOP and minimum POS expressions from the truth table given below.

A B C F

0 0 0 1

0 0 1 ×

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 ×

1 1 1 1

To find minimum SOP, first minimize only the rows of the truth table that have outputs of one.

F = A′B′C ′ +A′BC +ABC

= A′B′C ′ +BC

Now consider each of the don’t care terms individually and see if they help. The first don’t care

term corresponds to A′B′C.

F = A′B′C ′ +BC +A′B′C

= A′B′ +BC

This minimizes the expression by removing a variable. Next, consider the don’t care term corre-

sponding to ABC ′.

F = A′B′ +BC +ABC ′

= A′B′ +B(C +AC ′)

= A′B′ +B(C +A)

= A′B′ +BC +AB

This does not reduce the expression, so it will not be included. FSOP = A′B′ +BC.
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To find minimum POS, first consider only the rows that have an output of zero.

F = (A+B′ + C)(A′ +B + C)(A′ +B + C ′)

= (A+B′ + C)(A′ +B)

Consider the don’t care term corresponding to (A+B + C ′).

F = (A+B′ + C)(A′ +B)(A+B + C ′)

= (A+B′ + C)[B +A′(A+ C ′)]

= (A+B′ + C)(B +A′C ′)

= (A+B′ + C)(A′ +B)(B + C ′)

This does not minimize the expression, so it will not be used. Next, consider the don’t care term

(A′ +B′ + C).

F = (A+B′ + C)(A′ +B)(A′ +B′ + C)

= (B′ + C)(A′ +B)

That term reduces the expression by eliminating a variable, so it will be used. FPOS = (B′ +

C)(A′ +B).

3.7 Minterm and Maxterm Expressions

Minterm and maxterm expressions are simply a means to write possibly complicated Boolean expressions

in one simple equation, rather than using a truth table (which can get very large when more than four

input variables are used), and without using a Boolean algebra expression. They are simply a shorthand

that represents another way of discussing a logic function. (We have already discussed truth tables, circuit

diagrams, and Boolean algebra expressions. We can now add minterm and maxterm expressions to the mix.)

3.7.1 Minterm Expressions

A minterm is a product expression where each variable appears only once in either true or complemented

form, but not both. In the last chapter, we called these product expressions, as they represent the logical

AND operation.

Minterms correspond to truth table rows and we use them in sum of products (or sum of minterm)

expressions. We can therefore identify the minterms that correspond to every row of a truth table, and use

the ones that pertain to the expression that we are interested in. All of the minterms of a 3-variable truth

table are shown in table 3.4.
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Row A B C Minterm
0 0 0 0 A′B′C ′ = m0

1 0 0 1 A′B′C = m1

2 0 1 0 A′BC ′ = m2

3 0 1 1 A′BC = m3

4 1 0 0 AB′C ′ = m4

5 1 0 1 AB′C = m5

6 1 1 0 ABC ′ = m6

7 1 1 1 ABC = m7

Table 3.4: 3-input variable minterms.

This allows us to use a convenient shorthand for identifying a Boolean expression. For example, the truth

table given in table 3.5 includes minterms m1, m2, m3, m5, and m7.

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 3.5: Example truth table for determining a minterm and maxterm expression.

We can represent this as the sum of those minterms.

F (A,B,C) = Σm(1, 2, 3, 5, 7)

To derive a minimum SOP expression for this sum of minterms, we simply convert each minterm to its

Boolean expression and use the rules of Boolean algebra to simplify.

F (A,B,C) = m1 +m2 +m3 +m5 +m7

= A′B′C +A′BC ′ +A′BC +AB′C +ABC

= A′B′C +A′B +AC

= A′(B′C +B) +AC

= A′(C +B) +AC

= A′B +A′C +AC

= A′B + C
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Example: Creating a minimum expression from a minterm expression

Find a minimum SOP expression.

F (A,B,C) = Σm(1, 2, 4, 6)

= m1 +m2 +m4 +m6

= A′B′C +A′BC ′ +AB′C ′ +ABC ′

= A′B′C +A′BC ′ +AC ′

= A′B′C + C ′(A′B +A)

= A′B′C + C ′(B +A)

= A′B′C +BC ′ +AC ′

It is also possible to express a minterm expression for functions with more than 3 variables. In fact,

minterm expressions make it much easier to define a function than a truth table, because rather than writing

out 2n rows, just one simple expression can be written.

F (A,B,C,D) = Σm(3, 5, 7, 12, 13)

= m3 +m5 +m7 +m12 +m13

= A′B′CD +A′BC ′D +A′BCD +ABC ′D′ +ABC ′D

= A′B′CD +A′BD +ABC ′

= A′D(B′C +B) +ABC ′

= A′D(C +B) +ABC ′

= A′CD +A′BD +ABC ′

3.7.2 Maxterm Expressions

A maxterm is a sum expression where each variable appears only once in either true or complemented form,

but not both. In the last chapter, we called these sum expressions, as they represent the logical OR operation.

Maxterms correspond to truth table rows and we use them in product of sums (or product of maxterm)

expressions. We can therefore identify the maxterms that correspond to every row of a truth table, and use

the ones that pertain to the expression that we are interested in. All of the maxterms of a 3-variable truth

table are shown in table 3.6.
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Row A B C Maxterm
0 0 0 0 (A+B + C) = M0

1 0 0 1 (A+B + C ′) = M1

2 0 1 0 (A+B′ + C) = M2

3 0 1 1 (A+B′ + C ′) = M3

4 1 0 0 (A′ +B + C) = M4

5 1 0 1 (A′ +B + C ′) = M5

6 1 1 0 (A′ +B′ + C) = M6

7 1 1 1 (A′ +B′ + C ′) = M7

Table 3.6: 3-input variable maxterms.

Just as with minterm expressions, we can use shorthand to identify our Boolean expression. The truth

table shown earlier in table 3.5 includes maxterms M0, M4, and M6. Our shorthand for identifying this

Boolean expression is therefore the product of these maxterms.

F (A,B,C) = ΠM(0, 4, 6)

To derive a minimum POS expression for this product of maxterms, we simply convert each maxterm to

its Boolean expression and use the rules of Boolean algebra to simplify.

F (A,B,C) = M0M4M6

= (A+B + C)(A′ +B + C)(A′ +B′ + C)

= (B + C)(A′ +B′ + C)

= C +B(A′ +B′)

= C +A′B

= (A′ + C)(B + C)

Example: Creating a minimum expression from a maxterm expression

Find a minimum POS expression.

F (A,B,C) = ΠM(0, 3, 5, 7)

= M0M3M5M7

= (A+B + C)(A+B′ + C ′)(A′ +B + C ′)(A′ +B′ + C ′)

= (A+B + C)(A+B′ + C ′)(A′ + C ′)

= (A+B + C)[C ′ +A′(A+B′)]

= (A+B + C)(C ′ +A′B′)

= (A+B + C)(A′ + C ′)(B′ + C ′)

cbna Alyssa J. Pasquale, Ph.D. 80 Last updated: 2025/05/12



3 Applications of Boolean Algebra 3.7 Minterm and Maxterm Expressions

Similarly with minterm expressions, we can use maxterm expressions to represent functions of more than

three variables. An example with a four variable Boolean expression is given below.

F (A,B,C,D) = ΠM(1, 3, 5, 10, 11, 12, 15)

= M1M3M5M10M11M12M15

= (A+B + C +D′)(A+B + C ′ +D′)(A+B′ + C +D′)(A′ +B + C ′ +D)

(A′ +B + C ′ +D′)(A′ +B′ + C +D)(A′ +B′ + C ′ +D′)

= (A+B +D′)(A+B′ + C +D′)(A′ +B + C ′)(A′ +B′ + C +D)(A′ +B′ + C ′ +D′)

= [A+D′ +B(B′ + C)](A′ +B′ + C +D)[A′ + C ′ +B(B′ +D′)]

= (A+D′ +BC)(A′ +B′ + C +D)(A′ + C ′ +BD′)

= (A+B +D′)(A+ C +D′)(A′ +B′ + C +D)(A′ +B + C ′)(A′ + C ′ +D′)

3.7.3 Incompletely Specified Minterm and Maxterm Expressions

It is possible to portray minterm and maxterm expressions that are incompletely specified (contain don’t

care terms). In those cases, a minterm expression will include a Σd term with the don’t care terms, and a

maxterm expression will include a ΠD term with the don’t care terms.

The procedure for deriving a minimum SOP or minimum POS expression is identical to that given earlier

in this chapter. The only difference is that we are writing down the expression differently than before.

Given the expression

F (A,B,C,D) = Σm(0, 1, 3, 8, 10, 15) + Σd(2, 9, 14),

start by simplifying the minterms. Then individually inspect each of the don’t care terms to see if they help

to further reduce the expression.

F (A,B,C,D) = m0 +m1 +m3 +m8 +m10 +m15

= A′B′C ′D′ +A′B′C ′D +A′B′CD +AB′C ′D′ +AB′CD′ +ABCD

= A′B′C ′ +A′B′CD +AB′D′ +ABCD

= A′B′(C ′ + CD) +AB′D′ +ABCD

= A′B′(C ′ +D) +AB′D′ +ABCD

= A′B′C ′ +A′B′D +AB′D′ +ABCD
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First, consider don’t care d2, which is A′B′CD′.

F (A,B,C,D) = A′B′C ′ +A′B′D +AB′D′ +ABCD +A′B′CD′

= A′B′(C ′ +D + CD′) +AB′D′ +ABCD

= A′B′(C ′ +D + C) +AB′D′ +ABCD

= A′B′ +AB′D′ +ABCD

= B′(A′ +AD′) +ABCD

= B′(A′ +D′) +ABCD

= A′B′ +B′D′ +ABCD

This is a great improvement over the previous expression. Next, consider don’t care d9 which is AB′C ′D.

F (A,B,C,D) = A′B′ +B′D′ +ABCD +AB′C ′D

= B′(A′ +AC ′D +D′) +ABCD

= B′(A′ + C ′D +D′) +ABCD

= B′(A′ + C ′ +D′) +ABCD

= A′B′ +B′C ′ +B′D′ +ABCD

This introduces a new term into the expression, and therefore should not be used. The last don’t care

term is d14, or ABCD′.

F (A,B,C,D) = A′B′ +B′D′ +ABCD +ABCD′

= A′B′ +B′D′ +ABC

The final minimum SOP expression is therefore F (A,B,C,D) = A′B′ +B′D′ +ABC.

3.7.4 Converting Minterm and Maxterm Expressions

If we have a minterm expression and want to identify the maxterm expression for that function, we just need

to identify the terms that would have an output of zero. This means that all of the numbers between zero

and 2n− 1 that aren’t minterms or don’t cares will be maxterms. As an example, let’s consider the minterm

expression from the previous section’s example:

F (A,B,C,D) = Σm(0, 1, 3, 8, 10, 15) + Σd(2, 9, 14).

The terms that are not accounted for as minterms or don’t cares are four, five, six, seven, eleven, twelve,
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and thirteen. These are therefore maxterms. Don’t care terms apply to both the minterm and maxterm

expressions. Therefore,

F (A,B,C,D) = ΠM(4, 5, 6, 7, 11, 12, 13)ΠD(2, 9, 14).

The same process applies in reverse to find a minterm expression from a maxterm expression.

F (A,B,C,D) = ΠM(3, 5, 8)ΠD(1, 7, 9)

= Σm(0, 2, 4, 6, 10, 11, 12, 13, 14, 15) + Σd(1, 7, 9)

3.7.5 Minterm and Maxterm Expansions

If we start with a truth table, it is straightforward to derive the minterm and maxterm expressions. However,

if we start with a Boolean algebra expression or a circuit diagram, it may not be clear how to obtain

a minterm or maxterm expression. We can expand the Boolean expression until we get what’s called a

minterm expansion or a maxterm expansion. (Why would this be useful? Because if we can simplify the

expression, it can be easier to start with minterms or maxterms to use a k-map as we’ll do in the next

chapter in this book.)

The expansion process consists of doing uniting steps in reverse. Essentially, we want every term in our

Boolean expression to have every input variable accounted for.

As an example, let’s consider F (A,B,C) = A′C + A′B + BC. If we want to know which minterms are

associated, we could create a truth table. Instead we will expand each term. Whichever of the three variables

is missing from each term will be expanded on using the complementary law (A+A′ = 1). Any repeat terms

will be eliminated using the idempotent law (A+A = A).

F (A,B,C) = A′C +A′B +BC

= A′(B +B′)C +A′B(C + C ′) + (A+A′)BC

= A′BC +A′B′C +A′BC +A′BC ′ +ABC +A′BC

= A′BC +A′B′C +A′BC ′ +ABC

= m3 +m1 +m2 +m7

= Σm(1, 2, 3, 7)

A similar process occurs in a maxterm expansion. The complementary law that is used now is AA′ = 0,

and the idempotent law is AA = A. The following example is a function of four variables, which means that
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the expansion may need to be repeated a few times until every variable is accounted for.

F (A,B,C,D) = (A+D′)(A′ +B + C)

= (A+BB′ +D′)(A′ +B + C +DD′)

= (A+B +D′)(A+B′ +D′)(A′ +B + C +D)(A′ +B + C +D′)

= (A+B + CC ′ +D′)(A+B′ + CC ′ +D′)(A′ +B + C +D)(A′ +B + C +D′)

= (A+B + C +D′)(A+B + C ′ +D′)(A+B′ + C +D′)(A+B′ + C ′ +D′)

(A′ +B + C +D)(A′ +B + C +D′)

= M1M3M5M7M8M9

= ΠM(1, 3, 5, 7, 8, 9)
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3.8 Example Problems

Design Applications

1. You receive a 5-bit signed binary number ABCDE corresponding to the temperature of a freezer

in degrees Celsius. If the temperature rises above −14 ◦C, the compressor should turn on. If the

temperature rises above −5 ◦C, a warning light should turn on. Define both output variables and

express them as minimum SOP functions.

2. You receive two 2-bit numbers designated as AB and CD. If AB > CD, a red LED should turn

on with all other LEDs off. If AB < CD, a green LED should turn on with all other LEDs off. If

AB = CD, a blue LED should turn on with all other LEDs off. Derive minimum SOP expressions to

control each LED. Assume that a value of zero corresponds to an LED that is off, and a value of one

corresponds to an LED that is on.

3. Create a programmable logic gate with inputs A and B, control bits X and Y , and output F . If

X = Y = 0, then F = AB. If X = Y = 1, then F = A + B. If X = 1 and Y = 0, then F = 0. Any

other combination of X and Y will never occur. Derive a minimum SOP expression for F .

4. The motor of a vending machine must run if enough money has been inserted into the machine and if

the selection button has been pressed. Change needs to come out of the vending machine if too much

money has been inserted and the selection button has been pressed. Create a minimum SOP or POS

expression for each output in terms of the provided inputs. Ensure that each variable is well-defined.

5. Use half-adders to create a 2-bit unsigned binary multiplier. Draw a schematic diagram of the circuit.

Minterm Expressions

1. Find a minimum Boolean expression (either SOP or POS) for F (A,B,C) = Σm(0, 1, 5, 6).

2. Find a minimum SOP expression for F (A,B,C,D) = Σm(0, 8, 9, 13, 15) +Σd(4, 7, 11). Indicate which

(if any) of the don’t care terms you used to minimize the expression.

3. Find a minimum SOP expression for F (A,B,C) = Σm(0, 1, 3, 4, 5).

4. Find a minimum SOP expression for F (A,B,C,D) = Σm(0, 4, 7, 13) +Σd(2, 5, 10, 15). Indicate which

(if any) of the don’t care terms you used to minimize the expression.

5. Find a minimum POS expression for F (A,B,C,D) = Σm(5, 7, 10, 13) + Σd(0, 11, 15). Indicate which

(if any) of the don’t care terms you used to minimize the expression.
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Maxterm Expressions

1. Find a minimum SOP expression for F (A,B,C) = ΠM(2, 3, 5, 7)

2. Find a minimum POS expression for F (A,B,C) = ΠM(2, 3, 5)ΠD(0, 7). Indicate which (if any) of the

don’t care terms you use to minimize the expression.

3. Find a minimum POS expression for F (A,B,C,D) = ΠM(1, 2, 14)ΠD(0, 3, 8, 15). Indicate which (if

any) of the don’t care terms you use to minimize the expression.

4. Find a minimum POS expression for F (A,B,C,D) = ΠM(2, 3, 6, 8, 9, 13)ΠD(1, 10, 12). Indicate which

(if any) of the don’t care terms you use to minimize the expression.

5. Find a minimum SOP expression for F (A,B,C,D) = ΠM(1, 2, 3, 4, 6, 8, 9, 12, 14)ΠD(0, 11, 15). Indi-

cate which (if any) of the don’t care terms you use to minimize the expression.

Minterm and Maxterm Expansions

1. Express F = (A′ + C)D +A′BCD as a minterm expansion of four variables.

2. Express F = AB′ +B′D +A′BC as a minterm expansion of four variables.

3. Express F = A(B′ + C)(C ′ +D′) as a maxterm expansion of four variables.

4. Express F = (B ⊕ C)(A+D) as a minterm expansion of four variables.

5. Express F = (A+BD′)(C +AD′) as a maxterm expansion of four variables.
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4 Karnaugh Maps

We will now introduce Karnaugh maps (k-maps) which are used to graphically minimize SOP and POS

expressions. They eliminate the difficulty of minimizing expressions using Boolean algebra. Data from a truth

table (or minterm/maxterm expression) is placed into a map, and then loops are created around adjacent

ones (for SOP) or zeros (for POS). Those loops use the uniting theory to create minimized expressions.

The loops that are created on a k-map must have a size that is a power of two by a power of two. That

is, a loop can be 1×1, 1×2, 2×1, 2×2, etc. Each loop that is created should be as large as possible, as long

as it abides by the rule of being a power of two by a power of two (2n × 2m).

The feature of a k-map that allows power of two loops to create minimized Boolean expressions is the fact

that Gray code is used to ensure that any two cells on a k-map are adjacent to each other. When moving

from one cell to another on a k-map only one variable changes from a zero to one or from a one to zero.

This adjacency applies not only to cells that are directly next to each other, but also to cells that loop

from top to bottom or side to side. Figure 4.1 shows the binary values that are associated with the input

variables in each cell of a three variable k-map. As you can see, cell 0 (000) is adjacent to both cell 1 (001)

and cell 4 (100), but also to cell 2 (010) which is at the “bottom” of the k-map.

A

BC 0 1

00 000 100

01 001 101

11 011 111

10 010 110

Figure 4.1: Three variable k-map showing the binary values of each cell.

The algorithm for solving a k-map follows.

• Find a one (for SOP) or zero (for POS) that can only be looped one way, and loop it in the largest

possible loop that is a power of two by a power of two.

• Repeat with remaining ones (for SOP) or zeros (for POS) until all ones or zeros have been looped.

Overlap loops as required to make the largest possible loops.

• Unless otherwise specified, do not include redundant loops, as these just make the equation longer than

necessary.
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4.1 Three Variable K-Maps

As stated, three variable k-maps use Gray code along one side of the map to ensure that any two cells that are

adjacent to each other (including wrapping from top to bottom) only differ by one variable. Figure 4.1 above

shows the binary values that correspond to each cell. Figure 4.2 shows the decimal values that correspond

to each cell. This helps us to determine how to fill values in to the k-map.

A

BC 0 1

00 0 4

01 1 5

11 3 7

10 2 6

Figure 4.2: 3 variable k-map showing the decimal values of each cell.

The best way to understand how to use a k-map is to do some examples.

Find the minimum SOP expression for

F (A,B,C) = Σm(1, 3, 4, 5, 7).

Start by putting a one in the corresponding cell for each minterm. An × would go into any don’t care cell

(which does not apply to this example). All of the remaining cells get filled in with a zero. The filled out

k-map is shown in Figure 4.3.
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A

BC 0 1

00 0 1

01 1 1

11 1 1

10 0 0

Figure 4.3: Filled in k-map for F (A,B,C) = Σm(1, 3, 4, 5, 7).

The next step is to find ones (for SOP, as instructed) that can only be looped in one way. The best

example is minterm m4, which is adjacent to only m5 and no other minterm. Loop it in the biggest possible

loop that is a power of two by a power of two. m4 and m5 would therefore be looped together. Let’s look

at the Boolean algebra that would result from combining the two minterms.

m4 +m5 = AB′C ′ +AB′C

= AB′

The uniting step removes a variable (in this case C) from the expression. Many students are tempted to

include minterm m7, however, that loop, being of size 1×3 is not a power of two by a power of two.

m4 +m5 +m7 = AB′C ′ +AB′C +ABC

= AB′ +ABC

This does NOT allow us to do two uniting steps, so it is not allowed as a loop. Our k-map, with minterms

m4 and m5 looped together is shown in Figure 4.4.
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A

BC 0 1

00 0
1

01 1
1

11 1 1

10 0 0

Figure 4.4: Filled in k-map for F (A,B,C) = Σm(1, 3, 4, 5, 7) with minterms m4 and m5 looped.

There are three remaining minterms: m1, m3, and m7. These can all be looped together in a 2×2 loop

that includes m5. It is important to include m5 in the loop so that it can be as large as possible. Otherwise,

our expression would not be minimized. Let’s look at the Boolean algebra that results in creating this loop.

(Again, the point of a k-map is to avoid having to use Boolean algebra; this derivation is included so you

can see why and how a k-map works.)

m1 +m3 +m5 +m7 = A′B′C +A′BC +AB′C +ABC

= A′C +AC

= C

The completed, fully looped k-map is shown in Figure 4.5.
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A

BC 0 1

00 0
1

01
1 1

11
1 1

10 0 0

Figure 4.5: Completed k-map for F (A,B,C) = Σm(1, 3, 4, 5, 7).

4.2 Four Variable K-maps

Four variable k-maps use Gray code in both the rows and the columns to assure adjacency between cells.

Not only do cells wrap from bottom to top, but also from side to side. For example, cell 0 (0000) is adjacent

to cell 1 (0001), cell 4 (0100), cell 8 (1000), and cell 2 (0010). The decimal values that correspond to each

cell in a four variable k-map are shown in Figure 4.6.

AB

CD 00 01 11 10

00 0 4 12 8

01 1 5 13 9

11 3 7 15 11

10 2 6 14 10

Figure 4.6: Four variable k-map showing the decimal values of each cell.

As an example, find the minimum POS expression for

F (A,B,C,D) = ΠM(1, 5, 6, 7, 9, 12, 13, 14).

First, place a zero in all of the cells corresponding to the maxterms. There are no don’t care terms in this
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expression, so all of the other cells must be filled in with a one. The completed k-map is shown in Figure 4.7.

AB

CD 00 01 11 10

00 1 1 0 1

01 0 0 0 0

11 1 0 1 1

10 1 0 0 1

Figure 4.7: Filled in k-map for F (A,B,C,D) = ΠM(1, 5, 6, 7, 9, 12, 13, 14).

Maxterm M1 can only be looped in one way, so loop it in as big a loop as possible. This loop is 4 × 1

and covers maxterms M1, M5, M9, and M13. Note that the variables A and B change for all values along

this loop. However, C is always zero and D is always one, so the corresponding sum term for this loop is

(C +D′). The Boolean algebra procedure that we would have used on this loop follows.

M1M5M9M13 = (A+B + C +D′)(A+B′ + C +D′)(A′ +B′ + C +D′)(A′ +B + C +D′)

= (A+ C +D′)(A′ + C +D′)

= (C +D′)

Maxterms M6, M7, M12, and M14 remain unlooped. None of these can be looped in only one way.

However, after inspecting the k-map carefully, the fewest number of loops to cover these terms would mean

looping M6 with M7, and M12 with M14.

The loop that covers M6 and M7 has a value of A = 0 along the entire loop. Similarly, B = 1, C = 1,

and D changes. This gives a sum term of (A+B′ + C ′). The Boolean algebra showing this follows.

M6M7 = (A+B′ + C ′ +D′)(A+B′ + C ′ +D)

= (A+B′ + C ′)

The loop that covers M12 and M14 has a value of A = 1, B = 1, and D = 0 everywhere along the loop,

while C changes. This gives a sum term of (A′ +B′ +D).

The completed, fully-looped k-map is shown in Figure 4.8.
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AB

CD 00 01 11 10

00 1 1
0

1

01
0

0 0
0

11 1
0

1 1

10 1
0 0

1

Figure 4.8: Completed k-map for F (A,B,C,D) = ΠM(1, 5, 6, 7, 9, 12, 13, 14).

4.3 Incompletely Specified K-Maps

The procedure for a k-map with don’t cares is much the same as a regular k-map, except that don’t care

terms should only be looped if they allow you to create a larger loop. Do not make loops that cover only

don’t care terms, because they are not necessary to include and just create extra logic gates and inputs.

The k-map in Figure 4.9 shows the encoding for segment e on a 7-segment display. Binary values

corresponding to ten through fifteen are don’t cares because they do not exist as a BCD value.

AB

CD 00 01 11 10

00 1 0 × 1

01 0 0 × 0

11 0 0 × ×

10 1 1 × ×

Figure 4.9: K-map for segment e of a 7-segment display.

CD′

(D′)

(B′ + C)

B′D′

The SOP loops are shown in thick black lines. Including don’t care term d10 enables us to create a

2× 2 loop corresponding to B′D′. Including don’t care terms d10 and d14 enables us to create a 4× 1 loop
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corresponding to CD′.

The POS loops are shown in dashed black lines. Including don’t care terms D12 and D13 enable us to

make the large loop corresponding to (B′ +C). Including don’t care terms D11, D13, and D15 enables us to

make a 4× 2 loop corresponding to D′.

4.4 Implicants, Prime Implicants, and Essential Prime Implicants

At this point, we know how to create loops on a k-map. However, it is not always clear which loops to make

to lead to a minimum expression. Before we can learn a tool to enable us to find minimum expressions, we

need to understand some properties of k-map loops.

4.4.1 Implicants

In an SOP expression, an implicant is a one or any group of ones that can be looped, regardless of the size.

In a POS expression, an implicant is a zero or any group of zeros that can be looped, regardless of the size.

The k-map shown in Figure 4.10 has seventeen implicants that are looped.

AB

CD 00 01 11 10

00 1 0 1 1

01 0 0 1 1

11 1 0 0 0

10 1 1 0 0

Figure 4.10: Implicants on an example k-map.

Specifically, this k-map has

• eight loops that correspond to minterms (1× 1 loops),

• eight loops that are 1× 2 or 2× 1, and

• one loop that is 2× 2.

Including every single implicant in our expression would clearly not be minimized by any means. We will

continue expanding our definitions.
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4.4.2 Prime Implicants

A prime implicant is any implicant that cannot be combined with another implicant to eliminate a variable.

In other words, a prime implicant implies that we have made the largest possible loop.

Our k-map from above can now be looped with just prime implicants, shown in Figure 4.11. There are

only five prime implicants, which include

• four loops that are 1× 2 or 2× 1, and

• one loop that is 2× 2.

AB

CD 00 01 11 10

00 1 0 1 1

01 0 0 1 1

11 1 0 0 0

10 1 1 0 0

Figure 4.11: Prime implicants on an example k-map.

The fact that there are five prime implicants (or PIs) is much better than the seventeen implicants.

However, if you are observant, you may note that not all of them are truly necessary for a minimum SOP

expression.

A minimum Boolean expression (whether SOP or POS) contains the minimum number of prime implicants

that cover all minterms (for SOP) or maxterms (for POS) on the k-map.

4.4.3 Essential Prime Implicants

A prime implicant that is the only one that covers a specific minterm or maxterm is known as an essential

prime implicant. It must be included in the final Boolean expression.

In the above example, minterms m3, m6, m9, m12, and m13 are only covered by a single loop. That

means that the loops that cover those minterms are essential prime implicants (or EPIs).

• A′B′C is an EPI because it is the only loop that covers minterm m3.
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• A′CD′ is an EPI because it is the only loop that covers minterm m6.

• AC ′ is an EPI because it is the only loop that covers minterms m9, m12, and m13.

These three terms must be included in our final expression. The only minterm left, once these three

loops have been included, is minterm m0. There are two loops that cover m0, so there are two correct,

equivalent, minimum SOP expressions for the k-map.

F (A,B,C,D) = A′B′C +A′CD′ +AC ′ +B′C ′D′

= A′B′C +A′CD′ +AC ′ +A′B′D′

When we discussed function equivalence earlier in this textbook, it was mentioned that a truth table is

the only method for determining function equivalence. As the above example demonstrates, it is possible

to have equivalent functions that have different Boolean algebra expressions. Comparing truth tables (or

minterm expansions) is the only way to determine that the expressions are indeed equivalent.

At this point, how do we know which of the PIs should be included in a minimum expression? How do

we know when we have a truly minimum SOP or POS expression? We can use a prime implicant table.

4.5 Prime Implicant Tables

A prime implicant table shows a listing of all of the PIs in an expression. The columns in the table list all

of the minterms (for SOP) or maxterms (for POS). The don’t care terms are not included.

Let’s consider a PI table for

F (A,B,C,D) = Σm(0, 4, 5, 7, 11, 14, 15) + Σd(1, 10, 12).

Each prime implicant is listed, and an × is placed in each column whose minterm is included in the PI. This

PI table is given in table 4.1.

PI 0 4 5 7 11 14 15
A’C’ × × ×
AC × × ×
BCD × ×
A’BD × ×
BC’D’ ×
ABD’ ×

Table 4.1: PI table for F (A,B,C,D) = Σm(0, 4, 5, 7, 11, 14, 15) + Σd(1, 10, 12).

The first step is to identify the columns that only have a single × placed in them. These indicate the

minterms that are only covered by a single loop. The columns in this particular case correspond to minterms

m0 and m11. The PIs covering those minterms (A′C ′ and AC) are therefore essential.
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Essential PI A′C ′ takes care of minterms m0, m4, and m5. Therefore we can stop considering those

columns. They have been taken care of. Essential PI AC takes care of minterms m11, m14, and m15. We

no longer have to consider those columns, as they have been taken care of.

The only remaining columns is m7. Therefore, we only need pick one of the PIs that covers that minterm.

There are two valid minimum SOP expressions, based on the selection of the PI that covers m7.

F (A,B,C,D) = A′C ′ +AC +BCD

= A′C ′ +AC +A′BD

We can similarly make a PI table for the maxterm (POS) expression. That PI table is given in table 4.2.

PI 2 3 6 8 9 13
A’+C × × ×
A+C’+D ×
A+B+D’ ×
B+C+D’ ×
A+B+C’ × ×
B+C’+D ×
A’+B+D ×

Table 4.2: PI table for F (A,B,C,D) = ΠM(2, 3, 6, 8, 9, 13)ΠD(1, 10, 12).

The first step is to identify maxterms (columns) that only have a single ×. Those columns correspond

to maxterms M6 and M13. Therefore (A′ +C) and (A+C ′ +D) are essential PIs. After those two EPIs are

considered, the only two maxterms that are left to be looped are M2 and M3. The only PI that covers all

of these maxterms is (A+B + C ′), therefore that PI will lead to a minimum POS expression.

F (A,B,C,D) = (A′ + C)(A+ C ′ +D)(A+B + C ′)

At times, it can be difficult to determine what all of the prime implicants of an expression are. For

example, consider the expression

F (A,B,C,D) = Σm(0, 1, 3, 4, 5, 9, 11, 12) + Σd(2, 6, 10, 13, 14, 15).

It is very simple to find the POS prime implicants. However, there are eleven prime implicants corresponding

to the SOP terms. We will learn how to find all of the prime implicants using the Quine-McCluskey method

in the next chapter. However, the use of a prime implicant table is very important to find a minimum

expression once you have found all of the PIs. The k-map for this expression is shown in Figure 4.12.
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AB

CD 00 01 11 10

00 1 1 1 0

01 1 1 × 1

11 1 0 × 1

10 × × × ×

Figure 4.12: K-map with many prime implicants.

The prime implicant table is given in table 4.3. All eleven of the SOP prime implicants are shown. In

addition to placing an × in each column, the number of minterms covered by each term is indicated in the

last column. It is clear that none of these prime implicants is essential, making the expression difficult to

minimize.

PI 0 1 3 4 5 9 11 12
0-1-2-3 (A’B’) × × × 3
0-1-4-5 (A’C’) × × × × 4
0-2-4-6 (A’D’) × × 2
1-3-9-11 (B’D) × × × × 4
1-5-9-13 (C’D) × × × 3
2-3-10-11 (B’C) × × 2
4-5-12-13 (BC’) × × × 3
4-6-12-14 (BD’) × × 2
9-11-13-15 (AD) × × 2
10-11-14-15 (AC) × 1
12-13-14-15 (AB) × 1

Table 4.3: Prime implicant table for the eleven PIs.

It is important to start by selecting the PIs that will cover the most minterms. Start by choosing either

B′D or A′C ′. (In this case, it doesn’t matter which.) If you choose A′C ′, you no longer need to consider

minterms m0, m1, m4, and m5. Reconsider the remaining PIs and how many of the remaining minterms

that they will cover. This is shown in table 4.4. Any of the PIs that do not cover any of the remaining

minterms have been removed from the list for brevity’s sake.
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PI 3 9 11 12
0-1-2-3 (A’B’) × 1
1-3-9-11 (B’D) × × × 3
1-5-9-13 (C’D) × 1
2-3-10-11 (B’C) × × 2
4-5-12-13 (BC’) × 1
4-6-12-14 (BD’) × 1
9-11-13-15 (AD) × × 2
10-11-14-15 (AC) × 1
12-13-14-15 (AB) × 1

Table 4.4: Minimized prime implicant table once A′C ′ has been chosen.

Now B′D is the most effective PI, as it wipes out three more minterms, m3, m9, and m11. We no longer

need to consider those minterms. The remaining PIs are shown in table 4.5.

PI 12
4-5-12-13 (BC’) ×
4-6-12-14 (BD’) ×
12-13-14-15 (AB) ×

Table 4.5: Minimized prime implicant table once A′C ′ and B′D have been chosen.

The only minterm left is m12. Therefore you have a choice of three PIs that cover that term. There are

three valid minimum SOP expressions corresponding to this function.

F (A,B,C,D) = A′C ′ +B′D +BC ′

= A′C ′ +B′D +BD′

= A′C ′ +B′D +AB

A PI table made this otherwise overwhelming k-map much more straightforward to minimize.

4.6 Five Variable K-Maps

It is possible to use a k-map to solve five variable expressions. It is even possible to do six variable expressions,

but those will not be covered in this book. For expressions with more than six variables, a k-map is no longer

going to be a convenient method to solve for a minimum expression: Quine-McCluskey (explained in the

next chapter) should be used instead.

The difficulty with a five variable k-map is with how adjacent cells manifest themselves. In a three and

four variable k-map, it was rather straightforward to see how two cells could be adjacent to each other. The

introduction of another “dimension” in our k-map creates even more adjacencies. For this reason, I like to

draw a thick line down the center of my k-map and treat it like a mirror. In this textbook the mirror line

will be indicated with a double line. Any cell that sees its reflection in that mirror line is adjacent to that

reflection.
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A five variable k-map is shown in Figure 4.13 with the decimal values given in each cell. Cell 4 (00100)

is adjacent to cell 0 (00000), cell 5 (00101), cell 6 (00110), and cell 12 (01100) as discussed in a four variable

k-map. But it is now also adjacent to cell 20 (10100) as that cell is the “mirror image” of cell 4 (00100).

ABC

DE 000 001 011 010 110 111 101 100

00 0 4 12 8 24 28 20 16

01 1 5 13 9 25 29 21 17

11 3 7 15 11 27 31 23 19

10 2 6 14 10 26 30 22 18

Figure 4.13: Five variable k-map showing the decimal values of each cell.

Example: Solving minimum SOP with a five variable k-map

Use a k-map to find a minimum SOP expression for

F (A,B,C,D,E) = Σm(4, 6, 13, 20, 21, 22, 23, 28, 29, 30, 31) + Σd(15).

The k-map with loops are shown below. Note the loops that see their “reflection” in the mirror line.

ABC

DE 000 001 011 010 110 111 101 100

00 0 1 0 0 0 1 1 0

01 0 0 1 0 0 1 1 0

11 0 0 × 0 0 1 1 0

10 0 1 0 0 0 1 1 0

AC

B′CE′

BCE

The minimum expression is F (A,B,C,D,E) = B′CE′ +BCE +AC.
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4.7 Example Problems

Three Variable K-Maps

1. Use a k-map to find a minimum SOP expression for

F (A,B,C) = Σm(0, 1, 3, 4, 6).

2. Create a k-map for the expression F (A,B,C) = AB +AB′ +BC and use it to reduce F to minimum

SOP.

3. Identify all of the implicants contained in F (A,B,C) = A⊕B +B′C ′.

4. Use a k-map of F (A,B,C) = AB +BC ′ to identify the minterms.

5. F (A,B,C) = A′C +AB′ and G(A,B,C) = (A′ +C ′)(B′ +C)(A+C) are equivalent expressions. Use

a k-map to determine which term(s) must be don’t cares.

Four Variable K-Maps

1. Use a k-map to find a minimum SOP expression for

F (A,B,C,D) = ΠM(0, 3, 4, 8, 9, 10, 14).

2. Use a k-map to find a minimum SOP expression for

F (A,B,C,D) = Σm(2, 3, 6, 7, 8, 11) + Σd(0, 10, 12, 13).

3. Use a k-map to find a minimum POS expression for

F (A,B,C,D) = Σm(1, 3, 4, 5, 6, 12, 14, 15).
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4. A sensor is capable of determining whether or not a car is speeding (driving faster than the speed

limit) or driving dangerously (driving 10 m.p.h. or more above the speed limit). The sensor receives

the codes given in table 4.6, where AB corresponds to the speed limit and CD corresponds to the

speed of the vehicle. Use a k-map to solve for F (as either minimum SOP or minimum POS), which

indicates if the car is speeding.

AB Speed Limit CD Car’s Speed
00 45 m.p.h. 00 < 45 m.p.h.
01 55 m.p.h. 01 46–55 m.p.h.
10 65 m.p.h. 10 56–65 m.p.h.
11 unused 11 66–75 m.p.h.

Table 4.6: Speed codes used for four variable k-maps questions 4 and 5.

5. Continuing on the above question, use a k-map to solve for G (as either minimum SOP or minimum

POS), which indicates if the car is driving dangerously.

Prime Implicant Tables

1. Use a PI table to find a minimum SOP expression for

F (A,B,C,D) = Σm(2, 5, 6, 7, 10, 14).

2. Use a PI table to find a minimum POS expression for

F (A,B,C,D) = ΠM(0, 1, 2, 3, 6, 9, 14).

3. Use a PI table to find a minimum SOP expression for

F (A,B,C,D,E) = Σm(5, 10, 11, 15, 26, 30) + Σd(7, 13, 31).

4. Use a PI table to find a minimum SOP expression for

F (A,B,C,D) = Σm(2, 4, 5, 10, 11, 13, 14, 15) + Σd(1, 8).

5. Identify the essential PIs by using a PI table for

F (A,B,C,D,E) = ΠM(1, 2, 3, 4, 5, 12, 13, 15, 16, 17, 20, 28, 29)ΠD(6, 14, 18, 19, 22, 30).
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5 Quine-McCluskey Method

The advantage of k-maps, as we saw, was creating visual patterns of ones and zeros that enable us to

effectively do uniting steps without actually doing any Boolean algebra. However, electrical engineers do

not get paid to work at a desk with a pen and paper and solve k-maps. Computers solve for minimum

expressions. Computers are not as good as humans at spotting visual patterns, they are better at following

step-by-step instructions (called algorithms).

The Quine-McCluskey method is an algorithm that can be used to minimize Boolean expressions without

having to use human pattern-spotting skills. When done correctly, it is also a foolproof method of identifying

every implicant and prime implicant in an expression.

In this book, we will only cover SOP expressions with Quine-McCluskey. However, it is possible to carry

out the same steps using maxterms and zeros (instead of minterms and ones) to solve for a POS expression.

The Quine-McCluskey procedure follows.

1. Start by creating a number of columns equal to the number of input variables.

2. In the first column, write down all of the minterms ordered in groups by the number of ones contained

in each minterm.

3. Starting with the first group, compare each minterm with all of the minterms in the succeeding group.

If they differ by one bit, they go into the next column and get a checkmark.

4. Repeat step three until all of the groups in column one have been compared with each other.

5. Move to the next column. Repeat steps three and four until you either run out of columns, or no more

terms can be combined in such a manner.

6. Eliminate repeat terms.

7. Any term that does not have a checkmark next to it is a prime implicant.

8. Use a prime implicant table to obtain a minimum SOP expression.

Because the best way to learn Quine-McCluskey is to practice, this chapter will consist completely of

different and diverse examples of the Quine-McCluskey method.

Example: Three-variable Quine-McCluskey

Use the Quine-McCluskey method to find a minimum SOP expression for

F (A,B,C) = Σm(1, 3, 4, 5, 6, 7).

The first step is to create a table with three columns. Then, in column one, we write down all of the
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minterms in groups ordered by the number of ones in each term.

Column 1 Column 2 Column 3

one 1. 001

4. 100

two 3. 011

5. 101

6. 110

three 7. 111

We compare every term in group one with every term in group two. For example minterms m1

and m3 differ by only one variable. In comparing 001 and 011 we see that the second bit changes.

This becomes 0 − 1 which goes into column two. Minterms m1 and m3 get checkmarks. m1 is then

compared with both m5 and m6. Next, m4 is compared with every minterm in group two (m3, m5,

and m6). Once that process is complete, groups two and three in column one are compared.

Column 1 Column 2 Column 3

one 1. 001 1-3: 0−1

4. 100 1-5: −01

two 3. 011 4-5: 10−

5. 101 4-6: 1−0

6. 110 3-7: −11

three 7. 111 5-7: 1−1

6-7: 11−

Now we can compare the terms in column two groups one and two with each other. Every term

in group one gets compared with every term in group two. If they differ by only one bit, they get

checked and placed in column three.

Column 1 Column 2 Column 3

one 1. 001 1-3: 0−1 1-3-5-7: −−1

4. 100 1-5: −01 1-5-3-7

two 3. 011 4-5: 10− 4-5-6-7: 1−−

5. 101 4-6: 1−0 4-6-5-7

6. 110 3-7: −11

three 7. 111 5-7: 1−1

6-7: 11−

At this point, there are no more columns to compare. We can eliminate the repeat terms (1-5-3-7
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and 4-6-5-7 are repeats) and analyze the terms that have no checkmarks (which are PIs). There are

two PIs that have been identified in this method.

• 1-3-5-7: −− 1 which means that A changed, B changed, and C was always one. This product

term is therefore C.

• 4-5-6-7: 1−− which means that A was always one, B changed, and C changed. This product

term is therefore A.

We can create a PI table for these two PIs, but it is pretty clear that both are essential (C is the

only PI that covers m1 and m3, and A is the only PI that covers m4 and m6), so a PI table will not

be shown.

F (A,B,C) = A+ C

Example: Quine-McCluskey with don’t cares

Find a minimum SOP expression for F (A,B,C,D) = Σm(3, 7, 9, 11, 13) + Σd(1, 10, 15). When there

are don’t care terms, treat them as minterms when going through each of the columns. This helps to

combine and minimize terms. The first step is to create four columns. Place all of the minterms and

don’t cares into column one, ordered by the number of ones in the term.

Column 1 Column 2 Column 3 Column 4

one 1. 0001

two 3. 0011

9. 1001

10. 1010

three 7. 0111

11. 1011

13. 1101

four 15. 1111

Compare all of the minterms in column one group one with all of the minterms in column one

group two. Then all of the terms in group two are compared with the terms in group three. Then all

of the terms in group three are compared with all of the terms in group four.
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Column 1 Column 2 Column 3 Column 4

one 1. 0001 1-3: 00−1

two 3. 0011 1-9: −001

9. 1001 3-7: 0−11

10. 1010 3-11: −011

three 7. 0111 9-11: 10−1

11. 1011 9-13: 1−01

13. 1101 10-11: 101−

four 15. 1111 7-15: −111

11-15: 1−11

13-15: 11−1

Do the same for all of the groups in column two. Notice that m10 − m11(AB′C) cannot be

combined with another term in group two, making it a prime implicant.

Column 1 Column 2 Column 3 Column 4

one 1. 0001 1-3: 00−1 1-3-9-11: −0−1

two 3. 0011 1-9: −001 1-9-3-11

9. 1001 3-7: 0−11 3-7-11-15: −−11

10. 1010 3-11: −011 3-11-7-15

three 7. 0111 9-11: 10−1 9-11-13-15: 1−−1

11. 1011 9-13: 1−01 9-13-11-15

13. 1101 10-11: 101−

four 15. 1111 7-15: −111

11-15: 1−11

13-15: 11−1

None of the terms in column three differ by one bit with the terms in the other group. Nothing

moves to column four. All of the terms that do not have checkmarks are PIs. Use a prime implicant

table to find a minimum expression.

PI 3 7 9 11 13

10-11 (AB’C) ×

1-3-9-11 (B’D) × × ×

3-7-11-15 (CD) × × ×

9-11-13-15 (AD) × × ×

Terms CD and AD are essential prime implicants. They cover all minterms, so no additional
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prime implicants are required in the expression.

F (A,B,C,D) = CD +AD

Example: Prime implicants in every column

Find a minimum SOP expression corresponding to F (A,B,C,D) = Σm(0, 3, 7, 11, 12, 14, 15). Start

by creating four columns. Then, order all of the minterms in column one. Note that there aren’t any

minterms in group one!

Column 1 Column 2 Column 3 Column 4

zero 0. 0000

one –

two 3. 0011

12. 1100

three 7. 0111

11. 1011

14. 1110

four 15. 1111

When comparing terms in each successive group, minterm m0 cannot be compared. It therefore

does not get a checkmark which indicates that it is a prime implicant. Continue to compare terms in

groups two and three, and three and four.

Column 1 Column 2 Column 3 Column 4

zero 0. 0000 3-7: 0−11

one – 3-11: −011

two 3. 0011 12-14: 11−0

12. 1100 7-15: −111

three 7. 0111 11-15: 1−11

11. 1011 14-15: 111−

14. 1110

four 15. 1111

Comparisons between groups one and two in column two are conducted. A couple of the terms are

not checked, and are therefore PIs. Column three only has one group and ends the Quine-McCluskey

process.
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Column 1 Column 2 Column 3 Column 4

zero 0. 0000 3-7: 0−11 3-7-11-15: −−11

one – 3-11: −011 3-11-7-15

two 3. 0011 12-14: 11−0

12. 1100 7-15: −111

three 7. 0111 11-15: 1−11

11. 1011 14-15: 111−

14. 1110

four 15. 1111

There are four terms without checkmarks, which means that there are four PIs. Use a PI table

to determine which terms to include in the minimum SOP expression.

PI 0 3 7 11 12 14 15

0 (A’B’C’D’) ×

12-14 (ABD’) × ×

14-15 (ABC) × ×

3-7-11-15 (CD) × × × ×

The three essential prime implicants cover all of the minterms. Therefore the term ABC is

redundant and unnecessary.

F (A,B,C,D) = A′B′C ′D′ +ABD′ + CD

Example: Five variable Quine-McCluskey

Five variable Quine-McCluskey is exactly the same process, just with possibly more steps. Find a

minimum SOP expression for F (A,B,C,D,E) = Σm(4, 13, 22, 23, 29, 30, 31) + Σd(15, 28). In this

example, only the final form of the Quine-McCluskey process is shown, once all of the comparisons

have been made.
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Column 1 Column 2 Column 3 Column 4

one 4. 00100 13-15: 011−1 13-15-29-31: −11−1

two – 13-29: −1101 13-29-15-31

three 13. 01101 22-23: 1011− 22-23-30-31 1−11−

22. 10110 22-30: 1−110 22-30-23-31

28. 11100 28-29: 1110− 28-29-30-31: 111−−

four 15. 01111 28-30: 111−0 28-30-29-31

23. 10111 15-31: −1111

29. 11101 23-31: 1−111

30. 11110 29-31: 111−1

five 31. 11111 30-31: 1111−

A PI table is then used to determine which of the PIs to include in the minimum expression.

PI 4 13 22 23 29 30 31

4 (A’B’CD’E’) ×

13-15-29-31 (BCE) × × ×

22-23-30-31 (ACD) × × × ×

28-29-30-31 (ABC) × × ×

The three essential PIs cover all of the minterms, therefore the last PI (ABC) does not need to

be included in the expression.

F (A,B,C,D,E) = A′B′CD′E′ +BCE +ACD
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5.1 Example Problems

1. Use the Quine-McCluskey method to find a minimum SOP expression for

F (A,B,C) = Σm(1, 3, 4, 5).

2. Use the Quine-McCluskey method to find a minimum SOP expression for

F (A,B,C,D) = Σm(0, 2, 8, 9, 10, 11).

3. Use the Quine-McCluskey method to find a minimum SOP expression for

F (A,B,C,D,E) = Σm(0, 7, 21, 23) + Σd(6, 14).

4. Use the Quine-McCluskey method to find a minimum SOP expression for

F (A,B,C,D,E) = Σm(0, 1, 9, 11, 16, 17, 31) + Σd(13, 15, 27).

5. Use the Quine-McCluskey method to find a minimum SOP expression for

Z(A,B,C,D,E, F,G) = Σm(1, 3, 5, 7, 44, 45, 60, 61, 65, 67, 69, 71, 96).
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6 NAND and NOR

We will now introduce two new logic gates: NAND and NOR. These gates are useful because they are

universal. In other words, you can make any digital logic circuit from only NAND gates, or from only NOR

gates.

It is interesting to note that the Apollo Guidance Computer, which was one of the first integrated-circuit

based computers built in the 1960s, used entirely 3-input NOR gates. There were approximately 2800

integrated circuits in the completed computer, which was capable of sending humans to the moon and back

while keeping them alive in the vacuum of space. That’s an impressive feat for a simple logic gate!

6.1 NAND

A NAND gate is a logic gate that has an output of zero only when all of the inputs are one. It is the

logical complement of an AND gate, which means that for the same inputs, AND and NAND gates will have

opposite outputs. A 2-input NAND gate is shown in Figure 6.1. (Note the bubble on the output of the gate,

which, as discussed, represents the logical complement operation.)

A

B
F

A B F
0 0 1
0 1 1
1 0 1
1 1 0

Figure 6.1: A NAND gate represented as a switch circuit, a circuit diagram, and a truth table.

It is important to note that, due to the DeMorgan’s law, a NAND gate can be represented in two different

forms.

A NAND B = (AB)′

= A′ +B′

This means that a NAND gate can be depicted in three ways: a NAND gate, an AND gate with an

inverted output, or an OR gate with inverted inputs. These three NAND symbols are shown in Figure 6.2.

A

B
F

A

B
F

A

B
F

Figure 6.2: A NAND gate represented as a NAND gate, as an AND gate with an inverted output, and as an
OR gate with inverted inputs.
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6.1.1 NAND-Only Circuits

It is possible to create a NAND-only circuit by either starting with an SOP expression and using the double

prime method, or by starting with any other type of expression using the double prime or bubble method.

(The double prime method is less efficient when the expression is not SOP.)

The double prime method consists of taking the complement of the function twice (the involution law

tells us that this does not change the function at all). The inner prime is then distributed. At this point,

the circuit becomes NAND-only.

Example: Using the double-prime method to create a NAND-only circuit

Create a NAND-only expression of F = A+BC ′ +B′CD.

F = A+BC ′ +B′CD

= [(A+BC ′ +B′CD)′]′

= [(A)′(BC ′)′(B′CD)′]′

At this point, all of the statements are NAND statements. The circuit diagram is shown below.

A
F

B
C
D

B

C

Note that if you were to continue distributing the primes and continuing to use the DeMorgan’s law, you

would start with an AND-OR (SOP circuit), obtain a NAND-NAND circuit, then an OR-NAND circuit, a

NOR-OR circuit, and then finish back where you started with an AND-OR (SOP) circuit.

The double-prime method can be used on a factored SOP expression, but requires more than one step in

the process. Double prime the expression, and distribute the inner prime. Any terms that still contain an

OR operation need to be double primed, with the inner prime distributed until the expression is NAND-only.

Example: Using the double-prime method to create a NAND-only circuit with a factored

SOP expression

Create a NAND-only circuit of F = AB′ +B(C +DE) +B′C ′E.

F = AB′ +B(C +DE) +B′C ′E

= [(AB′ +B(C +DE) +B′C ′E)′]′

= [(AB′)′(B(C +DE))′(B′C ′E)′]′
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There is still an OR operation in this expression, so the term C +DE itself needs to be double

primed, with only the inner prime being distributed.

[(C +DE)′]′ = [(C)′(DE)′]′

This is now NAND-only, and can get plugged back in to the original expression, making everything

NAND-only.

F = [(AB′)′(B(C +DE))′(B′C ′E)′]′

= [(AB′)′(B[(C)′(DE)′)]′)′(B′C ′E)′]′

F
A

B

B
C
D

B
C

D

E

The double-prime method can be used for POS or other circuits, but is much more complicated, as

double-priming a POS expression leads to a NOR-only circuit (which will be discussed in the next section).

Instead, the bubble method is a more effective approach. The bubble method is a graphical method of

creating NAND and NOR circuits, and can be used in lieu of the double prime method for any type of

circuit.

First we need to know how to modify AND and OR gates to create a NAND gate. From Figure 6.2 we

saw that a NAND gate can be created by priming the output of an AND gate, or by priming the inputs of

an OR gate.

Therefore, start with any AND/OR/NOT circuit. Start all the way on the left-hand side and inspect

each logic gate. If the logic gate is an AND gate, bubble the output. A second bubble needs to be placed

at the other end of the wire in order to cancel out the first bubble (due to the involution law). Any time an

OR gate is encountered, bubble the inputs. Again, every bubble will need to be cancelled out with a second

bubble due to the involution law.
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Example: Using the bubble method to create a NAND-only circuit with a factored SOP

expression

Use the bubble method to find a NAND-only circuit of F = AB′ +B(C +DE) +B′C ′E.

F
A

B

B
C

D

E

B
C
E

To create a NAND-only circuit, bubble the output of every AND gate and cancel that out with

a second bubble somewhere else in that path. Bubble all inputs to every OR gate and cancel that

out with a second bubble somewhere else in the path. (Note that in this case, it means bubbling the

input to the OR gate from DE + C and then priming the C term.) If there is already a bubble on

an OR gate input, then we don’t have to do anything with that input.

F
A

B

B
C ′

D

E

B
C
E

At this point, every logic gate has been converted into a NAND gate. If we were to re-draw it, it

would look identical to the NAND-only circuit in the previous example.

The bubble method is better suited to POS circuits due to the fact that an AND gate forms the output

gate in a POS expression. When the output of that AND gate is primed, a second prime must be included

somewhere along the same path to cancel it out per the involution law. Because there is nothing else to

prime, we must include an output inverter.
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Example: Using the bubble method to create a NAND-only circuit with a POS expression

Create a NAND-only circuit for F = (A+ BC)(B′ +DE). Start by drawing the circuit using AND

gates, OR gates, and inverters.

F

A

B

B

C

D

E

The bubble method is exactly the same regardless of the type of circuit that is started with. To

create a NAND gate, bubble all AND gate outputs and include a second bubble elsewhere in the

same path. Bubble all OR gate inputs and include a second bubble elsewhere in the same path.

F ′
A′

B

B

C

D

E

Re-draw the circuit using only NAND gates.

F

A

B

B

C

D

E

Now that this is a NAND-only circuit (with the exception of the output inverter), we can more

easily determine an expression.

F = ({[(A′)(BC)′]′[(B)(DE)′]′}′)′

6.2 NOR

A NOR gate is a logic gate that has an output of zero any time one or more inputs is one. It is the logical

complement of an OR gate. A 2-input NOR gate is shown in Figure 6.3.

Similarly as with NAND gates, it is important to note that, due to the DeMorgan’s law, a NOR gate can
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A

B
F

A B F
0 0 1
0 1 0
1 0 0
1 1 0

Figure 6.3: A NOR gate represented as a switch circuit, a circuit diagram, and a truth table.

be represented in two different forms.

A NOR B = (A+B)′

= A′B′

This means that a NOR gate can be depicted in three ways: a NOR gate, an OR gate with an inverted

output, or an AND gate with inverted inputs. These three NOR symbols are shown in Figure 6.4.

A

B
F

A

B
F

A

B
F

Figure 6.4: A NOR gate represented as a NOR gate, as an OR gate with an inverted output, and as an AND
gate with inverted inputs.

6.2.1 NOR-Only Circuits

It is possible to create a NOR-only circuit by either starting with a POS expression and using the double

prime method, or by starting with any other type of expression using the double prime or bubble method.

(The double prime method is less efficient when the expression is not POS.)

The double prime method is exactly the same as it was with creating a NAND-only circuit.

Example: Using the double-prime method to create a NOR-only circuit

Create a NOR-only expression for F = (A+B + C)(A+B′ + C ′)(A+ C ′ +D).

F = (A+B + C)(A+B′ + C ′)(A+ C ′ +D)

= {[(A+B + C)(A+B′ + C ′)(A+ C ′ +D)]′}′

= [(A+B + C)′ + (A+B′ + C ′)′ + (A+ C ′ +D)′]′
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At this point, every one of the statements is a NOR statement. The circuit diagram is shown

below.

F
A
B
C

A
B
C

A
C
D

Note that if you were to continue distributing the primes and continuing to use the DeMorgan’s law,

you would start with an OR-AND (POS circuit), obtain a NOR-NOR circuit, then an AND-NOR circuit, a

NAND-AND circuit, and then finish back where you started with an OR-AND (POS) circuit.

Just as we saw with NAND gates, the double-prime method can be used on a factored POS expression,

but requires more than one step in the process. Double prime the expression, and distribute the inner prime.

Any terms that still contain an AND operation need to be double primed, with the inner prime distributed

until the expression is NOR-only.

Example: Using the double-prime method to create a NOR-only circuit with a factored

POS expression

Create a NOR-only circuit of F = (A′ + C ′)(A+B′ + CD′).

F = (A′ + C ′)(A+B′ + CD′)

= {[(A′ + C ′)(A+B′ + CD′)]′}′

= [(A′ + C ′)′ + (A+B′ + CD′)′]′

There is still an AND operation in this expression, so the term CD′ itself needs to be double

primed, with only the inner prime being distributed.

[(CD′)′]′ = (C ′ +D)′

This is now NOR-only, and can get plugged back in to the original expression.

F = [(A′ + C ′)′ + (A+B′ + CD′)′]′

= [(A′ + C ′)′ + (A+B′ + (C ′ +D)′)′]′
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F

A

C

A
B

C

D

As mentioned, the double-prime method can be used for SOP or other circuits, but is much more com-

plicated, as double-priming a SOP expression leads to a NAND-only circuit. Instead, the bubble method

is a more effective approach. The bubble method works in exactly the same way as with NAND gates,

except that here we are interested in how to modify AND and OR gates to create NOR gates. As we saw in

Figure 6.4 a NOR gate can be created by priming the output of an OR gate, or by priming the inputs of an

AND gate.

Therefore, start with any AND/OR/NOT circuit. Start all the way on the left-hand side and inspect

each logic gate. If the logic gate is an OR gate, bubble the output. A second bubble needs to be placed

at the other end of the wire in order to cancel out the first bubble (due to the involution law). Any time

an AND gate is encountered, bubble the inputs. Again, every bubble will need to be cancelled out with a

second bubble due to the involution law.

Example: Using the bubble method to create a NOR-only circuit with a factored POS

expression

Use the bubble method to create a NOR-only circuit of F = (A′ + C ′)(A+B′ + CD′).

F

A
B

A

C

C

D

To create a NOR-only circuit, bubble the output of every OR gate and cancel that out with a

second bubble somewhere else in that path. Bubble all inputs to every AND gate and cancel that

out with a second bubble somewhere else in the path. (Note that in this case, it means bubbling the

input to the AND gate from CD′ and then priming the C term; the D′ term is already primed.) If

there is already a bubble on an AND gate input, then we don’t have to do anything with that input.

cbna Alyssa J. Pasquale, Ph.D. 118 Last updated: 2025/05/12



6 NAND and NOR 6.2 NOR

F

A
B

A

C

C ′

D

At this point, every logic gate has been converted into a NOR gate. If we were to re-draw it, it

would look identical to the NOR-only circuit in the previous example.

The bubble method is better suited to SOP circuits due to the fact that an OR gate forms the output

gate in an SOP expression. When the output of that OR gate is primed, a second prime must be included

somewhere along the same path to cancel it out per the involution law. Because there is nothing else to

prime, we must include an output inverter.

Example: Using the bubble method to create a NOR-only circuit with an SOP expression

Create a NOR-only circuit for F = AB′ +C(A+D). Start by drawing the circuit using AND gates,

OR gates, and inverters.

F

C

A

B

A

D

The bubble method is exactly the same regardless of the type of circuit that is started with. To

create a NOR gate, bubble all OR gate outputs and include a second bubble elsewhere in the same

path. Bubble all AND gate inputs and include a second bubble elsewhere in the same path.

F ′
C ′

A′

B

A

D

Re-draw this circuit using only NOR gates.
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F

C

A

B

A

D

Now that this is a NOR-only circuit (with the exception of the output inverter), we can more

easily determine an expression.

F = {([C ′ + (A+D)′]′ + [A′ +B]′)′}′
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6.3 Example Problems

NAND-Only Circuits

1. Express F (A,B,C,D) = Σm(1, 3, 4, 5, 7, 13) as a NAND-only circuit.

2. Express F (A,B,C,D) = BD′ +A′C ′D +A′B′D +ABC as a NAND-only circuit.

3. Express F (A,B,C,D) = A′B′(C ′ +D) +AB(C +D) as a NAND-only circuit.

4. Express F (A,B,C,D,E) = A+B′C +B(D + EC ′) as a NAND-only circuit.

5. Express F (A,B,C,D) = (A+B)(A′ +B′ +D)(C +D′) as a NAND-only circuit.

NOR-Only Circuits

1. Express F (A,B,C) = (A+B′ + C)(A′ + C ′) as a NOR-only circuit.

2. Express F (A,B,C,D) = (A+BC)(B + C ′ +D′) as a NOR-only circuit.

3. Express F (A,B,C,D,E) = (A+B′C ′D′)(B + C +DE) as a NOR-only circuit.

4. Express F (A,B,C) = A′B′ +AB as a NOR-only circuit.

5. Express F (A,B,C,D) = A′B′(C ′ +D) +AB(C +D) as a NOR-only circuit.
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7 Circuit Optimization

Now that we have a solid grasp of how to create Boolean expressions for a given design problem, and how

to minimize them to a reduced form, we will learn how to optimize the circuits for different outcomes. For

now, the two things we may choose to optimize would be time and cost.

First: a note about inverters. We will see later in this class that there are certain types of logic devices

that give us access to signals and their complements for no extra penalty in time or cost. Therefore, we will

not consider inverters to be penalizing factors in our discussion of timing and cost in optimizing circuits.

7.1 Two-Level Circuits: Least Time Implementation

So far, we have mostly considered two-level circuits. These include AND-OR (SOP) circuits and OR-AND

(POS) circuits. The term “two-level” means that the maximum number of logic gates that any signal

could travel through is two. We have seen that using minimization strategies such as k-maps and Quine-

McCluskey, it is relatively straightforward to create minimum two-level circuits. Two-level circuits also have

the advantage of being the fastest type of circuit, as adding on any more levels will cause the signals to incur

more of a delay from input to output.

We will see in chapter 9 (timing) that two-level circuits will also have an advantage (if they are designed

accordingly) of not allowing any hazards (or signal glitches) to occur on the output.

7.2 Finding Least Cost Implementation

Sometimes, a two-level circuit is also the cheapest implementation of a circuit. Other times, it is not. To

determine what a low-cost circuit means, we need to understand what causes a circuit to cost money. Those

things are the number of logic gates in a circuit, and the number of inputs that are used on each gate.

As of October 15, 2020, Digikey sold the following logic gates from Texas Instruments in a DIP format

for the following prices, leading to the individual logic gate costs that follow.

• 74LS00 – Quad 2-input NAND gate – $0.64 per chip – $0.16 per gate

• 74LS10 – Triple 3-input NAND gate – $0.79 per chip – $0.26 per gate

• 74LS13 – Dual 4-input NAND gate – $0.88 per chip – $0.44 per gate

• 74LS30 – Single 8-input NAND gate – $0.98 per chip – $0.98 per gate

Therefore, from a cost perspective, we want to minimize the number or logic gates and inputs as much as

possible. The first step is finding minimum SOP and POS expressions, as those are the lowest-cost two-level

implementations of a given circuit.
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7 Circuit Optimization 7.2 Finding Least Cost Implementation

Next is looking at a factored SOP and factored POS implementation, and seeing if those lead to a lower-

cost circuit. The process for finding the lowest cost circuit is therefore to create each of the following circuits,

and compare the gate/input cost for each: SOP, factored SOP, POS, and factored POS.

Example: Find the lowest-cost circuit

Find the lowest-cost circuit that corresponds to F (A,B,C,D) = Σm(4, 6, 7, 8, 9, 10). First: using any

technique (Boolean algebra, k-map, Quine-McCluskey), find an SOP expression.

FSOP (A,B,C,D) = A′BC +A′BD′ +AB′C ′ +AB′D′

Count the number of gates and inputs. There are five gates and sixteen inputs. Using the logic

gate costs from above, this circuit would cost $1.48.

F

A
B
D

A
B
C

A
B
C

A
B
D

Factor the SOP expression and see if that leads to a cost reduction. When factoring, attempt to

factor out the maximum number of terms possible from each expression. There are now five gates

but only twelve inputs. If we use the gate costs quoted earlier, this circuit would only cost $1.00.

F (A,B,C,D) = A′B(C +D′) +AB′(C ′ +D′)

F

A
B

A
B

C

D

C

D

Check both POS and factored POS to see if the cost can be further reduced. A POS implemen-

tation requires five gates and fourteen inputs. It would cost $1.28. While it is better than SOP, it is
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still not better than a factored SOP expression.

FPOS(A,B,C,D) = (A+B)(A′ +B′)(A+ C +D′)(A′ + C ′ +D′)

F

A

B

A

B

A
C
D

A
C
D

Factoring the POS expression would not be helpful in this example.

If the goal is to create a NAND-only or NOR-only lowest-cost circuit, the process is basically the same.

The first part is to determine which of the four types of circuits has the fewest gates and inputs. Then it

can be converted into a NAND-only or NOR-only circuit. Consideration may be taken into whether or not

an output inverter would be present on the output if you have the flexibility to decide between NAND-only

or NOR-only or an SOP/factored SOP or POS/factored POS implementation.

Example: Find the lowest-cost NAND-only circuit

Find the lowest cost NAND-only circuit that corresponds to F (A,B,C,D) = Σm(0, 2, 3, 6, 8, 9, 12, 13).

First find the SOP expression.

FSOP (A,B,C,D) = AC ′ +A′B′D′ +A′B′C +A′CD′

There are five gates and fifteen inputs. This circuit would cost $1.38 using the prices quoted

above. The next step is to factor the SOP expression.

F (A,B,C,D) = AC ′ +A′B′(D′ + C) +A′CD′

This implementation requires five gates and thirteen inputs and would cost $1.10. Next, find a

POS expression.

FPOS(A,B,C,D) = (A′ + C ′)(A+ C +D′)(A+B′ + C)(A+B′ +D′)
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This implementation requires five gates and fifteen inputs, and would cost the same amount as

an SOP implementation. Finally, find a factored POS circuit.

F (A,B,C,D) = (A′ + C ′)(A+ C +D′)(A+B′ + CD′)

This implementation requires five gates and thirteen inputs, and has the same cost as the factored

SOP circuit. The lowest-cost circuit is a tie between factored SOP and factored POS. However,

because we specifically want a NAND-only circuit, consider that the factored POS expression would

require an output inverter, which would add to the cost of the circuit. Therefore, the factored SOP

circuit is the preferred lowest-cost NAND-only circuit.

F (A,B,C,D) = [(AC ′)′(A′CD′)′(A′B′(DC ′)′)′]′

7.3 Optimization of Multiple Output Circuits

It can be difficult to design circuits when we have multiple outputs, or functions. If possible, we want to

share logic gates in order to use the fewest number of logic gates and inputs.

Example: Optimizing functions that are already optimized

In this example, we find that the minimum SOP expressions have terms that can be shared between

the two outputs without having to do any specific optimization steps.

X(A,B,C,D) = Σm(2, 3, 5, 6, 7, 8, 9, 12, 13)

= AC ′ +A′C +BC ′D

Y (A,B,C,D) = Σm(2, 3, 6, 7, 8, 9, 12, 13, 15)

= AC ′ +A′C +ABD

It would require eight logic gates and twenty inputs to build X and Y individually. However, AC ′

and A′C are shared terms so X and Y can be implemented together.
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X

Y

A

C

B
C
D

A

C

B
C
D

This optimized circuit only requires six gates and sixteen inputs. Because we shared the terms

that were the same between each function, we were able to save two logic gates and four inputs,

creating a circuit that is easier to build and costs less money.

Not all circuits have minimum expressions that lend themselves so easily to sharing gates, however. In

those cases, the procedure for optimizing two outputs simultaneously follows.

1. Identify the minterms that are NOT shared between the two functions.

2. The unshared minterms must be looped in prime implicants. Loop these first. During this looping

process, attempt to maximize the number of shared minterms that remain.

3. Any minterms that remain are shared. Loop these, not necessarily in prime implicants, to create shared

functions.

Example: Optimizing functions that are not already optimized

Find the lowest-cost implementation of the following functions.

X(A,B,C,D) = Σm(1, 3, 5, 6, 7, 13, 15)

Y (A,B,C,D) = Σm(1, 3, 6, 9, 11, 13, 15)

It can be helpful to create k-maps for each expression. The k-map for X is shown below. Minterms

m5 and m7 are unshared and are shown in red.
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AB

CD 00 01 11 10

00 0 0 0 0

01 1 1 1 0

11 1 1 1 0

10 0 1 0 0

The k-map for Y is shown below. Minterms m9 and m11 are unshared and are shown in red.

AB

CD 00 01 11 10

00 0 0 0 0

01 1 0 1 1

11 1 0 1 1

10 0 1 0 0

Starting with X, we see that there are two options for looping m5 and m7 in prime implicants.

Either we could loop m1 − m3 − m5 − m7 or we could loop m5 − m7 − m13 − m15. In this case it

does not matter which is chosen. We will start by looping m1 −m3 −m5 −m7 and will show what

happens with the second scenario later in this example. We can re-draw the k-map for Y with m1

and m3 drawn in blue to show which minterms have been used up in X and can no longer be shared

with Y .
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AB

CD 00 01 11 10

00 0 0 0 0

01 1 0 1 1

11 1 0 1 1

10 0 1 0 0

We need to loop the unshared minterms in Y with a prime implicant. The only prime implicant

that makes sense is m1 − m3 − m9 − m11 as this maximizes the number of shared minterms that

remain.

The remaining minterms are m6, m13 and m15. These can be looped in implicants: m6 by itself

and m13 −m15. The expressions for X and Y therefore become

X(A,B,C,D) = A′D +ABD +A′BCD′

Y (A,B,C,D) = B′D +ABD +A′BCD′

X

Y

A
B
D

A

D

A
B
C
D

B

D

This implementation uses six gates and seventeen inputs, which saves two gates and four inputs

from just using minimum SOP implementations. At this point you may be wondering what would

have happened if we had chosen to loop m5 −m7 −m13 −m15 in X. In that case, minterms m13 and

m15 would no longer be shared with Y . The prime implicant in Y would then bem9−m11−m13−m15.
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The two expressions are given below.

X(A,B,C,D) = BD +A′B′D +A′BCD′

Y (A,B,C,D) = AD +A′B′D +A′BCD′

Either way, six gates and seventeen inputs are used. Both options are the lowest-cost implemen-

tations of X and Y .

7.3.1 Multiple Output Circuits Using Prime Implicant Tables

It is possible to derive a lowest-cost implementation of multiple functions by using a prime implicant table.

The following procedure is used.

1. Identify the minterms (or maxterms, if POS is desired) of each function.

2. Find all prime implicants of each function.

3. Find all prime implicants of each of the product functions (or sum functions, if POS is desired).

4. Create a prime implicant table including PI’s of all functions and product/sum functions.

(a) Identify the essential prime implicants of each function and include them in the corresponding

function output(s).

(b) Optimally assign the remaining prime implicants.

In this method, it is not sufficient to simply find the prime implicants of each function, it is also necessary

to find the prime implicants of the product functions (if using SOP) or sum functions (if using POS). For

example, if two functions X(A,B,C,D) and Y (A,B,C,D) are defined, the product function is as follows.

XY (A,B,C,D) = X(A,B,C,D)Y (A,B,C,D)

If three functions X(A,B,C,D), Y (A,B,C,D), and Z(A,B,C,D) are defined, the product functions are

as follows.

XY (A,B,C,D) = X(A,B,C,D)Y (A,B,C,D)

XZ(A,B,C,D) = X(A,B,C,D)Z(A,B,C,D)

Y Z(A,B,C,D) = Y (A,B,C,D)Z(A,B,C,D)

XY Z(A,B,C,D) = X(A,B,C,D)Y (A,B,C,D)Z(A,B,C,D)

When minterm expressions are joined together in a product function, only the shared minterms are

included in the output.
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Example: Product functions of three functions

Find all product functions of each of the following functions.

X(A,B,C,D) = Σm(1, 5, 13, 15)

Y (A,B,C,D) = Σm(0, 2, 5, 8, 10, 13, 15)

Z(A,B,C,D) = Σm(0, 1, 2, 8, 10, 15)

The product function of X(A,B,C,D) and Y (A,B,C,D) contains only their shared minterms:

5, 13, and 15.

XY (A,B,C,D) = Σm(5, 13, 15)

The product function of X(A,B,C,D) and Z(A,B,C,D) contains only their shared minterms:

1, and 15.

XZ(A,B,C,D) = Σm(1, 15)

The product function of Y (A,B,C,D) and Z(A,B,C,D) contains only their shared minterms: 0,

2, 8, 10, and 15.

Y Z(A,B,C,D) = Σm(0, 2, 8, 10, 15)

The product function of all three functions contains only minterms shared between all three

functions. In this case, only minterm 15 is shared.

XY Z(A,B,C,D) = Σm(15)

Alternatively, if two functionsX(A,B,C,D) and Y (A,B,C,D) are defined, the sum function is as follows.

X + Y (A,B,C,D) = X(A,B,C,D) + Y (A,B,C,D)

If three functions X(A,B,C,D), Y (A,B,C,D), and Z(A,B,C,D) are defined, the sum functions are as
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follows.

X + Y (A,B,C,D) = X(A,B,C,D) + Y (A,B,C,D)

X + Z(A,B,C,D) = X(A,B,C,D) + Z(A,B,C,D)

Y + Z(A,B,C,D) = Y (A,B,C,D) + Z(A,B,C,D)

X + Y + Z(A,B,C,D) = X(A,B,C,D) + Y (A,B,C,D) + Z(A,B,C,D)

When maxterm expressions are joined together in a sum function, only the shared maxterms are included

in the output.

Example: Sum functions of three functions

Find all sum functions of each of the following functions.

X(A,B,C,D) = ΠM(0, 2, 3, 4, 6, 9, 10, 11)

Y (A,B,C,D) = ΠM(2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15)

Z(A,B,C,D) = ΠM(1, 4, 5, 7, 12, 13, 15)

The sum function of X(A,B,C,D) and Y (A,B,C,D) contains only their shared maxterms: 2, 3,

4, 6, 9, 10, and 11.

X + Y (A,B,C,D) = ΠM(2, 3, 4, 6, 9, 10, 11)

The sum function of X(A,B,C,D) and Z(A,B,C,D) contains only their shared maxterm: 4.

X + Z(A,B,C,D) = ΠM(4)

The sum function of Y (A,B,C,D) and Z(A,B,C,D) contains only their shared maxterms: 4, 7,

12, 13, and 15.

Y + Z(A,B,C,D) = ΠM(4, 7, 12, 13, 15)

The sum function of all three functions contains only maxterms shared between all three functions.

In this case, only maxterm 4 is shared.

X + Y + Z(A,B,C,D) = ΠM(4)

A prime implicant table of two or more functions will contain all minterms/maxterms of each function

separately, and contain every prime implicant (those of the functions themselves, as well as those of the
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product/sum functions). Each prime implicant included within a function will be indicated with an × in a

function’s minterm/maxterm columns.

Example: Multiple output SOP implementation of three functions

Find the lowest-cost SOP implementation of the following functions.

X(A,B,C,D) = Σm(1, 5, 13, 15)

Y (A,B,C,D) = Σm(0, 2, 5, 8, 10, 13, 15)

Z(A,B,C,D) = Σm(0, 1, 2, 8, 10, 15)

The first step is to identify the prime implicants of each function.

PIs of X PIs of Y PIs of Z

A′C ′D (1–5) B′D′ (0–2–8–10) B′D′ (0–2–8–10)

BC ′D (5–13) BC ′D (5–13) A′B′C ′ (0–1)

ABD (13–15) ABD (13–15) ABCD (15)

Then, find all product functions.

XY (A,B,C,D) = Σm(5, 13, 15)

XZ(A,B,C,D) = Σm(1, 15)

Y Z(A,B,C,D) = Σm(0, 2, 8, 10, 15)

XY Z(A,B,C,D) = Σm(15)

Identify the prime implicants of each product function.

PIs of XY PIs of XZ PIs of YZ PIs of XYZ

BC ′D (5–13) A′B′C ′D (1) B′D′ (0–2–8–10) ABCD (15)

ABD (13–15) ABCD (15) ABCD (15)

Create a PI table including each of the three functions. Redundant PIs do not need to be included

more than once. (For example, ABCD is only included once on the PI table, even though it is a

prime implicant of Z, XZ, Y Z, and XY Z.)
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X Y Z

PI 1 5 13 15 0 2 5 8 10 13 15 0 1 2 8 10 15

1–5 × ×

5–13 × × × ×

13–15 × × × ×

0–2–8–10 × × × × × × × ×

0–1 × ×

1 × ×

15 × × ×

The functions Y (A,B,C,D) and Z(A,B,C,D) have minterms only covered by a single prime

implicant. These point to the essential prime implicants of the functions. 0–2–8–10 (B′D′) must be

included in functions Y and Z. 5–13 (BC ′D) must be included in Y , and, although it is not essential

in X, will be included in X as well. 15 (ABCD) is essential in Z, and will be included in all three

functions.

The remaining PIs and uncovered minterms can then be analyzed to optimally choose the remain-

ing (non-essential) PIs.

X Y Z

PI 1 – 1

1–5 (A’C’D) ×

13–15 (ABD)

0–1 (A’B’C’) ×

1 (A’B’C’D) × ×

The most optimal choice of PIs remaining is 1 (A′B′C ′D), as that is the only PI that can be used

in both functions X and Z. The final expressions are as follows.

X(A,B,C,D) = BC ′D +ABCD+A′B′C ′D

Y (A,B,C,D) = B′D′+BC ′D +ABCD

Z(A,B,C,D) = B′D′ +ABCD+A′B′C ′D

This optimized implementation uses four AND gates and three OR gates, which saves two AND

gates over the individually optimized expressions (solving each function as minimum SOP individu-

ally).
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Example: Multiple output POS implementation of three functions

Find the lowest-cost POS implementation of the following functions.

X(A,B,C,D) = ΠM(1, 5, 7, 8, 12, 13, 14, 15)

Y (A,B,C,D) = ΠM(0, 1, 5, 8, 14)

Z(A,B,C,D) = ΠM(0, 2, 3, 6, 8, 9, 10, 11, 14)

The first step is to identify the prime implicants of each function.

PIs of X PIs of Y PIs of Z

A′ +B′ (12–13–14–15) B + C +D (0–8) A′ +B (8–9–10–11)

B′ +D′ (5–7–13–15) A+B + C (0–1) C ′ +D (2–6–10–14)

A+ C +D′ (1–5) A+ C +D′ (1–5) B + C ′ (2–3–10–11)

A′ + C +D (8–12) A′ +B′ + C ′ +D (14) B +D (0–2–8–10)

Then, find all sum functions.

X + Y (A,B,C,D) = ΠM(1, 5, 8, 14)

X + Z(A,B,C,D) = ΠM(8, 14)

Y + Z(A,B,C,D) = ΠM(0, 8, 14)

X + Y + Z(A,B,C,D) = ΠM(8, 14)

Identify the prime implicants of each sum function.

PIs of X + Y PIs of X + Z PIs of Y + Z

A+ C +D′ (1–5) A′ +B + C +D (8) B + C +D (0–8)

A′ +B + C +D (8) A′ +B′ + C ′ +D (14) A′ +B′ + C ′ +D (14)

A′ +B′ + C ′ +D (14)

PIs of X + Y + Z

A′ +B + C +D (8)

A′ +B′ + C ′ +D (14)

Create a PI table including each of the three functions. Redundant PIs do not need to be included

more than once.
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X Y

PI 1 5 7 8 12 13 14 15 0 1 5 8 14

12–13–14–15 × × × ×

5–7–13–15 × × × ×

1–5 × × × ×

8–12 × ×

0–8 × ×

0–1 × ×

14 × ×

8–9–10–11

2–6–10–14

2–3–10–11

0–2–8–10

8 × ×

Z

PI 0 2 3 6 8 9 10 11 14

12–13–14–15

5–7–13–15

1–5

8–12

0–8 × ×

0–1

14 ×

8–9–10–11 × × × ×

2–6–10–14 × × × ×

2–3–10–11 × × × ×

0–2–8–10 × × × ×

8 ×

All three functions have maxterms only covered by a single prime implicant. These point to the

essential prime implicants of the functions. 5–7–13–15 (B′ +D′) is an EPI of X. 1–5 (A+ C +D′)

is an EPI of X and Y . 14 (A′ + B′ + C ′ + D) is an EPI of Y and will be included in X and Y .

2–3–10–11 (B + C ′) is an EPI of Z. 2–6–10–14 (C ′ +D) is an EPI of Z. 8–9–10–11 (A′ + B) is an

EPI of Z.

The remaining PIs and uncovered maxterms can then be analyzed to optimally chose the remaining
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(non-essential) PIs.

X Y Z

PI 8 12 0 8 0

12–13–14–15 ×

8–12 × ×

0–8 × × ×

0–1 ×

14

0–2–8–10 ×

8 × ×
The most optimal choice of PIs remaining is 0–8 (B+C+D) for Y and Z, and 8–12 (A′+C+D)

for X. The final expressions are as follows.

X = (A+ C +D′)(B′ +D′)(A′ +B′ + C′ +D) (A′ + C +D)

Y = (A+ C +D′) (A′ +B′ + C′ +D) (B + C +D)

Z = (B + C′)(C′ +D)(A′ +B)(B + C +D)

This optimized implementation uses eight OR gates and three AND gates, which saves three OR

gates over the individually optimized expressions (solving each function as minimum POS individu-

ally).

7.3.2 Finding Multiple Output Implicants Using the Quine-McCluskey Method

Finding prime implicants of all functions and product (or sum) functions can be difficult at times. The

Quine-McCluskey method is well-suited to finding all prime implicants of functions and product functions.

(This textbook does not explicitly cover Quine-McCluskey for POS expressions, although it can be done

using the same methodology as SOP.) The Quine-McCluskey method is used with a few differences from the

single-function method.

For each column, include a section with each function. For each implicant included in that column, put a

0 under each function that is not covered by the implicant. Put a – under each function that is covered by

the implicant. When comparing from group to group to the next column, AND together the 0s to determine

where to place 0’s and –’s in the next column. If a new 0 gets included when combining implicants into the

next column, any implicant with 0’s not in those new places will not get a checkmark. Any implicants with

0’s in all function columns can be ignored when combining implicants into the next column.
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Example: Comparing implicants in groups into the next column

Compare implicants in column 1, groups 1 and 2, into column 2.

X(A,B,C,D) = Σm(3, 4, 6, 9)

Y (A,B,C,D) = Σm(2, 4, 8)

Z(A,B,C,D) = Σm(3, 6, 10)

Fill out column 1. Place a 0 in any function where the minterm does not appear, and a – in any

function where the minterm does appear.

Column 1 X Y Z Column 2 X Y Z

one 2. 0010 0 – 0

4. 0100 – – 0

8. 1000 0 – 0

two 3. 0011 – 0 –

6. 0110 – 0 –

9. 1001 – 0 0

10. 1010 – – 0

Compare minterms in group one to minterms in group two to move into the next column. 2–3

and 2–6 are not an implicant of any function (0’s in all three function columns) and can be ignored.

When 2–10 are combined, 2 receives a checkmark because there are no new 0’s moving from 2 to

2–10. However, 10 does not receive a checkmark as there is a new 0 going from 10 to 2–10. When

4–6 are combined, neither 4 nor 6 receives a checkmark. 8–9 is not an implicant of any function and

can be ignored. When 8–10 are combined, 8 receives a checkmark and 10 does not.

Column 1 X Y Z Column 2 X Y Z

one 2. 0010 0 – 0 2–3. 001– 0 0 0

4. 0100 – – 0 2–6. 0–10 0 0 0

8. 1000 0 – 0 2–10. –010 0 – 0

two 3. 0011 – 0 – 4–6. 01–0 – 0 0

6. 0110 – 0 – 8–9. 100– 0 0 0

9. 1001 – 0 0 8–10. 10–0 0 – 0

10. 1010 – – 0

There are 8 prime implicants.
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PIs Included in X? Included in Y? Included in Z?

A′BC ′D′ (4) yes yes no

A′B′CD (3) yes no yes

A′BCD′ (6) yes no yes

AB′C ′D (9) yes no no

AB′CD′ (10) yes yes no

B′CD′ (2–10) no yes no

A′BD′ (4–6) yes no no

AB′D′ (8–10) no yes no

After all groups have been compared, any implicant without a checkmark is a prime implicant (either of

a function, or of a product function). The functions and product functions of each PI are indicated by the

presence of a – in the section with each function. After identifying all of the PIs, a prime implicant table

can be created to find the optimum implementation of each function, as described in the preceding section.

Example: Multiple-output Quine-McCluskey

Find the lowest-cost SOP implementation of the following functions.

X(A,B,C,D) = Σm(0, 1, 2, 5, 7, 8, 10, 12, 13, 14, 15)

Y (A,B,C,D) = Σm(0, 1, 3, 5, 6, 7, 9, 13, 14, 15)

Z(A,B,C,D) = Σm(0, 1, 2, 4, 5, 8, 9, 12, 13, 14, 15)

Perform the Quine-McCluskey method.
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Column 1 X Y Z Column 2 X Y Z Column 3 X Y Z

zero 0. 0000 – – –

one 1. 0001 – – –

2. 0010 – 0 –

4. 0100 0 0 –

8. 1000 – 0 –

two 3. 0011 0 – 0

5. 0101 – – –

6. 0110 0 – 0

9. 1001 0 – –

10. 1010 – 0 0

12. 1100 – 0 –

three 7. 0111 – – 0

13. 1101 – – –

14. 1110 – – –

four 15. 1111 – – –

Compare column one minterms between groups to populate column two. Note that a few im-

plicants are not included in any function and can be ignored moving forward. There are no prime

implicants in column one.

Column 1 X Y Z Column 2 X Y Z Column 3 X Y Z

zero 0. 0000 – – – 0–1. 000– – – –

one 1. 0001 – – – 0–2. 00–0 – 0 –

2. 0010 – 0 – 0–4. 0–00 0 0 –

4. 0100 0 0 – 0–8. –000 – 0 –

8. 1000 – 0 – 1–3. 00–1 0 – 0

two 3. 0011 0 – 0 1–5. 0–01 – – –

5. 0101 – – – 1–9. –001 0 – –

6. 0110 0 – 0 2–3 0 0 0

9. 1001 0 – – 2–6 0 0 0

10. 1010 – 0 0 2–10. –010 – 0 0

12. 1100 – 0 – 4–5. 010– 0 0 –

three 7. 0111 – – 0 4–6 0 0 0

13. 1101 – – – 4–12. –100 0 0 –
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14. 1110 – – – 8–9. 100– 0 0 –

four 15. 1111 – – – 8–10. 10–0 – 0 0

8–12. 1–00 – 0 –

3–7. 0–11 0 – 0

5–7. 01–1 – – 0

5–13. –101 – – –

6–7. 011– 0 – 0

6–14. –110 0 – 0

9–13. 1–01 0 – –

10–14. 1–10 – 0 0

12–13. 110– – 0 –

12–14. 11–0 – 0 –

7–15. –111 – – 0

13–15. 11–1 – – –

14–15. 111– – – –
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Compare column two implicants between groups to populate column three. All ignored implicants

from the previous step have been removed from this table. Note that a few implicants are not included

in any function and can be ignored moving forward. (There are also some redundant implicants

created in column 3 that are crossed out.) There are seven prime implicants in column two.

Column 1 X Y Z Column 2 X Y Z Column 3 X Y Z

zero 0. 0000 – – – 0–1. 000– – – – 0–1–4–5. 0–0– 0 0 –

one 1. 0001 – – – 0–2. 00–0 – 0 – 0–1–8–9. –00– 0 0 –

2. 0010 – 0 – 0–4. 0–00 0 0 – 0–2–1–3 0 0 0

4. 0100 0 0 – 0–8. –000 – 0 – 0–2–8–10. –0–0 – 0 0

8. 1000 – 0 – 1–3. 00–1 0 – 0 0–4–1–5

two 3. 0011 0 – 0 1–5. 0–01 – – – 0–4–8–12. – –00 0 0 –

5. 0101 – – – 1–9. –001 0 – – 0–8–1–9

6. 0110 0 – 0 2–10. –010 – 0 0 0–8–2–10

9. 1001 0 – – 4–5. 010– 0 0 – 0–8–4–12

10. 1010 – 0 0 4–12. –100 0 0 – 1–3–5–7. 0– –1 0 – 0

12. 1100 – 0 – 8–9. 100– 0 0 – 1–5–3–7

three 7. 0111 – – 0 8–10. 10–0 – 0 0 1–5–9–13. – –01 0 – –

13. 1101 – – – 8–12. 1–00 – 0 – 1–9–5–13

14. 1110 – – – 3–7. 0–11 0 – 0 2–10–6–14 0 0 0

four 15. 1111 – – – 5–7. 01–1 – – 0 4–5–6–7 0 0 0

5–13. –101 – – – 4–5–12–13. –10– 0 0 –

6–7. 011– 0 – 0 4–12–5–13

6–14. –110 0 – 0 4–12–6–14 0 0 0

9–13. 1–01 0 – – 8–9–12–13. 1–0– 0 0 –

10–14. 1–10 – 0 0 8–10–12–14. 1– –0 – 0 0

12–13. 110– – 0 – 8–12–9–13

12–14. 11–0 – 0 – 8–12–10–14

7–15. –111 – – 0 5–7–13–15. –1–1 – – 0

13–15. 11–1 – – – 5–13–7–15

14–15. 111– – – – 6–7–14–15. –11– 0 – 0

6–14–7–15

12–13–14–15. 11– – – 0 –

12–14–13–15
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Compare column three implicants between groups to populate column four. (Note: column 1 is no

longer shown to save space.) All ignored implicants from the previous step have been removed from

this table. Note that a few implicants are not included in any function and can be ignored moving

forward. (There are also some redundant implicants created in column 4 that are crossed out.) There

are seven prime implicants in column three.

Column 2 X Y Z Column 3 X Y Z Column 4 X Y Z

0–1. 000– – – – 0–1–4–5. 0–0– 0 0 – 0–1–4–5–

0–2. 00–0 – 0 – 0–1–8–9. –00– 0 0 – 8–9–12–13 0 0 –

0–4. 0–00 0 0 – 0–2–8–10. –0–0 – 0 0 0–1–8–9–

0–8. –000 – 0 – 0–4–8–12. – –00 0 0 – 4–5–12–13

1–3. 00–1 0 – 0 1–3–5–7. 0– –1 0 – 0 0–4–8–12–

1–5. 0–01 – – – 1–5–9–13. – –01 0 – – 1–5–9–13

1–9. –001 0 – – 4–5–12–13. –10– 0 0 – 4–5–12–13–

2–10. –010 – 0 0 8–9–12–13. 1–0– 0 0 – 6–7–14–15 0 0 0

4–5. 010– 0 0 – 8–10–12–14. 1– –0 – 0 0

4–12. –100 0 0 – 5–7–13–15. –1–1 – – 0

8–9. 100– 0 0 – 6–7–14–15. –11– 0 – 0

8–10. 10–0 – 0 0 12–13–14–15. 11– – – 0 –

8–12. 1–00 – 0 –

3–7. 0–11 0 – 0

5–7. 01–1 – – 0

5–13. –101 – – –

6–7. 011– 0 – 0

6–14. –110 0 – 0

9–13. 1–01 0 – –

10–14. 1–10 – 0 0

12–13. 110– – 0 –

12–14. 11–0 – 0 –

7–15. –111 – – 0

13–15. 11–1 – – –

14–15. 111– – – –
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There are fifteen prime implicants in total. Use a prime implicant table to determine the optimum

combination of PIs for each function.

X

PI 0 1 2 5 7 8 10 12 13 14 15

0–1 × ×

0–2 × ×

0–8 × ×

1–5 × ×

8–12 × ×

13–15 × ×

14–15 × ×

0–2–8–10 × × × ×

1–3–5–7

1–5–9–13

8–10–12–14 × × × ×

5–7–13–15 × × × ×

6–7–14–15

12–13–14–15 × × × ×

0–1–4–5–

8–9–12–13
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Y

PI 0 1 3 5 6 7 9 13 14 15

0–1 × ×

0–2

0–8

1–5 × ×

8–12

13–15 × ×

14–15 × ×

0–2–8–10

1–3–5–7 × × × ×

1–5–9–13

8–10–12–14

5–7–13–15 × × × ×

6–7–14–15 × × × ×

12–13–14–15

0–1–4–5–

8–9–12–13
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Z

PI 0 1 2 4 5 8 9 12 13 14 15

0–1 × ×

0–2 × ×

0–8 × ×

1–5 × ×

8–12 × ×

13–15 × ×

14–15 × ×

0–2–8–10

1–3–5–7

1–5–9–13 × × × ×

8–10–12–14

5–7–13–15

6–7–14–15

12–13–14–15 × × × ×

0–1–4–5– × × × × × × × ×

8–9–12–13

All three functions have minterms only covered by a single prime implicant. These point to the

essential prime implicants of the functions. 0–1 is an EPI in Y and will also be included in X (while

it can be included in Z, an EPI of Z makes this term redundant). 0–2 is an EPI of Z (while it

can be included in X, there is a more efficient PI that can be looped in X instead). 1–3–5–7 is

an EPI of Y . 1–5–9–13 is an EPI of Y (it will not be included in Z as an EPI of Z will make it

redundant). 5–7–13–15 is an EPI of X and will also be included in Y . 6–7–14–15 is an EPI of Y .

0–1–4–5–8–9–12–13 is an EPI of Z.

The remaining PIs and uncovered minterms can then be analyzed to optimally chose the remaining

(non-essential) PIs.
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X Z

PI 2 8 10 12 14 14 15

0–8 ×

1–5

8–12 × ×

13–15 ×

14–15 × × ×

0–2–8–10 × × ×

8–10–12–14 × × × ×

12–13–14–15 × × × ×

At this point, the most efficient selection of remaining PI’s is 12–13–14–15 for both X and Z.

Then 0–2–8–10 will complete X. The final expressions are as follows.

X(A,B,C,D) = BD +A′B′C ′+AB +B′D′

Y (A,B,C,D) = BD+A′D +BC+C ′D +A′B′C ′

Z(A,B,C,D) = + C ′+A′B′D′ +AB

This optimized implementation uses nine AND gates and three OR gates, which saves one AND

gate over the individually optimized expressions (solving each function as minimum SOP individually,

and sharing gates when possible).
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7.4 Example Problems

Least Cost Implementation

1. Find the lowest cost implementation of

F (A,B,C,D) = Σm(2, 3, 4, 6, 7, 10, 11, 12, 14).

2. Find the lowest cost implementation of

F (A,B,C,D) = ΠM(2, 5, 6, 9, 13, 14).

3. Find the lowest cost implementation of

F (A,B,C,D,E) = B′C ′D′ +B′C ′E +A′BCE +A′BCD.

4. Find the lowest cost implementation of

F (A,B,C,D) = Σm(0, 2, 5, 6, 7, 8, 9, 10, 11, 14).

5. Find the lowest cost implementation of

F (A,B,C,D) = Σm(2, 5, 6, 7, 10, 14).

Multiple Output Optimization

1. Find the optimized implementation of

X(A,B,C,D) = Σm(2, 3, 4, 6, 7, 10, 12)

Y (A,B,C,D) = Σm(4, 6, 7, 10, 12, 14, 15).

How many gates and/or inputs do you save by implementing the circuits together rather than using

minimum SOP?
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2. Find the optimized implementation of

X(A,B,C,D) = Σm(0, 2, 7, 10) + Σd(12, 15)

Y (A,B,C,D) = Σm(2, 7, 8) + Σd(0, 5, 13).

How many gates and/or inputs do you save by implementing the circuits together rather than using

minimum SOP?

3. Find the optimized implementation of

X(A,B,C,D) = Σm(0, 1, 2, 9, 15)

Y (A,B,C,D) = Σm(0, 2, 8, 12, 15).

How many gates and/or inputs do you save by implementing the circuits together rather than using

minimum SOP?

4. Find the optimized implementation of

X(A,B,C,D) = Σm(3, 7, 9, 14) + Σd(1, 4, 6, 11)

Y (A,B,C,D) = Σm(6, 7, 12) + Σd(3, 14).

How many gates and/or inputs do you save by implementing the circuits together rather than using

minimum SOP?

5. Find the optimized implementation of

X(A,B,C,D) = Σm(2, 3, 7, 9, 10, 11, 13)

Y (A,B,C,D) = Σm(1, 5, 7, 9, 13, 14, 15).

How many gates and/or inputs do you save by implementing the circuits together rather than using

minimum SOP?
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8 Basic Semiconductor Physics

A basic overview of semiconductor physics can be helpful in understanding why issues from timing come

about in digital logic circuits. It also helps in the understanding of how transistors are created, leading to

the TTL and CMOS devices that are used in the creation of digital logic circuits. This book is by no means

a comprehensive look into semiconductor physics, but just explains general concepts.

Semiconductors are materials that are not pure electrical insulators or conductors, but lie somewhere in

between. They typically have four valence electrons. It is important to recall the difference between core

and valence electrons. Core electrons are very tightly bound to the nucleus of an atom. They require very

large amounts of energy to create shared bonds or to move freely throughout a material. Valence electrons

are more weakly bound to the nucleus, and can be more easily excited to form bonds or move throughout a

material.

Valence electrons require a certain amount of energy to conduct (move freely throughout a material). In

insulators, valence electrons require a lot of energy to conduct. In metals, valence electrons conduct without

the addition of extra energy. In a semiconductor, conduction requires a little bit of energy to conduct.

Silicon, the most ubiquitous semiconductor, and the material used in TTL and CMOS devices, has

fourteen electrons. Ten of these are tightly bound to the nucleus and four are valence electrons. This allows

silicon to form a crystalline lattice where one of each of the four valence electrons is shared with neighbors,

creating a stable, happy situation for all atoms. The diagram shown in Figure 8.1 is a simplified version of a

two-dimensional crystal lattice. Each of the circles corresponds to a silicon atom, and each line corresponds

to a valence electron.

Figure 8.1: A simplified version of a two-dimensional crystal lattice.

On its own, a crystal lattice such as this where every atom interacts with eight valence electrons is not
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interesting. Stable, happy situations for the atom means that there is no motivation (so to speak) for the

electrons to do anything interesting. When the stable situation is disrupted, interesting things start to

happen.

The doping process disrupts the crystal lattice’s happy equilibrium. Doping comes in two types: p-type

doping and n-type doping. In n-type doping, donor atoms introduce excess electrons into the crystal lattice.

For example, phosphorus is used with silicon because it has five valence electrons to silicon’s four. When a

phosphorus atom replaces a silicon atom, it introduces an extra electron into the crystal. In p-type doping,

acceptor atoms introduce “holes” (an absence of electrons) into the crystal lattice. Boron is typically used

with silicon because it has three valence electrons. When a boron atom replaces a silicon atom, it introduces

a hole into the crystal. Both of these situations, corresponding to n-type and p-type silicon, are shown in

Figure 8.2.

Figure 8.2: A simplified version of a two-dimensional silicon lattice with donor atoms (red) contributing extra
electrons, and with acceptor atoms (blue) contributing extra holes.

While it may be simple to picture electrons conducting through a material, it is also possible for holes

to move through a material. In this manner, doping causes it to be easier for conduction to occur. Rather

than requiring external energy to be applied to the material, it is generally possible for just the heat of room

temperature surroundings to cause electrons and holes to move about. Not many will conduct, but a few will

gain sufficient energy from heat to do so. However, by themselves, the motion of electrons or holes through

a doped semiconductor material will be random, causing no net electrical current through the material.
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8.1 P-N Junction

Introducing together a p-type material and an n-type material creates what is called a p-n junction. This

junction creates a very important type of semiconductor device called a diode. When voltage is applied to a

p-n junction, depending on how it is oriented, it can cause the holes and electrons to move. When voltage is

applied in such a manner that high potential is introduced to the p-type side, and low potential to the n-type

side, the holes are repelled away from the p-type side to the n-type side, and the electrons are repelled away

from the n-type side to the p-type side. This creates current from p-type to n-type as electrons travel in the

opposite direction.

When voltage is applied in the opposite manner, electrons are attracted to the high potential applied to

the n-type side, and holes are attracted to the low potential applied to the p-type side, and no current will

flow. Both of these situations are depicted schematically in Figure 8.3.

+
p-type

−
n-typehigh

potential

−+

low
potential

motion of current

+
p-type

−
n-type high

potential

− +

low
potential

current will not flow

Figure 8.3: A p-n junction with voltage applied in both orientations.

This explains why diodes (including light-emitting diodes) need to be inserted into a circuit in a particular

direction. Current will only flow in one direction. Diodes therefore act as one way valves in an electric circuit.

A light-emitting diode is created when electrons and holes recombine in the semiconductor material to create

photons. This does not naturally occur in all semiconductors (notably, it does not occur in silicon), but can

be utilized in some materials to generate light sources with many beneficial properties.

8.2 Bipolar Junction Transistor (BJT)

A bipolar junction transistor (BJT) is fabricated by creating two p-n junctions. An NPN BJT has two

n-type regions separated by a thin p-type region. A PNP BJT has two p-type regions separated by a thin

n-type region. An NPN BJT is depicted schematically in Figure 8.4.
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N+ P Nemitter collector

base

Figure 8.4: An NPN bipolar junction transistor.

The circuit symbol for an NPN BJT is shown in Figure 8.5. The arrow indicates the direction that

current usually flows when the device is in a mode called forward active. In that case, current flows from

collector to emitter, which might seem strange considering the names of the pins. However, remember that

current flows in the direction opposite to electrons. In the forward active mode, electrons go from the emitter

(which emits electrons) to the collector (which collects electrons).

collector

base

emitter

Figure 8.5: Circuit symbol for an NPN BJT, including labels of each terminal.

Different voltages can be supplied to the emitter, base, and collector. In fact, there are four different

modes that a BJT can be in based on the comparison of the voltages at each of those points.

8.2.1 Resistor-Transistor Logic (RTL)

Resistor-transistor logic (RTL) is the easiest type of BJT-based logic circuits to understand. It is not used

often these days due to the relatively large amounts of power consumed by the device. The transistors in

RTL operate in the forward-active mode, in which current flows from collector to emitter if high potential

is applied at the base. In this manner, the voltage at the base acts like an electrical switch. Current flows

through the transistor if the base voltage is 5 V, and does not if the base voltage is 0 V.

In earlier chapters, we discussed how we could create different types of logic gates out of switches. This

is essentially what happens in RTL. Series combinations of transistors are used in AND and NAND gates.

Parallel combinations of transistors are used in OR and NOR gates.

A simple RTL inverter is shown in Figure 8.6. If the base voltage is 0 V, the transistor does not allow

current to flow, and the output is tied to 5 V. If the base voltage is 5 V, current flows through the transistor

and the output is pulled to 0 V.
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A

F

Figure 8.6: RTL inverter.

8.2.2 Transistor-Transistor Logic (TTL)

Transistor-transistor logic (TTL) uses more transistors but consumes much less power than RTL, making

it very widely used (for example, in the 7400 series of logic gates we’ve discussed at length in this book).

However, they are not necessarily as clear to understand as RTL devices. Inputs are applied to the emitter,

rather than the base, of the BJT. When the emitter voltage is HIGH, it puts the transistor into reverse

active mode (which causes current to flow from the emitter to the collector, which is the opposite of forward

active mode). When the emitter voltage is LOW, current does not flow through the transistor.

A very simplified schematic of a TTL inverter is shown in Figure 8.7. Note that most actual modern

TTL devices are more complicated with extra transistors, diodes, and other power saving and speed boosting

properties included. However, AND and NAND gates still include transistors in series, with OR and NOR

gates using transistors in parallel.

F

A

Figure 8.7: TTL inverter.

8.3 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

A field effect transistor operates by creating an electric field that builds up charges in a particular area in

the device. The first three words: metal oxide semiconductor correspond to the materials that a MOSFET

are made out of. A schematic of an n-type MOSFET is shown in Figure 8.8.
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N N

p-type

oxide

metal

source drain

gate

Figure 8.8: An NMOS field effect transistor.

If the gate is connected to high potential, positive charges build up on the metal, causing the electrons in

the p-type semiconductor to build up between the n-type source and drain regions. This creates a channel

that allows current to flow between the drain and the source. Otherwise, if the gate is connected to low

potential, current does not flow between the drain and the source.

A p-type MOSFET is created by using n-type silicon with a p-type source and drain. Low potential on

the gate will cause a channel to form (switch is ON), and high potential will lead to a switch is OFF scenario.

Using both NMOS and PMOS transistors together leads to a technology called complementary metal

oxide semiconductor: CMOS. This is the technology that generally competes with TTL. It dissipates much

less power than TTL devices because current does not flow in through the gate (unlike in TTL where current

does flow through the base), so it is used almost exclusively in modern computers and microcontrollers.

The circuit symbols for NMOS and PMOS transistors are shown in Figure 8.9. Note the bubble on the

gate of the PMOS transistor, indicating the opposite properties of the NMOS transistor.

drain

source

gate

drain

source

gate

Figure 8.9: NMOS transistor (no bubble on the gate) and PMOS transistor (bubble on the gate).

A simple CMOS inverter is shown in Figure 8.10. The lack of resistors is a good hint that CMOS

technology is completely voltage controlled rather than current controlled (as is the case with BJTs and

TTL devices). Ideally, if no current flows, no power is consumed. However, because the layers of metal,

oxide and semiconductor form a type of capacitor, it takes time for charge to accumulate into the channel.

Therefore CMOS devices can be slower than TTL devices.
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FA

Figure 8.10: A simple CMOS inverter.

Regardless of the type of transistor (BJT or MOSFET), the fact that electrons need to physically move

through a device causes delays between the input and output of a logic gate. This causes important ramifi-

cations that will be discussed in the next chapter.
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As discussed in the previous chapter, logic gates are not as simple inside as they appear from their logic

symbol. In fact, there are resistors, transistors, and diodes inside of each TTL device. Electrons require

time to move through each circuit element. The time it takes for a signal to propagate from the input to the

output of a logic device is known as the propagation delay. There are two types of propagation delays: tPLH

which is the amount of time it takes for an output signal to transition from LOW to HIGH, and tPHL which

is the amount of time it takes for an output signal to transition from HIGH to LOW. A timing diagram

showing input and output signals for an inverter, including both propagation delays, is shown in Figure 9.1.

0

1

A

0 1 2 3 4 5 6 7 8 9 10

0

1

t (ns)

Y tPLH tPHL

Figure 9.1: Input and output signals for an inverter, including propagation delays.

Logic chip datasheets list propagation delays. The 7404 inverter has a tPLH between 12–22 ns, and tPHL

between 8–15 ns. The exact duration of the propagation delay depends on the temperature, the number of

devices connected to the output of the logic gate, and other external factors. However, it gives us an idea of

a typical propagation delay for that type of logic gate.

In addition to logic gates, wires also introduce delay into a circuit. This delay is approximately 1 ns per

15 cm of wire. We will treat all wire delays as zero in this book, but if very long wires or cabling is used it

is clear that it may be cause for concern about additional delays.

The delay in digital devices causes the voltage to increase gradually from 0 V to 5 V. The transition

from a logic LOW to a logic HIGH takes time; this is the analog nature of digital devices. Figure 9.2 shows

how the voltage signal changes with time in the real world (left figure), and how an idealized version of the

voltage change is visualized (right figure).

cbna Alyssa J. Pasquale, Ph.D. 156 Last updated: 2025/05/12



9 Timing 9.1 Timing Diagrams

t (ns)

V
(V

)

t (ns)

V
(V

)

Figure 9.2: Real voltage transitions (left) are gradual, while ideal voltage transitions (right) are instantaneous.

This means that there is a period of time where the logic output of the function is undefined. In this

book, we will “hand-wave” this undefined logic levels and simply show instantaneous, idealized transitions

in each timing diagram.

9.1 Timing Diagrams

Timing diagrams are used to enable us to better understand the relationship between input and output

signals in a circuit. Each signal path is carefully analyzed and each delay is included. The best way to do

this is by starting from the far left-hand side of the circuit diagram and analyzing signals until the output

is reached.

In this book, we will assume that all signals have been well-defined for a sufficiently long period of time

such that all outputs are well-defined at a time of 0 ns.

Example: Simple two-level circuit timing diagram

Assuming that tPLH = tPHL = 20 ns delay on each logic gate, draw the output signals G and F for

the following circuit, given inputs A, B, and C.

F

GA

B
C
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0

1
A

0

1

B

0 10 20 30 40 50 60 70 80 90

0

1

t (ns)

C

Start by determining the signal for G, which is equal to AB. In an ideal world, the signal would

start out as zero and transition from zero to one at 15 ns. Due to the delay, the transition will not

occur until 35 ns. The signal would then transition from one to zero ideally at 35 ns. Due to the

delay, this will actually occur at 55 ns. The signal for G is graphed below.

0 10 20 30 40 50 60 70 80 90

0

1

t (ns)

G

Next, the signal F is determined. In this case it is equal to G+C. Note that we must include the

delays from the AND gate, so do not start by looking at AB + C, but look at G+ C which already

includes the AND gate delays. F would start at zero and transition from zero to one ideally at 35 ns.

Due to delay this won’t occur until 55 ns. The transition from one to zero which would ideally occur

at 55 ns will not occur until 75 ns. Another transition from zero to one (from signal C going HIGH)

would ideally occur at 60 ns but will occur at 80 ns due to the delay. The signal for F is graphed

below.

0 10 20 30 40 50 60 70 80 90

0

1

t (ns)

F
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9.2 Static Hazards

Hazards occur in a circuit when the output has a glitch due to gate delays that would not be present if all

gates were infinitely fast. There are two types of hazards: static hazards and dynamic hazards.

Static hazards occur when the output should be a steady signal (either HIGH or LOW) but has a

temporary glitch. There are two types of static hazards.

• Static 1 hazard – occurs when the output should be HIGH and has a temporary LOW glitch, they

occur only in SOP circuits.

• Static 0 hazard – occurs when the output should be LOW and has a temporary HIGH glitch, they

occur only in POS circuits.

Both types of static hazard are shown in Figure 9.3.

Static 1 Hazard:

1 0 1

Static 0 Hazard:

0 1 0

Figure 9.3: Static 1 and static 0 hazards.

Example: Static 1 hazard

Create a timing diagram for F = AB′+BC. Each logic gate (including the inverter) has a 5 ns delay.

A D

E

B

C

F

A
B

0 5 10 15 20 25 30 35 40 45 50 55 60

t (ns)

C
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Determine what the output should be for the duration of the timing diagram. The inputs ABC

go from 011–111–101–100. The output should be HIGH the entire time.

Create a timing diagram for each output signal. B′, D, E, and F are all shown below on one

graph.

B
’

D
E

0 5 10 15 20 25 30 35 40 45 50 55 60

t (ns)

F

Analyzing the output signal, there is a glitch to zero from 40–45 ns. This glitch corresponds to

the transition from 111–101 on the input. This is a static 1 hazard.

9.2.1 Identifying and Eliminating Static Hazards

We can use a k-map to identify where static hazards occur in a circuit. Hazards occur if there is a transition

between two minterms or two maxterms that aren’t covered by a prime implicant.

Example: Using a k-map to identify static hazards

We will use the previous example to find the location of a static hazard using a k-map. The minterms

of F = AB′ + BC are m3, m4, m5, and m7. The two prime implicants are AB′ covering m4 −m5

and BC covering m3 −m7. The hazard occurs between minterms m7 and m5, which is not covered

by a prime implicant.
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A

BC 0 1

00 0 1

01 0 1

11 1 1

10 0 0

static 1

hazard

To eliminate static hazards, every prime implicant must be included in an expression. This

ensures that there are no gaps between loops of minterms or maxterms. This keeps the signal either HIGH

(in SOP expressions) or LOW (in POS expressions) during signal transitions that would otherwise cause an

output glitch.

9.3 Dynamic Hazards

Dynamic hazards occur when an output oscillates briefly while changing value from zero to one or from one

to zero. Examples of dynamic hazards are shown in Figure 9.4. These types of hazards often occur in larger

logic circuits where there are many routes to the output from the input.

Figure 9.4: Dynamic hazards

Dynamic hazards can be difficult to diagnose. The good news is that a circuit that has no static hazards

will also have no dynamic hazards. Therefore a two-level hazard-free circuit is not only the fastest imple-

mentation of a circuit, but it also is guaranteed to have no hazards of any kind as long as only one input

changes at a time.

Example: Circuit with a dynamic hazard

Each inverter has a 5 ns delay, and all other logic gates have a 12 ns delay.
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X b

Y

Z

d

W

c

e

F

The Boolean expression is F (W,X, Y, Z) = (WY ′)(XY ′+Y Z). As the input goes from 0111–0101

at 20 ns, the output ideally would transition from zero to one. The timing diagram demonstrates

that instead of a simple transition, a dynamic hazard occurs instead.

W
X

Y
Z

Y
’

b
d

c
e

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

t (ns)

F
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9.4 Example Problems

Timing Diagrams

1. Draw a timing diagram for Z(A,B,C) = (A′B+B′C). Inverters have a propagation delay of 2 ns and

AND and OR gates have a propagation delay of 5 ns. The input signals are shown in Figure 9.5.

A
B

0 10 20 30 40

t (ns)

C

Figure 9.5: Input signals for timing diagram questions 1 and 2.

2. Draw a timing diagram for F (A,B,C) = (B ⊕C)(A+C). AND gates have a delay of 2 ns, OR gates

have a delay of 3 ns, and XOR gates have a delay of 5 ns. The input signals are shown in Figure 9.5.
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3. Draw a timing diagram for F (A,B,C,D) = (B′+D′)(A+B+C). Inverters have a propagation delay

of 2 ns and AND and OR gates have a propagation delay of 5 ns. The input signals are shown in

Figure 9.6.

A
B

C

0 10 20 30 40

t (ns)

D

Figure 9.6: Input signals for timing diagram questions 3 and 4.

4. Draw a timing diagram for F (A,B,C,D) = A′C ′D+A′BC ′. All logic gates have a propagation delay

of 5 ns. The input signals are shown in Figure 9.6.
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5. Look up the datasheet for the 74LS139A 2 to 4 decoder. Although we haven’t discussed decoders yet,

you will be able to interpret the logic diagram which only uses inverters and NAND gates. Assuming

that every logic gate has a delay of 10 ns, draw the output for 1Y 1 giving the input signals shown in

Figure 9.7.

1G
1A

0 10 20 30 40 50 60 70 80 90 100 110 120 130

t (ns)

1B

Figure 9.7: Input signals for timing diagram question 5.

Hazards

1. Find a hazard-free SOP expression for

F (A,B,C) = Σm(2, 3, 5, 7).

2. Find a hazard-free SOP expression for

F (A,B,C,D,E) = Σm(5, 12, 21, 23, 24, 28, 29, 31) + Σd(6, 7, 14, 15).

3. Find a NAND-only hazard-free expression for

F (A,B,C,D) = Σm(0, 1, 3, 4, 6, 11) + Σd(8, 12, 13).

4. Find a NOR-only hazard-free expression for F (A,B,C,D) = A′B′D′ +AC ′D′ +ABCD.

5. Find a NOR-only hazard-free expression for

F (A,B,C,D) = Σm(6, 7, 12) + Σd(3, 14).
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10 Logic Devices

Now that we have a good understanding of combinational logic, we can start learning about logic devices.

Logic devices are made out of AND/OR/NOT gates, but are capable of performing useful or complicated

functions in a single package.

10.1 Buffers and Tri-State Devices

Buffers are logic devices that transfer voltage from input to output. Usually, they are capable of increasing

the amount of current that is sourced or sunk by a device. This can be particularly useful if a logic gate

output has been connected to many logic gate inputs; in these situations the amount of current provided by

the output of the logic gate may not be enough to source all of the logic gates that it’s connected to.

Non-inverting buffers simply increase the current without changing the logical value of the input. (In

other words, if the input is LOW, the output is LOW. If the input is HIGH, the output is HIGH.) Inverting

buffers increase the current capability while also changing the output to make it the logical complement of

the input. (HIGH becomes LOW and vice versa.)

A tri-state buffer is a very special type of buffer that provides a third option. We’ve seen that a LOW

signal is connected to 0 V or ground. A HIGH signal is connected to 5 V. These are physical electrical

connections to a certain point in a circuit. The “third” state (tri-state) is called a high impedance, or high-Z

mode. This tri-state means that the output is electrically isolated from the input. The output would register

as a float on a logic probe, which is very different in an important way from a LOW or HIGH signal. In the

high-Z mode, it is almost like the component is not connected to any part of the circuit.

The circuit symbol and truth table for a tri-state buffer is shown in Figure 10.1. Note the use of the

letter Z on the truth table. This indicates the high-Z mode.

A

EN

F
EN A F
0 0 Z
0 1 Z
1 0 0
1 1 1

Figure 10.1: A tri-state buffer represented as a circuit diagram and a truth table.

10.1.1 Types of Tri-State Buffers

There are different types of tri-state buffers. the types refer to how the enable is activated (with active

HIGH a one enables the buffer; with active LOW a zero enables the buffer) and how the output is configured

(active HIGH output means a one on the input will be a one on the output; active LOW output means a

one on the input becomes a zero on the output).
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The type of tri-state buffer described above in Figure 10.1 is an active HIGH enable, active HIGH output

device.

A tri-state buffer that requires an enable signal of zero in order to function as a buffer, and an enable

signal of one to put the output into the high-Z mode would be called an active LOW enable, active HIGH

output buffer. It is depicted in Figure 10.2.

A

EN

F
EN A F
0 0 0
0 1 1
1 0 Z
1 1 Z

Figure 10.2: An active LOW enable, active HIGH output tri-state buffer.

An inverting tri-state buffer that requires an enable signal of one in order to function as a buffer would

be called an active HIGH enable, active LOW output device. It is depicted in Figure 10.3.

A

EN

F
EN A F
0 0 Z
0 1 Z
1 0 1
1 1 0

Figure 10.3: An active HIGH enable, active LOW output tri-state buffer.

Finally, an inverting tri-state buffer that requires an enable signal of zero in order to function as a buffer

would be called an active LOW enable, active LOW output device. It is depicted in Figure 10.4.

A

EN

F
EN A F
0 0 1
0 1 0
1 0 Z
1 1 Z

Figure 10.4: An active LOW enable, active LOW output tri-state buffer.

10.1.2 Uses of Tri-State Buffers

Tri-state buffers have many uses in digital computing. Their major advantage comes in the fact that outputs

of tri-state buffers can be connected together, which is not allowed with most other logic gates. Consider

what would happen if the outputs of two AND gates were connected together as shown in Figure 10.5. The
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upper AND gate has an output of zero, and the lower AND gate has an output of one. The two competing

outputs creates a short circuit.

0

0

0

1

1

1

short
circuit

Figure 10.5: A short circuit can be created when the output of two logic gates are connected together.

In the case of tri-state buffers, as long as only one buffer is enabled at a time, the output of many of

them can be connected together. Only the enabled buffer is electrically connected to the output. The other

buffers are completely isolated from the circuit, almost as if they are not there.

Tri-state buffers are therefore frequently used in computing buses. An electrical bus is simply a connection

of wires used to send a signal from place to place in a computer. A data bus could be used to route data

from several different places in a computer to memory, a hard drive, or other places. Because we only want

one of the data sources to be supplying data to the bus at any one time, access to write to the data bus is

therefore controlled by tri-state devices, as shown in Figure 10.6.

data
bus

Figure 10.6: Four devices are connected to a single data bus. As long as only one is enabled at a time, there
is no chance of short circuits on the output.

An electrical bus is depicted on a circuit diagram as a line with a slash through it. A number next to

the slash indicates how many wires are included in the bus.

Tri-state buffers are also used to create bi-directional pins. A bi-directional pin means it can be used as

an input or an output, depending on the configuration. This is very useful in microcontrollers. The popular

ATmega328P, which is the microcontroller included in the Arduino Uno, has twenty pins that can be used

in either direction: input or output. If you have a project that needs two input pins and fourteen outputs,

you can use the ATmega328P. If you need ten inputs and ten outputs, you can use the ATmega328P. If you

need fifteen inputs and one output, you can use the ATmega328P. The ability to use a pin as an input or an

output leads to maximum flexibility in design.

The bi-directional control of the pins is depicted in Figure 10.7. Note that if the tri-state buffer is enabled

(EN = 1), then data goes from the microcontroller to the pin, which means that the pin is an output pin.
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Otherwise, if the tri-state buffer is not enabled (EN = 0), then the pin is an input pin. Data can only go

from the pin to the microcontroller, and not in the other direction.

MCU

pin

EN

Figure 10.7: Schematic of a bi-directional data pin such as that used in a microcontroller (MCU).

10.2 Multiplexers (MUX)

A multiplexer acts as a switch with a control variable or variables controlling which input passes through to

the output. Generally speaking, a MUX uses n control bits to select which one of 2n inputs goes through to

the one output pin. All of the other inputs are ignored.

There are a few purposes of multiplexers. One is to allow several signals to share one set of infrastructure.

For example, if I wanted to start a phone company, and had sixteen subscribers, I wouldn’t want to pay to

install sixteen wires to control every individual customer’s phone calls. I would want to install one wire and

use it for all of the phone calls. By quickly switching between each phone conversation along one wire, that

can be achieved. Multiplexers are used frequently therefore to lower cost any time there is a need to share

signals along one set of infrastructure.

The second major purpose of multiplexers is to implement Boolean algebra expressions, and that will be

discussed in detail later in this section.

10.2.1 2 to 1 MUX

A 2 to 1 MUX is used to select between two inputs. There are two input signals, a control signal, and one

output. Just as with all devices, a MUX can be described as a circuit diagram, as a truth table, and as an

equation. In this case, because a MUX is such a common device, it has its own symbol, a trapezoid. We will

use the trapezoid symbol to discuss a MUX, but we can also see how a MUX is built with AND gates, OR

gates, and inverters.

The circuit diagram for a 2 to 1 MUX is shown in Figure 10.8. The data inputs are I0 and I1, the control

input is A, and the output is Z.
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2 to 1
MUX

I0

I1

A

Z

Figure 10.8: Circuit diagram of a 2 to 1 multiplexer.

If the control bit A is zero, then input signal I0 is sent to the output. Otherwise, if A is one, I1 is sent

to the output. We can use this description of the operation of the 2 to 1 MUX to derive its Boolean algebra

equation.

Z = A′I0 +AI1

Note that the decimal value of the control bit (in this case, limited to zero and one) tells us which of the

inputs (zero or one) gets sent to the output.

It is also possible to describe the operation of this device using a truth table. The truth table for a 2 to

1 MUX is given in table 10.1.

A I0 I1 Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 10.1: Truth table for the operation of a 2 to 1 MUX

The expression and truth table enable us to determine how to build a MUX using just AND gates, OR

gates, and inverters. This circuit diagram is shown in Figure 10.9.

Z

I0

A

I1

Figure 10.9: The construction of a 2 to 1 multiplexer using only AND gates, OR gates, and inverters.

To cement our understanding of 2 to 1 MUXes, let’s look at a timing diagram, shown below in Fig-

ure 10.10. We will ignore all of the internal gate delays and just consider the basic operation of the device.
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Any time the control bit A is 0, the input I0 is sent to the output. Any time the control bit A is 1, the input

I1 is sent to the output.

I 0
I 1

A

0 5 10 15 20 25 30 35 40

t (ns)

Z

Figure 10.10: Timing diagram for a 2 to 1 MUX.

10.2.2 4 to 1 MUX

In a 4 to 1 multiplexer, there are now four data inputs (I0, I1, I2, and I3), two control inputs (A and B)

to determine which of the data inputs is selected, and an output (Z). The decimal value of the control bits

AB tells us which of the inputs (zero, one, two, or three) is sent to the output. The circuit symbol for a 4

to 1 MUX is shown in Figure 10.11.

4 to 1
MUX

I0

I1

I2

I3

A
B

Z

Figure 10.11: Circuit symbol of a 4 to 1 multiplexer.

The choice of control bits changes the connections internal to the MUX to determine which input changes

the output. This is depicted schematically in Figure 10.12.
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4 to 1
MUX

I0

I1

I2

I3

0
0

F = I0
4 to 1
MUX

I0

I1

I2

I3

0
1

F = I1

4 to 1
MUX

I0

I1

I2

I3

1
0

F = I2
4 to 1
MUX

I0

I1

I2

I3

1
1

F = I3

Figure 10.12: Connections between input pins and the output in a 4 to 1 MUX depend on the value of the
control bits.

The Boolean expression that describes how the MUX operates follows.

Z = A′B′I0 +A′BI1 +AB′I2 +ABI3

From the expression, it can be seen how a 4 to 1 MUX could be built using only AND gates, OR gates,

and inverters. However, it is also possible to build a 4 to 1 MUX using 2 to 1 MUXes. This property of

scaling up multiplexers makes them a very useful tool. The schematic for connecting 2 to 1 MUXes together

to create a 4 to 1 MUX is shown in Figure 10.13.

Notice that the MUX closest to the output is controlled by the most significant control bit, and the

MUXes farthest from the output are controlled by the least significant control bit. This would also be how

we could connect together, say, 4 to 1 MUXes to create a 16 to 1 MUX.

10.2.3 Implementing Boolean Algebra Expressions with a MUX

Any Boolean expression that is a function of n variables can be implemented with an n to 1 MUX. In order

to implement a Boolean expression out of a MUX, we exploit the format of the MUX equation, which is

given below.

F = X ′Y ′I0 +X ′Y I1 +XY ′I2 +XY I3
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2 to 1
MUX

2 to 1
MUX

2 to 1
MUX

I0

I1

I2

I3

A

B

B

Z

Figure 10.13: Creating a 4 to 1 multiplexer from 2 to 1 multiplexers.

The goal is to determine which control bits (indicated as XY in the above MUX equation) would lead

to the fewest number of external logic gates connected to the MUX. We determine how many logic gates

would be required by looking at the forms of I0, I1, I2, and I3. There are six different possible combinations

of control bits that can be chosen from four input variables A, B, C, and D.

For each of the different control bits, we check to see which four squares in a k-map are unchanged for

each of the values of 00, 01, 10, and 11 of the control bits.

If A and B are chosen as the control bits, then the four quadrants of the k-map are distributed as shown

in Figure 10.14. Because A and B are constant along every column, the four quadrants are the same as the

four columns.

AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.14: The four quadrants of cells to be looped when the control bits are A and B.

If A and C are chosen as control bits, then the four quadrants of the k-map are distributed as shown in

Figure 10.15.
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AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.15: The four quadrants of cells to be looped when the control bits are A and C.

If A and D are chosen as control bits, then the four quadrants of the k-map are distributed as shown in

Figure 10.16.

AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.16: The four quadrants of cells to be looped when the control bits are A and D.

If B and C are chosen as control bits, then the four quadrants of the k-map are distributed as shown in

Figure 10.17.
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AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.17: The four quadrants of cells to be looped when the control bits are B and C.

If B and D are chosen as control bits, then the four quadrants of the k-map are distributed as shown in

Figure 10.18.

AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.18: The four quadrants of cells to be looped when the control bits are B and D.

If C and D are chosen as the control bits, then the four quadrants of the k-map are distributed as shown

in Figure 10.19. Because C and D are constant along every row, the four quadrants are the same as the four

rows.
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AB

CD
00 01 11 10

00

01

11

10

00

01

10

11

Figure 10.19: The four quadrants of cells to be looped when the control bits are C and D.

Example: Implementing a Boolean expression with a 4 to 1 MUX

Implement the function F (A,B,C,D) = Σm(1, 3, 10, 11, 12, 13, 14, 15) using a MUX. If we were to

find a minimum SOP implentation of the function, it would be A′B′D + AB + AC. This would

require four logic gates and ten inputs to implement. We will instead see how it would work if we

implemented it using a MUX. We will analyze each of the six control bit options and see which

possibility or possibilities are the best.

If we choose A and B as control bits, we analyze each of the four quadrants where the values of

A and B do not change. Then, inside each of those quadrants, we must make the largest possible

loops that contain minterms. In this case, where A and B are both 0, we can loop minterms m1 and

m3, leading to A′B′D. Factoring out an A′B′ we get D. In the next column where A is 0 and B

is 1, we do not loop anything. The expression is A′B(0). The column farthest to the right (due to

Gray code) is where A is 1 and B is zero. We would loop minterms m10 and m11. That gives us the

expression AB′(C). We would loop the entire quadrant, giving us the expression AB(1). This would

require zero external logic gates, as shown below.

4 to 1

MUX

D

C

A
B

F

In this case, we have found an optimum implementation of F using a 4 to 1 MUX. But so that

we can understand how to do this process with each set of control bits, we will continue the exercise.
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If we choose A and C as control bits, we look in the four quadrants to find our MUX equation.

F = A′C ′(B′D) +A′C(B′D) +AC ′(B) +AC(1)

This would require one external logic gate to AND together B′ and D. (Remember, we still do

not consider inverters to count as logic gates.)

4 to 1

MUX

B

D

B

A
C

F

The next selection of control bits, A and D, would lead to the following MUX equation, which

would require one external logic gate.

F = A′D′(0) +A′D(B′) +AD′(B + C) +AD(B + C)

4 to 1

MUXB

C

B′

A
D

F

The selection of B and C as control bits would lead to two external gates, indicating that it is a

particularly poor choice of control bits for the function F .

F = B′C ′(A′D) +B′C(A+D) +BC ′(A) +BC(A)
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4 to 1

MUX

A

D

A

D

A

A

B
C

F

Using B and D as control bits would also lead to two external gates.

F = B′D′(AC) +B′D(A′ + C) +BD′(A) +BD(A)

4 to 1

MUX

A

C

A

C

A

A

B
D

F

The last selection of control bits would be C and D. In this particular example, it would be the

worst selection, as it would lead to three external gates being required to implement the Boolean

function with a MUX.

F = C ′D′(AB) + C ′D(A ≡ B) + CD′(A) + CD(A+B′)

4 to 1

MUX

A

B

A

B

A

A

B

C
D

F

Sometimes it can be simple to look at the k-map and identify which quadrants the largest loops live in,
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and from there to identify the best choice of control bits. Other times it is not as simple. In those cases,

look at each quadrant, and see what types of loops exist in each quadrant. The types of loops that you

would have to make indicate the logic gates that would be required in the MUX implementation. These are

explained below.

• ZERO minterms – no logic gate (connection to ground)

• ONE 1× 1 loop – one AND gate required

• ONE 1× 2 or 2× 1 loop – no logic gate (connection directly to one of the inputs)

• ONE 2× 2 or 1× 4 loop – no logic gate (connection to Vcc)

• TWO 1× 1 loops – one XOR or XNOR gate required

• TWO 1× 2 or 2× 1 loops – one OR gate required

Sometimes a Boolean algebra expression is a good candidate for implementation with a MUX, although

it has more than 4 variables, and cannot be implemented with a 4 to 1 MUX. In these cases, it is useful to

determine how it could be implemented with multiple 2 to 1 MUXes instead. Identify a variable that exists

in each term in either true or complemented form, and that would be the control bit on the most significant

MUX. Then repeat the process for subsequent MUXes.

Example: Implementing a Boolean function of many variables

Use multiplexers and a minimum number of external gates to realize the function given below.

Z = AB′H ′ +BCH ′ + EG′H + FGH

In this case, the variable H exists in either true or complemented form in each term, so it will be

used as the control bit on a 2 to 1 MUX.

2 to 1

MUX

E

G

F

G

A

B

B

C
H

Z

This does not appear to be much of an improvement over just building this with an SOP imple-

mentation! Fortunately, we can look for variables that exist in true and complemented form in the

cbna Alyssa J. Pasquale, Ph.D. 179 Last updated: 2025/05/12



10 Logic Devices 10.3 Sourcing vs. Sinking Current

remaining MUX inputs. Input I0 on the 2 to 1 MUX is connected to EG′ + FG. G would therefore

make a good candidate as a control bit on another 2 to 1 MUX. Input I1 on the 2 to 1 MUX is

connected to AB′ +BC. Therefore B would make a good candidate for a control bit.

2 to 1

MUX

2 to 1

MUX

E

F

G

2 to 1

MUX

A

C

B

H

Z

10.3 Sourcing vs. Sinking Current

Before we continue our discussion of logic devices, it is important to discuss the concept of sourcing and

sinking current.

In active HIGH output devices, a one is the ON state and a zero is the OFF state. In these active HIGH

output cases, an LED can be connected between the output of the digital logic and ground, as shown in

Figure 10.20. When the output is a one, current flows and the LED turns on. When the output is a zero,

current does not flow and the LED remains off. In this case, current must be sourced by the digital logic in

order to turn the LED on.

0 1 I

Figure 10.20: A digital logic gate sourcing the current to illuminate an LED.

In active LOW output devices, a zero is the ON state and a one is the OFF state. In this case, an LED

can be connected between the output of the digital logic and Vcc, as shown in Figure 10.21. When the

output is a zero, current flows and the LED turns on. When the output is a one, current does not flow and

the LED remains off. In this case, current is sourced by the power supply and is sunk through the digital

logic.

Sometimes, digital logic devices are not capable of sourcing very much current. In those cases, an active
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1

I

0

Figure 10.21: A digital logic gate sinking the current to illuminate an LED.

LOW output configuration would be much preferred, in which case the power supply can directly source

the current required to turn the LED on. Digital logic devices are generally much better suited to sinking

current than sourcing it.

Because of this characteristic of digital logic devices, we will notice that many devices such as demulti-

plexers and decoders have active LOW output configurations.

10.4 Demultiplexers (DEMUX)

A demultiplexer (DEMUX) is the exact opposite of a multiplexer (MUX). It routes one input signal to n

different outputs. The output that is controlled by the input depends on the value of the control bits. There

are n control bits required for 2n output signals.

The circuit symbol for a 1 to 4 DEMUX is shown in Figure 10.22. The input is I, the control bit inputs

are A and B, and the four outputs are Z0, Z1, Z2, and Z3.

1 to 4
DEMUX

I

Z0

Z1

Z2

Z3

A
B

Figure 10.22: Circuit symbol of a 1 to 4 demultiplexer.

The choice of control bits changes the connections internal to the DEMUX to determine which output

receives the input signal. This is depicted schematically in Figure 10.23.
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1 to 4
DEMUX

I

Z0

Z1

Z2

Z3

0
0

1 to 4
DEMUX

I

Z0

Z1

Z2

Z3

0
1

1 to 4
DEMUX

I

Z0

Z1

Z2

Z3

1
0

1 to 4
DEMUX

I

Z0

Z1

Z2

Z3

1
1

Z0 = I

Z1 = I

Z2 = I

Z3 = I

Figure 10.23: Connections between input pin and the output pins in a 1 to 4 DEMUX depend on the value of
the control bits.

We can define the operation of a DEMUX using Boolean algebra expressions or a truth table. In this

case, each output is defined by its own Boolean algebra expression, given below.

Z0 = A′B′(I)

Z1 = A′B(I)

Z2 = AB′(I)

Z3 = AB(I)

The truth table is given in table 10.2.

A B I Z0 Z1 Z2 Z3

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 1

Table 10.2: Truth table for a 1 to 4 demultiplexer.

If we so desired, we could build a DEMUX out of AND gates, OR gates, and inverters. Such a circuit
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diagram is given in Figure 10.24.

A
B

I
Z0

Z1

Z2

Z3

Figure 10.24: A 1 to 4 demultiplexer created from AND, OR, and NOT gates.

Circuit Project: Multiple 7-Segment Displays

A circuit project that you can try to become familiar with demultiplexers is to use one to connect

together two or more 7-segment displays. This particular schematic shows two displays connected

together, but the DEMUX chip used is capable of connecting together up to four displays at once.

• 1– Breadboard

• 1– 5 V power supply or battery pack

• 1– DIP switch

• 1– toggle switch

• 15– 220 Ω resistors

• 2 to 4– 7-segment displays

• 1– 74LS139 dual 2-line to 4-line decoders/demultiplexers chip

The major benefit of this configuration of displays is in the amount of wiring, resistors, and other

components needed to connect them together. Only one signal (in this case coming from the DIP

switch) needs to be supplied to the displays, and only one resistor is needed per segment as only one

display is illuminated at a time. The toggle switch selects between which output is activated on the

DEMUX, and those outputs are connected to each common cathode pin on the displays. The two

images shown depict each individual display being controlled by the DEMUX.

It is important to note that the control bits on the 74LS139 chip use the opposite notation that

we use in this book. Generally my preference is to consider A as the most significant bit. However,

many digital logic chips use A as the least significant bit. Keep that in mind when inspecting the
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following schematics. In addition, the outputs of the 74LS139 chip are active LOW output. Therefore

an input of 0 is used to switch between an activated ON/OFF signal on each output.

When the toggle switch is in the up position, the output signal is LOW, which configures the

control bits BA as 00. This sends the input signal (LOW) to output 1Y 0 (pin 4 on the 74LS139

chip). As this is an active-LOW output demux, the other outputs are all HIGH. Because a common

cathode display requires a LOW signal on the common pin in order to work, only the display connected

to 1Y 0 is illuminated. The other one is not.
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When the toggle switch is in the down position, the output signal is HIGH, which configures the

control bits BA as 01. This sends the input signal (still LOW) to output 1Y 1 (pin 5 on the 74LS139

chip). All of the other output pins are HIGH. In this case, only the display connected to 1Y 1 is

illuminated.

If you wish to connect together more than two (and up to four) displays using the 74LS139 chip,

a second toggle switch (or a DIP switch) can be used to select between each of the four outputs on

the demux chip.

Note that many multi-segment displays are multiplexed together in this fashion, so demultiplexing

is a common way to write to each of the display digits. This is more easily done using a microcontroller,

but the basic technique is exactly the same as we would use with digital logic chips.

10.5 Using Multiplexers and Demultiplexers Together

It is possible to use a n to 1 MUX with a 1 to n DEMUX to route signals from one place to another using only

one set of infrastructure. This is commonly used in telecommunications industries. An example schematic

of how this would be achieved is shown in Figure 10.25.

If the switching between customer signals occurs very rapidly, no interruption in the signal is perceived

on the receiving end by the customer.
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telecom
company

2n to 1
MUX

customer
houses

1 to 2n

DEMUX

I0 Z0

I1 Z1

I2 Z2

...In ...Zn

Figure 10.25: Use of a MUX and a DEMUX together to send multiple signals through one wire.

10.6 Decoders

A decoder takes n inputs and accordingly sets the value of 2n outputs. In an active HIGH output decoder,

all outputs will be zero except for the one output corresponding to the decimal value of the input. The

circuit symbol for a 3 to 8 decoder is shown in Figure 10.26. Its truth table is given in table 10.3.

3 to 8
decoder

A

B

C

F0

F1

F2

F3

F4

F5

F6

F7

Figure 10.26: Circuit symbol of an active HIGH output 3 to 8 decoder.

A B C F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Table 10.3: Truth table of an active HIGH output 3 to 8 decoder.

Note how if the inputs are 011, which is the decimal number three, then output F3 is activated with the

other outputs deactivated. The fact that only one output is activated at a time makes a decoder a very useful

logic device. They can be used to implement Boolean functions as well as to address individual elements

in memory (which will be discussed later in this chapter in the section about memory) or to create large
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multiplexer elements.

10.6.1 Implementing Boolean Algebra Expressions with a Decoder

Decoders are very useful in realizing Boolean functions because, in the case of an active HIGH output

decoder, each output corresponds to a minterm. As shown in Figure 10.27, each output is asserted HIGH

when the corresponding minterm is available on the input of the decoder.

3 to 8
decoder

AA

BB

CC

F0 A′B′C ′

F1 A′B′C

F2 A′BC ′

F3 A′BC

F4 AB′C ′

F5 AB′C

F6 ABC ′

F7 ABC

Figure 10.27: The outputs of a 3 to 8 decoder correspond to three variable minterms.

If the decoder has an active LOW output configuration, then each output corresponds to a maxterm.

That is, each output is asserted LOW when the corresponding maxterm is available on the input of the

decoder. This is depicted schematically in Figure 10.28.

3 to 8
decoder

AA

BB

CC

F0 A+B + C

F1 A+B + C ′

F2 A+B′ + C

F3 A+B′ + C ′

F4 A′ +B + C

F5 A′ +B + C ′

F6 A′ +B′ + C

F7 A′ +B′ + C ′

Figure 10.28: The outputs of a 3 to 8 decoder correspond to three variable maxterms.

The best way to optimize this process is to make the following determinations.

1. Determine if the expression has fewer minterms or maxterms. Choose to implement the function with

whichever has the fewest terms.

2. If there are fewer minterms

• and the decoder has active HIGH outputs: implement the function with an OR gate, or

• the decoder has active LOW outputs: implement the function with a NAND gate (which is

equivalent to an OR gate with inverted inputs).
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3. If there are fewer maxterms

• and the decoder has active LOW outputs: implement the function with an AND gate, or

• the decoder has active HIGH outputs: implement the function with a NOR gate (which is equiv-

alent to an AND gate with inverted inputs).

Example: Implementing a function of three variables with a 3 to 8 decoder

Implement the function F (A,B,C) = Σm(1, 4, 6) + Σd(0, 7) using a 3 to 8 decoder. Note that there

are equal numbers of minterms and maxterms, so either a minterm or maxterm implementation would

work equally well. The first schematic shows an implementation of minterms using an active HIGH

output decoder. In that case, the minterms are connected to an OR gate.

3 to 8

decoder

AA

BB

CC

F0

F1

F2

F3

F4

F5

F6

F7

F

If minterms are implemented with an active LOW output decoder, then the minterms are con-

nected through a NAND gate.

3 to 8

decoder

AA

BB

CC

F0

F1

F2

F3

F4

F5

F6

F7

F

If the maxterms are implemented with an active LOW output decoder, then the maxterm outputs

are connected through an AND gate.
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3 to 8

decoder

AA

BB

CC

F0

F1

F2

F3

F4

F5

F6

F7

F

Lastly, if the maxterms are implemented with an active HIGH output decoder, then the maxterm

outputs are connected through a NOR gate.

3 to 8

decoder

AA

BB

CC

F0

F1

F2

F3

F4

F5

F6

F7

F

Example: Implementing a function of four variables with a 4 to 16 decoder

Implement the function F (A,B,C,D) = Σm(7, 9, 10, 14)+Σd(0, 2, 4) using a 4 to 16 decoder. In this

case, there are far fewer minterms than maxterms, so a minterm implementation would be optimal.

If the decoder has active HIGH outputs, then an OR gate is used to connect each minterm.
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4 to 16

decoder

AA

BB

CC

DD

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F

If the decoder outputs are active LOW, then a NAND gate is used to connect the minterms

together.

4 to 16

decoder

AA

BB

CC

DD

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F

10.6.2 Expanding Decoders

Just as many-input MUXes can be created by connecting together MUXes with fewer inputs, decoders can

also be expanded. For example, if a 3 to 8 decoder is required, but only 2 to 4 decoders are available, they

can be connected in such a way that the inputs and outputs are expanded.

Two identical n to 2n decoders can be connected together with an inverter to generate one n+1 to 2n+1

decoder. This is done by using the enable bit to effectively create one more input. The decoder that will be
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enabled when the enable input is LOW will contain the least-significant outputs. The decoder enabled when

the input is HIGH will contain the most-significant outputs. Two 2 to 4 decoders expanded to a single 3 to

8 decoder is shown in Figure 10.29.

2 to 4
decoder

2 to 4
decoder

A

A

A

EN

EN

B

B

B

EN

EN

C

F0 F0

F1 F1

F2 F2

F3 F3

F0 F4

F1 F5

F2 F6

F3 F7

Figure 10.29: Two 2 to 4 decoders are expanded to create one 3 to 8 decoder.

Another possibility is to connect one n to 2n decoder with 2n identical m to 2m decoders to create one

(n + m) to 2n+m decoder. The outputs of the single n to 2n decoder are used to enable each of the m to

2m decoders. One 2 to 4 decoder and four 3 to 8 decoders are expanded to a single 5 to 32 decoder in

Figure 10.30.
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2 to 4
decoder

AA

BB

3 to 8
decoder

EN

3 to 8
decoder

EN

3 to 8
decoder

EN

3 to 8
decoder

EN

F0

F1

F2

F3

AC

BD

CE

AC

BD

CE

A

B

C

A

B

C

F0 F0

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F0 F0

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F0 F0

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F0 F0

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

Figure 10.30: One 2 to 4 decoder and four 3 to 8 decoders are expanded to create one 5 to 32 decoder. (Not
shown are connections between both C inputs, both D inputs, and both E inputs.)

10.6.3 Creating Multiplexers out of Decoders

A MUX can be implemented using a decoder and tri-state buffers. Because of the fact that only one output is

asserted at a time, we know that only one tri-state buffer will be enabled and therefore electrically connected

to the output, ensuring that there is no tug-of-war occurring between the outputs of each tri-state buffer. A

schematic of an 8 to 1 MUX created in such a manner is given in Figure 10.31. In the schematic, the data

inputs are I0 through I7, the control inputs are A, B, and C, and the output is F .
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3 to 8
decoder

A

B

C

FI0

I1

I2

I3

I4

I5

I6

I7

Figure 10.31: An 8 to 1 MUX created from a 3 to 8 decoder and tri-state buffers.

10.6.4 Speciality Decoders

There are speciality decoders that exist to perform specific useful operations. For example, there are BCD

to 7-segment decoders that take a 4-bit BCD input and convert it to the proper 7-bit output that is required

to create that digit on a 7-segment decoder.

The 74LS48 digital logic chip is an active HIGH output decoder that is used with common cathode

7-segment displays to create numerals from zero through nine. The truth table of this chip is shown in

table 10.4. The inputs are DCBA, where D is the most significant bit. The outputs are for segments a

through g. Only the BCD inputs are shown.
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D C B A a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 0 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1

Table 10.4: Truth table of the 74LS48 BCD to 7-segment decoder chip.

Each of these inputs causes the segments to light up as shown in Figure 10.32.

Figure 10.32: Numeral displays created by the 74LS48 BCD to 7-segment decoder chip.

10.7 Encoders

Encoders are the exact opposite of decoders. There are 2n inputs and n outputs. In an encoder, whichever

input number is asserted causes the output to take on the binary value of that input. For example, if I4 is

asserted, the output would be 100.

A circuit symbol for an 8 to 3 encoder is shown in Figure 10.33.

8 to 3
Encoder

I0

I1

I2

I3

I4

I5

I6

I7

A

B

C

Figure 10.33: Circuit symbol of an 8 to 3 encoder.
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Circuit Project: Using a BCD to 7-Segment Decoder

This project uses the 74LS47 BCD to 7-segment decoder chip to illuminate a 7-segment display.

• 1– Breadboard

• 1– 5 V power supply or battery pack

• 1– DIP switch

• 1– toggle switch

• 11– 220 Ω resistors

• 2– 7-segment display, common anode

• 1– 74LS47 BCD to seven-segment decoder/driver chip

The 7-segment display will now automatically light up based on the BCD value present on the

input pins. This enables us to work with BCD values rather than having to decode every segment.

Note that the 74LS47 chip uses D as the MSB, rather than A as is the preference used in this book.

In addition, the outputs are active LOW. This means that a signal of zero turns on the segments,

which means that a common anode display must be used.
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Encoders by themselves cause a couple of issues. First, what distinguishes between having I0 asserted

and having none of the inputs asserted? In either case, the output pins would all read zero. To differentiate

between these two cases, another output pin is included that is asserted when any one of the inputs is asserted.

(This enables us to distinguish between I0 asserted and nothing asserted, as shown in Figure 10.34.)

8 to 3
Encoder

8 to 3
Encoder

I01 I00

I10 I10

I20 I20

I30 I30

I40 I40

I50 I50

I60 I60

I70 I70

A 0 A 0

B 0 B 0

C 0 C 0

D 1 D 0

Figure 10.34: Schematic of 8 to 3 encoders, showing the purpose of the data output pin D.

The next issue with an encoder is the question of what happens when more than one input is asserted

simultaneously. If both I1 and I4 are asserted, will the output be 001 or 100? To solve this problem, we

need to introduce the concept of a priority encoder.

10.7.1 Priority Encoders

A priority encoder is an encoder where one of the inputs takes priority over all others. The priority input

could be the largest (I7 in an 8 to 3 encoder) or the smallest (I0). In an 8 to 3 priority encoder, if I7 has

priority, this means that the largest input that is asserted will determine the output of the device. All other

asserted inputs with smaller values will be ignored. This is depicted schematically in Figure 10.35. In this

8 to 3 priority encoder, input I7 has priority, which means the largest asserted input will dictate the binary

output value.

8 to 3
Encoder

I00

I10

I21

I30

I40

I51

I60

I70

A 1

B 0

C 1

D 1

Figure 10.35: Schematic of an 8 to 3 priority encoder with multiple asserted inputs.

The truth table for an 8 to 3 priority is given in table 10.5. The input with priority is I7.
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I0 I1 I2 I3 I4 I5 I6 I7 A B C D
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
× 1 0 0 0 0 0 0 0 0 1 1
× × 1 0 0 0 0 0 0 1 0 1
× × × 1 0 0 0 0 0 1 1 1
× × × × 1 0 0 0 1 0 0 1
× × × × × 1 0 0 1 0 1 1
× × × × × × 1 0 1 1 0 1
× × × × × × × 1 1 1 1 1

Table 10.5: Truth table of an 8 to 3 priority encoder.

10.7.2 Uses of Priority Encoders

Priority encoders have several uses. However, most of their uses correspond to their ability to turn a single

asserted input into a binary output. A keypad encoder is used to create a binary output corresponding to

the button that is pressed on a numeric keypad. The 74C922 logic chip is capable of encoding a keypad with

up to sixteen pins.

Scaling up from the keypad encoder would be an entire alphanumeric keyboard. Your computer interprets

a button press and converts it using an encoder to an ASCII character, which is then saved in memory.

Encoders can also be used in analog to digital converters. Generally, an analog to digital converter

generates digital outputs that are not necessarily binary. A priority encoder can take the digital output

and convert it to binary, which is necessary for performing calculations or comparisons in a computer or

microcontroller environment. The cover of this textbook is in fact a 3-bit analog to digital converter that

uses the 74LS148 priority encoder to generate a binary output.

The schematic shown in Figure 10.36 shows a 3-bit analog to digital converter. Each of the components

on the left is a comparator. In a comparator, the output is a one if the input voltage is higher than some

threshold. Those threshold voltages are shown inside each comparator component. (Analog comparators

such as these are outside the scope of this book.) The output of these comparators are digital but not yet

binary. They are fed into an 8 to 3 priority encoder, where the highest voltage comparator has priority. The

binary output is then sent to a 7-segment decoder and to a 7-segment display.
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8 to 3
Priority
Encoder

priority

BCD to
7-segment
decoder

>4.375 V

>3.750 V

>3.125 V

>2.500 V

>1.875 V

>1.250 V

>0.625 V

VIN

Figure 10.36: Schematic of a 3-bit analog to digital converter created from an encoder and decoder.

10.8 Memory

Memory is a device that stores information for immediate or later use. There are two major types of memory:

volatile and non-volatile. This refers to whether or not data persists in the memory device when power is

removed.

10.8.1 Volatile Memory

Volatile memory, commonly referred to as RAM (random access memory) in colloquial use, is a type of

memory that does not persist when power is removed from the memory cell. That is, volatile memory can

only store information when it is supplied with power.

In computing, RAM is typically used to store data memory. Your computer will move a program exe-

cutable file (for a word processing software, or a game) into RAM and run it from there, as RAM is typically

a fast access type of memory. The two types of RAM commonly found in computing and microcontrollers
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are SRAM and DRAM.

SRAM stands for static RAM, and consists of flip-flop type storage elements (that we will discuss in the

next chapter in this book). SRAM tends to be faster than DRAM but takes up much more physical space.

The microcontroller used in the popular Arduino Uno uses SRAM for data memory.

DRAM stands for dynamic RAM, and consists of a capacitor that temporarily stores data. Because it

takes some time for capacitors to charge up and to discharge, DRAM is usually slower than SRAM, but

takes up much less space. Of additional concern with DRAM is the fact that capacitors eventually discharge

by themselves, and need to be rewritten on occasion in order to keep the data from erasing itself. DRAM

is used in most consumer laptops and computers as it is much smaller and can therefore be included up to

several gigabytes of storage.

10.8.2 Non-Volatile Memory

Non-volatile memory refers to types of memory where data can be stored even after power has been removed

from the device. There are very many types of non-volatile memory, many of which are no longer in use

today. Magnetic storage was used for a long period of time both in floppy discs and computer hard drives.

CDs and DVDs are a type of optical storage (rather than magnetic or semiconductor based) that were

commonly used in the late 20th and early 21st century to store data. These days, most non-volatile memory

has moved from optical and magnetic storage to semiconductor storage, as it is much faster to read and

write.

ROM is the most commonly used type of non-volatile memory as of the writing of this textbook. ROM

stands for read-only memory. It is somewhat of a misnomer, in that ROM can very much be erased and

rewritten these days. However, ROM generally requires much more effort to erase and rewrite than it does

to read.

The first type of ROM that was created is referred to as mask ROM. This was created using the same

photolithography process in which your computer processors are created. In this process, successive masks

are used to pattern different layers in semiconductor materials. In this manner, ones and zeros were physically

stored into semiconductors using connections to power and ground. There are some mask ROM chips that

could be custom programmed by Texas Instruments using punched cards in the 7400 series of TTL logic

devices. This was useful for storing information in a permanent manner, but after the data was written,

there was no way to rewrite the chip. Therefore it was not the most efficient manner of creating a prototype

device.

The next type of ROM that was developed is called PROM, or programmable ROM. PROM is created

with connections that can be broken as needed. Every output in the memory starts as a one, and as needed

an irreversible vaporization process can occur by sending a lot of current into particular areas in the chip

to remove connections to power and thereby create zeros. PROM is also known as one-time programmable

(OTP) EPROM, and can still be purchased today from manufacturers such as Microchip (formerly Atmel).
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PROM is a very useful type of non-volatile data storage once a prototype has been created and the memory

is known to be functioning properly.

Erasable PROM (EPROM) has the benefit of being erasable and reprogrammable. The first types of

EPROM chips created are UV erasable. There is a quartz window that exposes the semiconductor material

underneath. Upon exposure to high intensity UV radiation for a long enough period of time, all of the

connections will reset to a value of one. EPROM is very useful in creating a prototype to ensure that things

work before moving to OTP ROM. However, it requires physical removal from a circuit to be erased and

reprogrammed. UV erasable PROM is shown in Figure 10.37. You can see the quartz window with the wire

interconnects connecting to each of the chip’s pins.

Figure 10.37: UV erasable programmable ROM. (Photograph by the author.)

Electrically erasable PROM (EEPROM) is a very commonly used type of non-volatile memory used

today. It can be reprogrammed electrically, rather than with UV radiation. EEPROM and flash memory are

almost interchangeable. This type of memory is used in most modern computers, laptops, and USB drives.

10.8.3 Implementing Boolean Algebra with ROM

One of the major benefits of ROM is that it acts like a truth table. This enables us to store zeros and

ones at different locations in the ROM in order to implement Boolean functions without having to do any

minimization techniques (such as k-maps or Quine-McCluskey).

Each ROM chip contains multiple pieces of information, called words. The size of the word is generally

eight bits or sixteen bits in ROM such as that shown above in Figure 10.37, but probably thirty-two bits

or sixty-four bits in your computer. This word length tells us how many bits of information can be dealt

with by a computer processor at any given time. In terms of implementing a Boolean function, having 8-bit

words means that eight Boolean functions can be implemented on the chip simultaneously. A ROM with

16-bit words can implement sixteen Boolean functions simultaneously.

We say that ROM is 2n ×m-bit, where m is the word length, and 2n refers to the number of words that
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can be stored on the chip. The 27C64 chip shown in Figure 10.37 is an 8K × 8 chip, as it is capable of

storing 8,192 words of 8-bit length. If there are 2n words stored on a ROM chip, we require n address pins

to access each of those pieces of information. For this reason, a decoder is an integral part of a memory chip;

the decoder enables us to use n bits of input to individually select between (address) 2n pieces of data inside

of the device, and output only that piece of data. A schematic of a 4 × 8 ROM using a 2 to 4 decoder to

address each of the memory elements is shown in Figure 10.38.

2 to 4
Decoder

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8

4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8

A1

A2

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

Figure 10.38: A 4 × 8 ROM chip. A decoder is used to address each of the individual words.

Going back to the truth table analogy, a ROM enables us to have a 2n row truth table, able to implement

m functions of n input variables. This makes it an unbelievably useful device. Rather than having to

optimize many Boolean algebra functions and implement them with digital hardware, a ROM chip can be

programmed that implements up to m Boolean algebra functions with only one single chip.

Sequential circuits (which will be described later in this textbook) can be implemented with a ROM chip

and flip-flops. Each of the next-state equations are connected to flip-flop outputs; those outputs are then

fed back to the ROM as inputs. The output equations can also be programmed in to the ROM. This makes

ROMs a very versatile piece of hardware. A sequential circuit using a ROM chip is depicted in Figure 10.39.

ROM

FF

FF

Q0

CLKQ1

Q2 output

Q3

Q4

Q5

Q6

Q7

Figure 10.39: Implementation of a sequential circuit using a ROM chip and flip-flops (labeled FF in this
schematic). The signal labeled CLK depicts a clock input to each flip-flop.
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Programming an EPROM chip usually requires an external programming device. The TL866II is a

commonly used programmer capable of programming many different types of ROM and microcontroller

chips. A programmer is a very useful component of any hobbyists toolkit.

10.9 Programmable Logic

Programmable logic is another way to implement Boolean algebra functions without having to build them

using digital logic chips. There are simple programmable logic devices (SPLDs) and complex programmable

logic devices (CPLDs). The scope of this book is unfortunately not large enough to include CPLDs, so we

will instead focus on SPLDs.

SPLDs are simply digital integrated circuits that can be programmed to provide a variety of logic func-

tions. Technically, ROM is a type of SPLD, as it is capable of carrying out Boolean algebra functions. In

this section of the book we will discuss PAL and GAL SPLDs.

10.9.1 Programmable Array Logic (PAL) and Generic Array Logic (GAL)

Programmable array logic, or PAL, is an integrated circuit chip where there are multiple programmable AND

gates connected to a fixed OR gate. They are one-time programmable with a fuse generating connections

between input signals and the AND gates.

Generic array logic, or GAL, is essentially just PAL that can be reprogrammed. In a way, it is similar to

the difference between PROM (PAL) and EPROM (GAL). Most GAL can be electrically reprogrammed. The

advantage of GAL is that it is possible to reprogram the output in case of mistakes, to improve functionality,

or to change how the device works.

The programmable AND array is usually specified by its size m × n, where m is the number of AND

gates included in the chip, and n is the number of connections that each AND gate is capable of making.

Connections between the input signals and the AND gates are created when the device is programmed,

and creates the Boolean functions that are to be implemented on the output. An example of a 3 × 4

programmable AND array is shown in Figure 10.40.
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A

B

F (A,B)

Figure 10.40: A 3 × 4 programmable AND array in a PAL/GAL.

Note that each input variable is complemented inside of the GAL/PAL, so external inverters are not

required in their use. (This is one of the reasons that we did not consider inverters when we determined the

lowest cost circuits earlier in this book!)

A simplified PAL/GAL diagram removes all of the input pins from each AND gate, and just shows it as

a bus. If the bus has a size of eight, for example, that means up to eight connections can be made on the

inputs to the AND gate. A simplified PAL/GAL digram with a 4 × 6 AND array is shown in Figure 10.41.

A

B

C

F (A,B,C)

6

6

6

6

Figure 10.41: A 4 × 6 programmable AND array in a simplified PAL/GAL diagram.

Connections between inputs and the AND gates on a PAL/GAL diagram are indicated with an ×. The

simplified diagram shown in Figure 10.42 shows how F (A,B,C) = AB′+B′C ′+A′BC could be implemented
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in a 4 × 6 AND array.

A

B

C

F (A,B,C)

6

6

6

6

× ×

× ×

× × ×

Figure 10.42: Implementation of F (A,B,C) = AB′ +B′C ′ +A′BC in a 4 × 6 programmable AND array.

PAL/GAL devices were very popular in the 1980s and 1990s, and are no longer widely used thanks to the

ubiquity of inexpensive microcontrollers. However, some PAL/GAL devices continue to be manufactured

today. These devices have a given number of input/output pins, say, sixteen. Of those pins, all can be used

as input pins, but only a certain number (usually about half) can be used as output pins. In other words,

there are complementing buffers and connections to the programmable AND gates available on every pin,

but only some of the pins are connected to the output logic.

10.9.2 PAL/GAL Output Logic Macrocells

The simplified PAL/GAL diagrams shown so far show only fixed OR logic on the outputs. However, most

PAL/GAL output logic is much more versatile than that. The output logic exists to allow us to make the

outputs either active HIGH or active LOW, and can make the output combinational or synchronous. The

exact options vary depending on the particular device that is used.

Combinational output logic uses an XOR gate to allow us to change the output logic from active HIGH

to active LOW, if needed. An output enable can tri-state each of the output pins. This output enable

is also deactivated if the output is instead used as an input pin (making it a bi-directional pin, as was

discussed earlier in this chapter). A simplified example of a combinational output logic macrocell is shown

in Figure 10.43.

cbna Alyssa J. Pasquale, Ph.D. 204 Last updated: 2025/05/12



10 Logic Devices 10.9 Programmable Logic

/
n

XOR

Output

OE

O

O

Figure 10.43: Combinational output logic macrocell.

Synchronous output logic uses a D flip-flop (which we will discuss in the next chapter in this book) to

enable us to create synchronous devices with a PAL/GAL. There is generally a dedicated input pin that

is used as the clock signal to synchronize each of the flip-flops. The XOR gate to create active HIGH and

active LOW output conditions is still available. An example synchronous output logic macrocell is shown in

Figure 10.44.

Q

D Q
/

n

XOR

Output

OE

Q

Q

CLK

Figure 10.44: Synchronous output logic macrocell.
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10.10 Example Problems

Multiplexers

1. Design a 3 to 1 MUX using only 2 to 1 multiplexers.

2. Implement the following expression with a 4 to 1 MUX and a minimum number of external gates.

F (A,B,C,D) = Σm(0, 2, 7, 8, 10, 13, 14) + Σd(3, 9, 12).

3. You see a MUX circuit wired up as shown in Figure 10.45. Find a MUX implementation of this circuit

that requires a minimum number of external gates.

4 to 1
MUXA

D

A

D

A

D

B
C

F

Figure 10.45: Circuit schematic corresponding to multiplexers question 3.
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4. Draw a timing diagram for F from a 4 to 1 MUX, given the input signals (I0–I3) and control bit signals

(A and B) shown in Figure 10.46. Ignore all gate delays.
A

B
I 0

I 1
I 2

0 10 20 30 40

t (ns)

I 3

Figure 10.46: Timing diagram corresponding to multiplexers question 4.

5. You receive two 2-bit numbers designated as AB and CD. If AB ≥ CD, an LED should turn on. The

output is active HIGH. The output of this function, F , will therefore be 1 if the LED should be on.

Implement this using a 4 to 1 MUX and a minimum number of external gates.
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Demultiplexers

1. Create a timing diagram for each output of an active HIGH output 1 to 4 DEMUX given the input I

and control bits A and B as shown in Figure 10.47.

A
B

0 10 20 30 40

t (ns)

I

Figure 10.47: Timing diagram corresponding to demultiplexers question 1.

2. Design a 1 to 4 DEMUX using only 1 to 2 demultiplexers.

3. How many control bits would be required to implement a 1 to 24 DEMUX?

4. Derive expressions for each output of a 1 to 6 active HIGH output DEMUX. The control bits are A,

B, and C.

5. Draw a schematic of a 1 to 4 active HIGH output DEMUX created from an active LOW enable, active

LOW output 3 to 8 decoder.

Decoders

1. Implement the following function using an active HIGH output 4 to 16 decoder and a minimum number

of external gates and inputs. F (A,B,C,D) = Σm(1, 3, 5, 7, 12, 14) + Σd(4, 8, 11, 13)

2. Implement the following function using an active LOW output 4 to 16 decoder and a minimum number

of external gates and inputs. F (A,B,C,D) = ΠM(0, 4, 6, 10, 13, 14, 15)ΠD(1, 7, 8, 12)
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3. You notice a 3 to 8 decoder wired up as shown in Figure 10.48. Label each of the outputs from F0 to

F7 in the correct order based on the values of the control bits A, B, and C.

EN

EN

ENC

Vcc

A

A
B

B

Figure 10.48: Decoder schematic corresponding to question 3.

4. Assume that you only have access to 74LS00 chips, which contain 2-input NAND gates. Use a 3 to 8

active LOW output decoder and a minimum number of 2-input NAND gates to implement F (A,B,C) =

Σm(0, 2, 3) + Σd(1)

5. Design a speciality decoder that takes 3-bit binary numbers 0–5 and creates active HIGH outputs for

a 7-segment display. What are the equations for each of the segments? Use an SOP implementation.

Encoders

1. An 8 to 3 priority encoder (I0 has priority) has both I3 and I6 asserted on the inputs. What will the

binary value of the output be?

2. Derive Boolean algebra expressions for the A, B, and DATA outputs for a 4 to 2 active HIGH input,

active HIGH output priority encoder where I3 has priority.

3. Derive Boolean algebra expressions for the A, B, and DATA outputs for a 4 to 2 active HIGH input,

active HIGH output priority encoder where I0 has priority.

4. The 74LS148 chip is an active LOW input, active LOW output, 8 to 3 priority encoder. What are

the outputs A2A1A0 when the inputs I0–I7 are 11010011? Assume that the chip is properly enabled.

Consult the data sheet if you need help.

5. The 74LS147 chip is an active LOW input, active LOW output, 10 to 4 (BCD) priority encoder. What

are the outputs A3A2A1A0 when the inputs I0–I9 are 1000000111? Assume that the chip is properly

enabled. Consult the data sheet if you need help.
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Memory

1. How many bytes of capacity does a ROM with 18 address pins and 8-bit words have?

2. How many bytes of capacity does a ROM with 13 address pins and 16-bit words have?

3. How many address pins would be required to address all of the words in a 65,536 × 8 ROM?

4. Use a 2 to 4 decoder and four 256 × 8 ROM chips to create a 1024 × 8 ROM chip. Assume the decoder

is active LOW output, and the ROM chips are active LOW enable.

5. What would be the capacity in bytes of a ROM created from a 4 to 16 decoder and sixteen 1024 × 8

ROM chips?

Programmable Logic

1. Determine the Boolean expression given from the PAL/GAL diagram shown in Figure 10.49.

A

B

C

F (A,B,C)

6

6

6

×××

×××

×××

Figure 10.49: Simplified PAL/GAL diagram for question 1.

2. Draw a simplified PAL/GAL diagram to implement the expression F (A,B,C) = AB′C+A′BC ′+ABC.

3. To create active LOW outputs, what should the input to the XOR gate in an output logic macrocell

be?
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4. The programmable logic device shown in Figure 10.50 has both programmable AND and programmable

OR gates. Determine the output of the expression given in the circuit diagram.

A

B

4

4

4

4

××

××

××

××

×

×

F (A,B)

Figure 10.50: Simplified PAL/GAL diagram for question 4.

5. A sensor on a car tire sends a 5-bit binary signal (ABCDE) that represents the tire pressure in PSI.

The output L (low pressure) should be 1 if the pressure is less than 19 PSI. The output P (puncture)

should be 1 if the pressure is less than 3 PSI. Implement P and L using a simplified PAL/GAL diagram.
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11 Sequential Circuits

The introduction of sequential circuits opens up a whole new world of digital circuits. The simple act of

connecting the output of our logic chips to the input gives our circuits memory, enabling them to carry out

a sequence of events, rather than simply giving a static output for a set of input signals.

A simple, but not terribly useful, sequential circuit is the OR latch. As shown in the schematic in

Figure 11.1, one of the inputs is connected to a pushbutton, while the other input comes from the output

of the OR gate. When power is initially supplied to the circuit, the output of the OR gate is zero. If the

pushbutton is not pressed, then the output of the OR gate will remain zero. Once the pushbutton is pressed,

the output of the OR gate will become one. At this point, with the pushbutton in its not pressed state, the

output will remain a one until power is again removed from the circuit.

Q

Figure 11.1: An OR latch.

While this may be subtle, the fact is that an OR gate always had one possible output when the inputs

were in a certain state. This OR latch has two states: the output can be zero or one with the pushbutton

not pressed. The new output depends on what the previous value of the output was!

To describe the operation of our OR latch, we can define what happens to the output when the input

has a particular value. When the input is zero (the pushbutton is not pressed), the output keeps its old

value. We call this a hold or latch situation. When the input is one (the pushbutton is pressed), the output

becomes a one. We call this a set.

A latch is a digital circuit that has more than one output state and where the output changes immediately

in response to a change in input. Because the output responds immediately to changes in the input values,

we say that latches are asynchronous. We will learn about two important types of latches in the sections

below.

11.1 Set-Reset (SR) Latch

A set-reset (SR) latch has four different possible output outcomes depending on the values of the inputs, S

and R. A schematic of an SR latch is shown in Figure 11.2.
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S

R

Q′

Q

Figure 11.2: An SR latch.

Note that an SR latch gives us access to both the output Q and its complement Q′. This was another

reason why we did not count inverters when we discussed the cost of a circuit. When we use latches and

flip-flops, we get access to complemented values at no extra cost!

When S and R are both equal to zero, the output Q will retain its previous value. That is, if Q had

initially been a zero, it will continue to be a zero. If Q had initially been a one, it will continue to be a one.

Therefore an SR latch holds when the inputs are 00.

When S is zero and R is one, it does not matter what the previous value of Q is, it will become zero.

Therefore an SR latch resets (becomes zero) when the inputs are 01.

When S is one and R is zero, it does not matter what the previous value of Q is, it will become one.

Therefore an SR latch sets when the inputs are 10.

Finally, when S and R are both one, both Q and Q′ become zero. This doesn’t make logical sense. In

addition, it leads to a possible unstable situation if the inputs go from 11 to 00 simultaneously. If one of the

NOR gates had a slightly different propagation delay than the other, then the output could become either a

zero or a one. This unstable situation is called a race condition (the outputs race each other to the inputs),

and because it leads to an unpredictable latch operation, is a forbidden state. We therefore want to ensure

that both S and R are not both one at the same time.

The operation of an SR latch is summarized in table 11.1. Q denotes the initial value of the output, and

Q+ denotes the next value of the output.

S R Q Q+

0 0 0 0 hold
0 0 1 1
0 1 0 0 reset
0 1 1 0
1 0 0 1 set
1 0 1 1
1 1 0 – not allowed
1 1 1 –

Table 11.1: Operation of an SR latch.

Simplified circuit symbols can be used for latches. The symbol for an SR latch is shown in Figure 11.3.
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R Q

S Q

Figure 11.3: Circuit symbol for an SR latch.

11.2 Gated SR Latch

Latches without an enable bit are said to be transparent. That is, the output “sees” and immediately reacts

to the inputs.

Gated latches are simply latches with an enable bit. When the enable bit is activated, the latch operates

normally. When the enable bit is deactivated, the latch output holds the previous value, regardless of the

other input values. When the enable is deactivated, the latch is said to be opaque, because the output no

longer “sees” and reacts to the inputs.

An active HIGH enable gated SR latch can therefore be created from a normal SR latch and two

additional AND gates, as shown in Figure 11.4. The circuit symbol for a gated SR latch is also shown in

the same figure.

S

R

EN

Q′

Q
R Q

EN

S Q

Figure 11.4: An active HIGH enable gated SR latch created from NOR and AND gates; and the circuit sym-
bol for that same gated SR latch.

The ability to create a gated SR latch helps to remove some of the difficulty with otherwise transparent

latches. If the enable bit is to be activated over an interval of time, and we want to ensure that the output

only changes once during that time interval, regardless of how the inputs S and R change, we can cascade

two gated SR latches together into something called a primary-secondary SR flip-flop. This ensures that the

output only changes once any time the enable bit is activated, although it requires a change from the enable

bit from zero to one in order to cascade the output from the primary latch to the output. A schematic of a

primary-secondary SR flip-flop is shown in Figure 11.5.
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R Q

EN

S Q

R Q

EN

S QS

EN

R

Q

Q′

Figure 11.5: A primary-secondary SR flip-flop.

11.3 Gated Data (D) Latch

Similarly to a gated SR latch, we can create a gated data (D) latch. Recall the problem with the SR latch

when both inputs are one. The D latch removes this possibility by ensuring that S and R always have

different values, leading only to reset and set outputs. A gated D latch is created from an SR latch and

the addition of two AND gates. Or, a gated D latch can be created from a gated SR latch and an inverter.

Both of these possibilities are shown in Figure 11.6.

R Q

S Q
D

EN

R Q

EN

S QD

EN

Figure 11.6: Two ways to create an active HIGH enable gated D latch.

11.4 D Flip-Flop

As noted in the brief discussion of an SR flip-flop above, it is possible to create a latch that only changes

in response to a changing enable signal. This removes the asynchronous aspect (transparency) of the latch.

A flip-flop is a synchronous device that is capable of having different output conditions. Rather than using

a level enable signal, a clock (oscillating signal that goes between zero and one) signal is used instead. An

edge-triggered flip-flop has the output state change only when a clock signal transitions from zero to one or

from one to zero.

A clock transition from zero to one is called a rising edge, and a flip-flop whose output changes on this

condition is called a rising-edge triggered flip-flop. A clock transition from one to zero is called a falling edge,

and a flip-flop whose output changes on this condition is called a falling-edge (or negative-edge) triggered

flip-flop.

A D flip-flop acts much like a D latch, but rather than have an enable signal, it is clocked. The circuit

symbol for a rising-edge triggered D flip-flop is shown in Figure 11.7.

cbna Alyssa J. Pasquale, Ph.D. 215 Last updated: 2025/05/12



11 Sequential Circuits 11.4 D Flip-Flop

Q

D Q

Figure 11.7: Circuit symbol for a rising-edge triggered D flip-flop.

The operation of a rising-edge triggered D flip-flop is defined in table 11.2.

CLK D Q+

0 × hold
1 × hold
↑ 0 reset
↑ 1 set

Table 11.2: Operation of a rising-edge triggered D flip-flop.

If a flip-flop is falling-edge triggered, it will have a bubble on the clock input, much as we have seen with

active LOW signals.

We can determine a characteristic equation for a D flip-flop that defines what happens to the output

when the clock triggers the flip-flop. We need to understand the relationship between Q (the previous output

value), D (the input value), and Q+ (the next output value after the triggering event). The truth table that

we will work with is given in table 11.3.

D Q Q+

0 0 0
0 1 0
1 0 1
1 1 1

Table 11.3: Truth table for a D flip-flop.

Using Boolean algebra, it is easy to find an expression for Q+.

Q+ = DQ′ +DQ

= D

It is similarly simple to find the inverse of this characteristic equation for the D flip-flop. In other words,

we may ask ourselves what value of D would be required to cause Q+ to transition between two particular

values. This information becomes vitally important in the next two chapters of this book. These transitions

are shown in table 11.4. Note that any time we want the new output to be a zero, the input of a D flip-flop

should be zero. Any time we want the new output to be a one, the input of a D flip-flop should be a one.

This makes the D flip-flop a very easy flip-flop to work with, as we will see later in this book.
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Q → Q+ D
0 → 0 0
0 → 1 1
1 → 0 0
1 → 1 1

Table 11.4: Transitions of a D flip-flop.

11.5 Toggle (T) Flip-Flop

A toggle flip-flop is capable of an action that we have not yet seen in a sequential circuit: toggling the

output. The circuit symbol for a rising-edge triggered T flip-flop is shown in Figure 11.8, and the operating

conditions are given in table 11.5.

Q

T Q

Figure 11.8: Circuit symbol for a rising-edge triggered T flip-flop.

CLK T Q+

0 × hold
1 × hold
↑ 0 hold
↑ 1 toggle

Table 11.5: Operation of a rising-edge triggered T flip-flop.

We can determine a characteristic equation for a T flip-flop that defines what happens to the output

when the clock triggers the flip-flop. The truth table that explains the relationship between T , Q, and Q+

is given in table 11.6.

T Q Q+

0 0 0
0 1 1
1 0 1
1 1 0

Table 11.6: Truth table for a T flip-flop.

Using Boolean algebra, it is easy to find an expression for Q+.

Q+ = TQ′ + T ′Q

= T ⊕Q
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By analyzing the truth table shown in table 11.6, we can find the transitions for a T flip-flop. Note any

time we want the output to stay the same, the value of T should be zero. Any time we want the output to

change (whether it goes from zero to one or one to zero) the value of T should be 1. The transitions for a

T flip-flop are shown in table 11.7.

Q → Q+ T
0 → 0 0
0 → 1 1
1 → 0 1
1 → 1 0

Table 11.7: Transitions of a T flip-flop.

11.6 SR Flip-Flop

An SR flip-flop acts much like an SR latch, but is a synchronous device. The S input will set the output

while the R input will reset the output. Both S and R should not be set HIGH simultaneously. The circuit

symbol for a rising-edge triggered SR flip-flop is shown in Figure 11.9, and the operation is described in

table 11.8.

R Q

S Q

Figure 11.9: Circuit symbol for a rising-edge triggered SR flip-flop.

CLK S R Q+

0 × × hold

1 × × hold

↑ 0 0 hold

↑ 0 1 reset

↑ 1 0 set

↑ 1 1 not allowed

Table 11.8: Operation of a rising-edge triggered SR flip-flop.

We can find a characteristic equation for the SR flip-flop by analyzing its truth table, given in table 11.9.
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S R Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 × –

Table 11.9: Truth table for an SR flip-flop.

Using Boolean algebra, we can find an expression for Q+.

Q+ = SR′ +R′Q

Finding the transitions for an SR flip-flop are a bit more complicated than with D and T flip-flops.

Going from zero to zero, we notice that either a hold or reset situation must be present on the inputs. This

requires S to be zero, but we don’t care what the R input is. (If SR = 00 we get a hold, and if SR = 01 we

get a reset.)

Going from zero to one requires a set operation where S is one and R is zero. Going from one to zero

requires a reset operation (S is zero and R is one). Finally, going from one to one requires either a hold or a

set, therefore R must be zero and we don’t care what S is. All of these transitions are given in table 11.10.

Q → Q+ S R
0 → 0 0 ×
0 → 1 1 0
1 → 0 0 1
1 → 1 × 0

Table 11.10: Transitions of an SR flip-flop.

11.7 JK Flip-Flop

A JK flip-flop is named after Jack Kilby, the inventor of the integrated circuit. (Therefore, the inputs J

and K don’t really stand for anything the way that S, R, D, and T did in previous devices.)

A JK flip-flop combines the utility of both D and T flip-flops. It is capable of holding, setting, resetting,

and toggling the output based on the values of J and K. The circuit symbol for a rising-edge triggered JK

flip-flop is shown in Figure 11.10, and the operation is described in table 11.11.
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K Q

J Q

Figure 11.10: Circuit symbol for a rising-edge triggered JK flip-flop.

CLK J K Q+

0 × × hold

1 × × hold

↑ 0 0 hold

↑ 0 1 reset

↑ 1 0 set

↑ 1 1 toggle

Table 11.11: Operation of a rising-edge triggered JK flip-flop.

Just as we did with the other two flip-flops, we can find a characteristic equation for the JK flip-flop by

analyzing its truth table, given in table 11.12.

J K Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 11.12: Truth table for a JK flip-flop.

Using Boolean algebra, we can find an expression for Q+.

Q+ = J ′K ′Q+ JK ′Q′ + JK ′Q+ JKQ′

= J ′K ′Q+ JK ′ + JKQ′

= K ′Q+ JK ′ + JQ′

= K ′Q+ JQ′

Finding the transitions for a JK flip-flop are a bit more complicated than with D and T flip-flops. Going

from zero to zero, we notice that either a hold or reset situation must be present on the inputs. This requires

J to be zero, but we don’t care what the K input is. (If JK = 00 we get a hold, and if JK = 01 we get a

reset.)
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Going from zero to one, we either need a set or a toggle. J must be one and we don’t care what K is.

Going from one to zero, we either need a reset or a toggle. In this case, K must be one and we don’t care

what the value of J is. Finally, going from one to one, we either need a hold or a set, therefore K must be

zero and we don’t care what J is. All of these transitions are given in table 11.13.

Q → Q+ J K
0 → 0 0 ×
0 → 1 1 ×
1 → 0 × 1
1 → 1 × 0

Table 11.13: Transitions of a JK flip-flop.

11.8 Setup and Hold Considerations

Whenever an edge-triggered circuit element is used, it is important to verify that the data input will not

cause any conflicts with the clock signal. If a flip-flop receives a signal that changes at the exact instant a

rising (or falling) edge occurs, what value will be clocked through to the output? For example, given the

timing diagram shown in Figure 11.11 corresponding to a rising-edge triggered D flip-flop, what value will

clock to the output at a time of 5 ns? A zero? Or a one? It is unclear.

C
L
K

0 5 10 15 20 25

t (ns)

D

Figure 11.11: Input signals on a D flip-flop, leading to potential setup or hold problems.

A flip-flop’s setup time (tsu) refers to the minimum amount of time that must be value on a flip-flop input

must be constant prior to a triggering clock edge. A flip-flop’s hold time (th) refers to the minimum amount

of time that must be value on a flip-flop input must be constant after a triggering clock edge. Figure 11.12

depicts setup and hold time of a rising-edge triggered flip-flop.
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CLK

input

tsu

th

Figure 11.12: Input signals on a rising-edge triggered flip-flop, indicating the setup and hold times.

When using a flip-flop in a synchronous circuit, it is important to understand the setup and hold time

values. These can be determined by reading the datasheet for the flip-flop in use. Be sure that any circuit

is designed such that input signals will not change outside of setup and hold times.

11.9 Converting Flip-Flop Types

There are four major types of flip-flops (SR, D, T , and JK). However, it may be possible that you need to

generate the functionality of one flip-flop using another. (Say, you have a bunch of D flip-flop chips but wish

to use a T flip-flop.) It is possible to convert one type of flip-flop to another by deriving Boolean expressions

for each of the flip-flop inputs on the chips that you have based on the transitions of the flip-flop that you

want to create.

Converting one type of flip-flop to another can be accomplished by creating a transition table. The

columns on the left define the flip-flop that you want, and the values of Q and Q+ are based on the desired

flip-flop functionality. The column(s) on the right define the flip-flop that you have, and are based on the

known transitions of the flip-flop. This is outlined in table 11.14.

Flip-flop you want Flip-flop you have

Input(s) Q Q+ Input(s)

based on how the
flip-flop should function

based on the transitions
of the flip-flop you have

Table 11.14: Outline of creating a transition table to convert one type of flip-flop to another.
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Example: Converting an SR flip-flop into a T flip-flop

Convert an SR flip-flop into a T flip-flop. The transition table below has the functionality of the

desired flip-flop (T ) on the left-hand side. The right-hand side uses the transitions of an SR flip-flop

given in table 11.10 to generate the desired output response.

What you want What you have

T Q Q+ S R

0 0 0 0 ×

0 1 1 × 0

1 0 1 1 0

1 1 0 0 1

At this point, Boolean expressions can be derived for each input of the flip-flop you have, S and

R.

S = TQ′

R = TQ

Draw a circuit diagram corresponding to the converted flip-flop.

R Q

S Q

CLK

T

11.10 Asynchronous Flip-Flop Inputs

All of the inputs we have discussed so far to each flip-flop (D, T , SR, and JK) are synchronous. That is, the

output only changes in response to these variables when a clock has a triggering event (rising edge or falling

edge). There are times when it is convenient or even necessary to have an asynchronous input that allows us

to either set or reset the output of the flip-flop immediately, without having to wait for a clock trigger. This

can be useful especially in timing situations when a reset back to zero is necessary. This is something that

might be desirable when a button is pressed (for example, pushing a button to reset a synchronous circuit);

in the case of ripple counters, which are discussed in section 12.4; in the use of one-hot state assignments,

which are discussed in section 13.9.1; or possibly in other scenarios.

Many flip-flops contain asynchronous inputs called preset (sets the output to one) and clear (resets the

output to zero). Usually, they are active LOW inputs. When these inputs are disabled, the flip-flop will act
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like a normal flip-flop. When activated, the output will either be zero (if clear is enabled) or one (if preset

is enabled). (You may wonder what happens if both preset and clear are asserted simultaneously; if you

look at a datasheet for a specific flip-flop it will usually tell you what the outputs will be in that scenario.

Usually asserting both asynchronous inputs simultaneously is not desirable.)

A circuit symbol of each type of flip-flop with active LOW preset and clear inputs is shown in Figure 11.13.

Q

D QPRE

CLR
Q

T QPRE

CLR
R Q

S QPRE

CLR
K Q

J QPRE

CLR

Figure 11.13: Circuit symbols for flip-flops with active LOW preset and clear inputs.
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11.11 Example Problems

SR Latch

1. Create a timing diagram for an SR latch, given the inputs shown in Figure 11.14. The initial value of

Q is 1. Ignore any propagation delays.

S

0 10 20 30 40

t (ns)

R

Figure 11.14: Input signals for SR latch question 1.

2. Design an SR latch using only a 4 to 1. MUX. Design it so that the 11 state leads to a hold situation.

3. The latch showed in Figure 11.15 is capable of holding, setting, and resetting. However it does not do

so with the same input combinations as the SR latch defined in this book. What input combinations

lead to a hold, set, and reset condition on the output?

G

H

Q

Figure 11.15: Latch circuit diagram corresponding to question 3.

4. A NAND gate SR latch is built as shown in Figure 11.16. Which of the outputs is Q, and which is Q′?

S

R

Figure 11.16: NAND SR latch circuit diagram corresponding to question 4.
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5. Design an SR latch using one AND gate, one OR gate, and one inverter. (Note that this latch will

have one output, Q, and no Q′ output.)

D Latch

1. Create a timing diagram for an active LOW enabled gated D latch, given the inputs shown in Fig-

ure 11.17. The initial value of Q is 0. Ignore any propagation delays.

E
N

0 10 20 30 40

t (ns)

D

Figure 11.17: Input signals for D latch question 1.

2. Design a D latch out of NAND gates.

3. Design a primary-secondary D flip-flop.

4. Take a look at the datasheet for the 74LS75 (4-bit bistable latches). Which of the pins on the DIP

chip correspond to the enable pins? Are they active HIGH enable or active LOW enable?

5. Take a look at the datasheet for the 74116 (dual 4-bit latches with clear). How many enable pins are

there per latch, and are they active HIGH enable or active LOW enable?
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D Flip-Flop

1. On the next rising edge of the clock, what will the output value Q be for the circuit diagram given in

Figure 11.18?

Q

D Q0

CLK

PRE

CLR

1

1

Figure 11.18: Circuit diagram corresponding to question 1.

2. On the next rising edge of the clock, what will the output value Q be for the circuit diagram given in

Figure 11.19?

Q

D Q1

CLK

PRE

CLR

1

0

Figure 11.19: Circuit diagram corresponding to question 2.

3. Create a toggle flip-flop using a D flip-flop and as many external logic gates as you need.

4. Use a 2 to 1 MUX and two D flip-flops to create a D flip-flop that updates on both rising and falling

edges.

5. A scan flip-flop is built from a D flip-flop and has two extra inputs. When the TE (test enable) input

is zero, the flip-flop acts as a normal D flip-flop. When the TE input is one, the flip-flop uses TI (test

input) rather than D to update the output. Design a scan flip-flop.
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T Flip-Flop

1. Create a timing diagram for a rising-edge triggered T flip-flop, given the inputs shown in Figure 11.20.

Assume that any asynchronous inputs are not asserted. The initial value of Q is zero. Ignore any

propagation delays.

C
L
K

0 5 10 15 20 25 30 35 40 45 50

t (ns)

T

Figure 11.20: Input signals for T flip-flop question 1.

2. Create a timing diagram for a falling-edge triggered T flip-flop, given the inputs shown in Figure 11.21.

Assume that any asynchronous inputs are not asserted. The initial value of Q is one. Ignore any

propagation delays.

C
L
K

0 10 20 30 40

t (ns)

T

Figure 11.21: Input signals for T flip-flop question 2.

3. Create a JK flip-flop using a T flip-flop and as many external logic gates as you need.

4. Create an SR flip-flop using a T flip-flop and as many external logic gates as you need. Force the

flip-flop to hold if S and R are both 1 at the same time.

5. Create a T flip-flop with active LOW asynchronous preset and clear pins. Assume that you only have a

JK flip-flop (without any asynchronous input pins) and AND/OR/NOT gates. You can safely assume

that both the preset and clear inputs will not both be asserted simultaneously.
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JK Flip-Flop

1. Create a timing diagram for a falling-edge triggered JK flip-flop, given the inputs shown in Figure 11.22.

Assume that any asynchronous inputs are not asserted. The initial value of Q is one. Ignore any

propagation delays.

C
L
K

J

0 5 10 15 20 25 30 35 40 45 50

t (ns)

K

Figure 11.22: Input signals for JK flip-flop question 1.

2. Create a timing diagram for a rising-edge triggered JK flip-flop, given the inputs shown in Figure 11.23.

Assume that any asynchronous inputs are not asserted. The initial value of Q is one. Ignore any

propagation delays.

C
L
K

J

0 10 20 30 40

t (ns)

K

Figure 11.23: Input signals for JK flip-flop question 2.

3. Design a primary-secondary JK flip-flop.
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4. Design a JK flip-flop from a D flip-flop and as many external gates as you need.

5. You wish to design a new type of flip-flop, an AB flip-flop, that has the characteristic of 00 (reset),

01 (set), 10 (hold) and 11 (toggle). Create an AB flip-flop using a JK flip-flop and as many external

gates as you need.
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12 Registers and Counters

This chapter will focus on two very important devices that can be created with flip-flops: registers and

counters.

12.1 Registers

A register is a sequential logic circuit that is capable of storing, loading, and shifting data. It is made up

of flip-flops, usually D flip-flops due to their simplicity. The storage capacity of a register pertains to how

many bits of binary data it can store. Modern computers generally have register sizes of thirty-two bits or

sixty-four bits. Many microcontrollers, such as the one used in the popular Arduino Uno, have register sizes

of eight bits.

The ability to store data and move it from one place to another using a serial communication protocol

(sending multiple bits of data over one wire rather than multiple wires) makes registers supremely important

in modern computing.

There are four types of registers, each described below.

12.1.1 Serial In / Serial Out (SISO)

In a serial in / serial out (SISO) register, binary data is input into the first flip-flop, and then is shifted

through subsequent flip-flops on successive clock ticks. The input data can take on different values in order

to send a particular variable or message through from input to output. The circuit diagram of a 4-bit SISO

register is shown in Figure 12.1.

Q

D Q

Q

D Q

Q

D Q

Q

D QIN

CLK

OUT

Figure 12.1: A serial in / serial out (SISO) register.

A purpose of SISO registers is as a data buffer, temporarily storing data as it passes through a digital

circuit.

12.1.2 Serial In / Parallel Out (SIPO)

A serial in / parallel out (SIPO) register takes a serial data stream and allows each bit to be accessed

individually at the output of each flip-flop. The data is shifted from one flip-flop to another upon a clock

signal (rising or falling edge). A schematic of a 4-bit SIPO register is shown in Figure 12.2.
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Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q0 Q1 Q2

IN

CLK

Q3

Figure 12.2: A serial in / parallel out (SIPO) register.

SIPO registers are very useful when working with a microcontroller (that has limited input/output pins)

and a device with many inputs, such as a 7-segment display. With just a data stream and a clock signal, a

7-segment display can be written to using only two input/output pins. The drawback is that a serial protocol

must be used. (Discussion of serial protocols is outside of the scope of this book.)

12.1.3 Parallel In / Serial Out (PISO)

A parallel in / serial out (PISO) register is in some ways the “opposite” of a SIPO register. Data can be

loaded into the register, and then shifted through to the output at each clock tick. Whether or not the data

is loaded or shifted depends on a control signal indicating either a load or shift. A full circuit diagram for a

4-bit PISO register would take a lot of space, so only 2-bits are shown in the circuit diagram in Figure 12.3.

However, more flip-flops can be added to create a PISO register with a larger storage capacity.

Q

D Q

Q

D Q

LOAD

D0 D1

SHIFT

CLK

OUT

Figure 12.3: A parallel in / serial out (PISO) register.

Just as SIPO registers are useful in handling devices with multiple inputs, PISO registers are useful in

handling devices with multiple outputs, such as a DIP switch. After interfacing with a PISO register, only

one data pin and one clock pin need be used on a microcontroller to access all of the data from a DIP switch.
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12.1.4 Parallel In / Parallel Out (PIPO)

A parallel in / parallel out (PIPO) register allows for simultaneous access to all input and output signals.

The schematic shown in Figure 12.4 is a very simple 4-bit PIPO register. However, control logic can be

included on the input to each flip-flop to enable data to shift as well as just load.

Q

D Q

D0

Q0

Q

D Q

D1

Q1

Q

D Q

D2

Q2

Q

D Q

D3

Q3

CLK

Figure 12.4: A parallel in / parallel out (PIPO) register.

PIPO registers are great for temporary data storage. A PIPO register that is capable of just loading and

holding is useful in something like an arithmetic and logic unit. Data is temporarily stored, some type of

operation (such as addition or subtraction) is carried out, and the result is stored into a different register.

The output can then be written onto a data bus.

A PIPO register capable of shifting in one or both directions is also able to act as a PISO register or a

SIPO register, giving it a very diverse set of functionality.

12.2 Using Registers to Add and Multiply

While registers are an important aspect of communication protocols, they also help to reduce the footprint

(size) of computing devices used to add and multiply.

12.2.1 Addition

As discussed in chapter 3, combinational logic can be used to create half and full adders. A full adder by

itself is only capable of summing together two numbers.

If three numbers need to be added together, then two full adders must be used. If four numbers need to

be added together, then three full adders need to be used. These two possibilities are shown in Figure 12.5.

cbna Alyssa J. Pasquale, Ph.D. 233 Last updated: 2025/05/12



12 Registers and Counters 12.2 Using Registers to Add and Multiply

Full Adder

Full Adder

A B

C

Σ

Full Adder Full Adder

Full Adder

A B C D

Σ

Figure 12.5: Adding three or four numbers together using a combinational approach.

Using combinational logic like this to implement an adder has several drawbacks. First, the number of

m-bit full adders required is n − 1, where n is how many numbers are to be added together. This quickly

becomes untenable if many numbers need to be added together. Second, the combinational approach is not

flexible. In other words: you cannot use a setup that can add two numbers together to add four numbers

together. The adder would have to be rebuilt. This lack of flexibility makes the use of combinational logic

a poor choice for computation.

Using sequential logic (including registers in the adding hardware) is a much better choice as far as

scalability and flexibility. In general, the design of the hardware will limit the number of bits (which is also

a limitation of combinational logic), but the hardware can add together as many numbers as needed, in

sequence.

A block diagram for the approach to adding numbers together sequentially is shown in Figure 12.6.

Register 1

Full Adder

Register 2

Control
Logic

user input

Σ

Figure 12.6: Adding multiple numbers together using a sequential logic approach.

The sequential addition works as follows.
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1. Register 1 holds while register 2 loads (register 1 contains A, register 2 contains A+B).

2. Register 1 loads while register 2 holds (register 1 and 2 both contain A+B).

3. Both registers hold (register 1 and 2 both contain A+B).

There are a couple of drawbacks to using sequential logic to add. The first drawback is that it will

take at least three clock cycles to accomplish the steps outlined above. This will very likely be longer than

the propagation delay required to add numbers together using the combinational approach. However, the

tradeoff between time and space generally favors the sequential approach. Second, the sequential approach

requires control logic to enable the registers to hold or load at the appropriate time.

12.2.2 Multiplication

This section applies to unsigned multiplication only. Multiplication can also be tackled using combinational

or sequential logic. Multiplying two 2-bit numbers together, shown below, requires one adder and four AND

gates. This hardware is capable of generating numbers as large as 9 (3× 3).

A B
× C D

AD BD
+ AC BC 0

AC AD+BC BD

Multiplying two 3-bit numbers together, shown below, requires four adders and nine AND gates. This

hardware is capable of generating numbers as large as 49 (7× 7).

A B C
× D E F

AF BF CF
AE BE CE 0

+ AD BD CD 0 0
AD AE+BD AF+BE+CD BF+CE CF

It requires (n−1)2 adders and n2 AND gates to multiply together two n-bit numbers. This is not scalable;

it becomes too large too fast to implement in a realistic way.

By analyzying the multiplication process, it can be seen that multiplication consists of shifting and

AND/adding steps. By iterating this process, sequential logic can be used to much more easily multiply

together two n-bit numbers. n − 1 shifts are required to multiply two n-bit numbers together. While this

takes more time than a combinational approach, the small footprint makes it a feasable approach to the

problem.

A block diagram for a 4-bit sequential multiplier is shown in Figure 12.7. The two numbers to be

multiplied are A3A2A1A0 and B3B2B1B0. In general, 2n bits of storage are needed to multiply together

two n-bit numbers.

cbna Alyssa J. Pasquale, Ph.D. 235 Last updated: 2025/05/12



12 Registers and Counters 12.2 Using Registers to Add and Multiply

74LS194 74LS194 74LS194

2 × 74LS08

2 × 74LS283

2 × 74LS175

0 A3 B00 A2 B10 A1 B20 A0 B3

shift direction shift direction

8 LSB

8

8

8

output

control logic

Figure 12.7: Multiplying two 4-bit numbers together using a sequential logic approach.

The control logic for this 4-bit multiplier works as follows.

1. All registers (the two 74LS194 containing A, the 74LS194 containing B, and the two 74LS175 containing

the output) load data.

2. The two registers containing A and B shift one bit (the shift direction is shown in the block diagram),

the register containing the output loads.

3. The two registers containing A and B shift one bit (the shift direction is shown in the block diagram),

the register containing the output loads.

4. The two registers containing A and B shift one bit (the shift direction is shown in the block diagram),

the register containing the output loads.

5. All registers hold data until the process is restarted.

Note that steps 2–4 are identical; they are carrying out the shift and AND steps. The 74LS175 register

carries out the addition step. The control logic creates an additional layer of difficulty to a synchronous

approach, but can be scaled up much more easily than a combinational approach.
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Circuit Project: Using the 74LS190 to Create an Up/Down BCD Counter

This project uses the 74LS190 BCD counter chip to create an up/down counter with the output

on a 7-segment display.

• 1– Breadboard

• 1– 5 V power supply or battery pack

• 1– 1 Hz clock source

• 1– toggle switch

• 8– 220 Ω resistors

• 1– 7-segment display, common anode

• 1– 74LS47 BCD to seven-segment decoder/driver chip

• 1– 74LS190 Synchronous up/down counters with down/up mode control chip

The 74LS190 chip is a synchronous BCD counter. Given a clock source, it will automatically

update each output value every time the clock ticks. The toggle switch in this circuit controls the

direction of the count. When the toggle switch is in the up position, the signal sent to pin five is

LOW and the counter counts up. When the toggle switch is in the down position, the signal sent to

pin five is HIGH and the counter counts down.
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12.3 Synchronous Counters

Counters are useful devices for accounting for how much time has passed. They can be used to display or

keep track of time (such as with a clock), or they can be used to trigger events that occur at regular, pre-

defined intervals of times. Counters are extremely useful components of microcontrollers that allow timed

events to occur, or to create output waves that can control motors, for example.

A synchronous counter is simply a counter composed of two or more flip-flops, where every flip-flop shares

a common clock signal. Synchronous counters can count up, down, or out-of-order, and can include user

inputs (for example, count up when a toggle switch is in one direction, or count down when a toggle switch

is in the other direction). Synchronous counters can be created using any type of flip-flop: D, T , JK, or

SR.

To understand how a counter will function, we first create a state diagram. A state diagram simply shows

all of the possible values that the flip-flops can take on. Arrows connect each of these states and indicate

what the value will be after a clock trigger. A state diagram is not specific to the type of flip-flop being

used. An example state diagram is shown in Figure 12.8.

state 1

state 2

state 3

state 4

Figure 12.8: Example state digram.

Analyzing the state diagram enables us to make a transition table. This transition table shows the

current values of the flip-flop, what the next values should be, and what input values need to be present on

the flip-flop input in order to create that flip-flop transition (hence our focus on flip-flop transitions in the

previous chapter).

After creating the transition table, Boolean expressions for each flip-flop input can be derived using any

of the circuit minimization techniques that we have learned. This allows us to create a circuit diagram to

build the counter.

Example: Creating a 3-bit counter with T flip-flops

The state diagram for a 3-bit counter is shown below. Note that it counts upward from zero to seven,

and then wraps back to zero again.
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0

1

2

3

4

5

6

7

The transition table, shown below, shows the current state (which is the binary value of the number

in the counter), the next state (which, in this example, is one number higher than the current number,

unless the current state is seven), and the input value on the flip-flop required to go from the current

state value to the next state value. As an example, when the current state is 100 (4), the next state

will be 101 (5). In order to have a hold on flip-flop A (the MSB stays one in the transition), a hold

on flip-flop B (the next bit stays zero in the transition), and a toggle on flip-flop C (the LSB switches

from zero to one), the flip-flop values must be 001.

Current State Next State Flip-Flop Value

A B C A+ B+ C+ TA TB TC

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

At this point, Boolean expressions can be derived for each of the flip-flop values based on the

current state variables A, B, and C.

TA = BC

TB = C

TC = 1

Now we can draw a circuit diagram corresponding to the completed counter. Notice that there
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are no external inputs anywhere (pushbuttons, toggle switches, DIP switches). When the circuit is

powered on, it will change its output values consistent with the state diagram.

Q

T Q

Flip-Flop

A

Q

T Q

Flip-Flop

B

Q

T Q

Flip-Flop

C

CLK

Example: Creating a 3-bit countdown timer with D flip-flops

The state diagram for this example is shown below. We will now create a count-down timer that stops

when it reaches zero. As circuit designers, we need to carefully consider how all conditions will affect

our circuits. If our countdown timer initially turns on in the zero state, it will stay there indefinitely.

We need to think of a manner to get all of the flip-flops to have an output value of one. Fortunately,

we can connect a pushbutton to the preset pins on each flip-flop to accomplish this. Therefore, when

a pushbutton is pressed, each flip-flop will take on an output value of one, and then continue the

countdown to zero where they will remain until the button is pressed again.

0

1

2

3

4

5

6

7

When creating a transition table for a D flip-flop, we note that the next value of Q is always equal
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to the input value D. Therefore we do not need to create separate columns for the flip-flop values in

the transition table when working with D flip-flops.

Current State Next State

A B C A+ B+ C+

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

Now we can use our preferred method of Boolean algebra minimization to derive expressions for

each flip-flop input.

DA = A(B + C)

DB = BC +AB′C ′

DC = BC ′ +AB′C ′

Q

D Q

Flip-Flop

A

PRE
Q

D Q

Flip-Flop

B

PRE
Q

D Q

Flip-Flop

C

PRE

CLK
BUTTON

An important type of counter is called a BCD counter or a decade counter. These counters count from

zero through nine (either up or down). Four bits are required to count as high as nine. We know from our

study of binary numbers that four bits are capable of representing numbers as high as fifteen. Because values
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ten through fifteen are unused, they are generally set to don’t care values in the transition table.

It is also possible to create counters that count out of order, and not in any logical sequence. The size

of the counter in that case will refer to the largest number that needs to be expressed in binary. Any states

that aren’t represented in the state diagram can be don’t care terms (with an important caveat, discussed

in the next section!).

12.3.1 Initialization Values

It is important to understand that flip-flops may initialize with arbitrary values when a circuit is powered

on for the first time. Therefore, it is important to be sure to designate a reset state (typically where all

flip-flops have a value of zero) that can be asynchronously entered into by using the flip-flop clear pins. If

zero is selected as the reset state, but is not an expected state in the state diagram, it’s possible that don’t

care terms were used to represent the next state and flip-flop values in the design of a sequential circuit. If

zero isn’t a designed state, and don’t care terms were used to designate the flip-flop values used when the

flip-flop is in state zero, it is possible that unpredictable results can ensue after asynchronously entering into

this state. The following example will demonstrate this.

Example: Out of order counter with and without initialization issues

Design an out of order counter with the following state diagram using T flip-flops. Designate all of

the states that don’t show up in the state diagram as don’t cares.

1

3

6

4

The transition table is given below. Note that even though there are only four states, three

flip-flops are required to represent numbers as high as six.

cbna Alyssa J. Pasquale, Ph.D. 242 Last updated: 2025/05/12



12 Registers and Counters 12.3 Synchronous Counters

Current State Next State Flip-Flop Value

A B C A+ B+ C+ TA TB TC

0 0 0 × × × × × ×

0 0 1 0 1 1 0 1 0

0 1 0 × × × × × ×

0 1 1 1 1 0 1 0 1

1 0 0 0 0 1 1 0 1

1 0 1 × × × × × ×

1 1 0 1 0 0 0 1 0

1 1 1 × × × × × ×

The flip-flop equations can be derived using any Boolean algebra minimization technique.

TA = A′ ⊕B

TB = A⊕B

TC = A′ ⊕B

Let’s analyze what happens when this counter is turned on for the first time. Each flip-flop takes

on a value of zero. If we plug 000 into each flip-flop equation, we get 010, which means flip-flop A

will hold, flip-flop B will toggle, and flip-flop C will hold. That means the transition will go from

000–010. In state 2 (010), the flip-flops will toggle/hold/toggle, giving a transition from 010–101. In

state 5 (101), the flip-flops will once again toggle/hold/toggle, giving a transition from 101–010. This

will repeat indefinitely. The actual state diagram for this circuit is shown below.

0

2

5

To rectify this situation, we cannot have state zero take on don’t care values. Instead, we will

make the output go to state one after state zero. The new state table is shown below.
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Current State Next State Flip-Flop Value

A B C A+ B+ C+ TA TB TC

0 0 0 0 0 1 0 0 1

0 0 1 0 1 1 0 1 0

0 1 0 × × × × × ×

0 1 1 1 1 0 1 0 1

1 0 0 0 0 1 1 0 1

1 0 1 × × × × × ×

1 1 0 1 0 0 0 1 0

1 1 1 × × × × × ×

The new flip-flop equations can be derived.

TA = A′ ⊕B

TB = B ⊕ C

TC = B′ ⊕ C

Q

T Q

Flip-Flop

A

Q

T Q

Flip-Flop

B

Q

T Q

Flip-Flop

C

CLK

12.4 Ripple Counters

A ripple counter is sometimes referred to as an asynchronous counter. I find the term “asynchronous” to

be somewhat misleading. The difference between a ripple counter and a synchronous counter is that with

a synchronous counter, every flip-flop shares a clock signal. With a ripple counter, one flip-flop receives an

external clock signal and the other flip-flops receive clock signals from the output of other flip-flops (the

output of one flip-flop “ripples” into the clock input of the next).
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Ripple counters function under the operation of toggling every time the clock ticks. In this manner,

whichever type of flip-flop is used, the input is connected to whatever signal will create a toggle situation.

This acts to divide the frequency in half. A 3-bit ripple counter created with T flip-flops is shown in

Figure 12.9.

Q

T Q

Flip-Flop
C

Q

T Q

Flip-Flop
B

Q

T Q

Flip-Flop
A

CLK

Figure 12.9: A 3-bit ripple counter created from T flip-flops.

Note that each flip-flop is falling-edge triggered (if they are rising-edge triggered, the counter will count

down instead of up). The flip-flop connected to the external clock signal (labeled as C in Figure 12.9) is the

least significant bit. The timing diagram (ignoring propagation delays) is shown in Figure 12.10.

C
L
K

A
B

C

Figure 12.10: Timining diagram for a 3-bit ripple counter.

In this manner, as many flip-flops as desired can be connected together to create larger bit counters.
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An issue that arises, however, with stringing together many flip-flops in a ripple counter, is that the gate

delay becomes worse with each bit in the sequence. If there are n stages, the accumulated delay is ntp,

where tp is the gate delay of each stage. This can lead to a situation where the LSB and MSB are no longer

synchronized. In that case, a synchronous counter may be a better option.

As mentioned, ripple counters can be created with any type of flip-flop; the input is simply connected in

a manner to make the output toggle. The inputs required for each type of flip-flop is shown in Figure 12.11.

Q

D Q

Q

T Q

K Q

J Q

R Q

S Q

Figure 12.11: Input values for each type of flip-flop to create a toggling output.

While it is not possible to create a ripple counter that counts out of order, it is possible to create a ripple

counter that does not count to a power of two minus one. This requires the use of the asynchronous clear

pins.

A decade counter, for example, will need to trigger an asynchronous clear after it has completed the

sequence zero through nine. Ten, the number after nine, will therefore trigger the clear. That will happen

when the flip-flop values are 1010. Because most asynchronous clear pins are active LOW, that would lead

to the following expression.

CLEAR = (AB′CD′)′

The schematic for a ripple decade counter created from JK flip-flops is shown in Figure 12.12 (the

7-segment display is not shown).
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K Q

J Q

D

CLR
K Q

J Q

C

CLR
K Q

J Q

B

CLR
K Q

J Q

A

CLR

CLK

Figure 12.12: Decade ripple counter designed from JK flip-flops.

The process flow for designing a ripple counter follows.

1. Determine the number of flip-flops required. This will be equal to the number of binary bits required

to represent the largest number in the count sequence.

2. Connect the output of each flip-flop into the clock input of the next flip-flop. The LSB will have its

clock input connected directly to the clock signal.

3. Connect the input of each flip-flop to make it toggle, as shown in Figure 12.11.

4. Connect the preset and clear pins as needed.

(a) If the counter counts from zero to 2n − 1, where n is the number of flip-flops, then the preset and

clear pins should be de-asserted.

(b) If the counter counts from zero to a different number than 2n − 1, then the clear pins should be

connected to a signal that will cause them to be asserted when the output of the flip-flops is one

higher than the maximum count number. Preset pins should be de-asserted.

(c) If the counter counts from a non-zero value to 2n−1, the preset and clear pins should be connected

such that the non-zero initialization value will be asynchronously asserted on the outputs when

the output of each flip-flop is zero.

(d) If the counter counts from a non-zero value to a different number than 2n−1, then the preset and

clear pins should be connected such that the non-zero initialization value will be asynchronously

asserted on the outputs when the output of the flip-flops is one higher than the maximum count

number.

5. (Optional) Test the design in simulation software before building on a breadboard.
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12.5 Ring Counters

Ring counters propagate a single logic HIGH value through a sequence of flip-flops. Ring counters are also

known as one-hot counters as only one single flip-flop has a HIGH value at a time. The output of each

flip-flop in a 4-bit ring counter during eight clock cycles is shown in table 12.1.

Clock Flip-Flop Outputs
Cycle A B C D
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 0 1

Table 12.1: Flip-flop outputs in a 4-bit ring counter through eight subsequent clock cycles.

Ring counters are relatively simple to design, they do not require the derivation of next-state equations

that is needed with synchronous counters, or the sometimes complicated preset/clear logic that is needed

with ripple counters. However, because there is no state in a one-hot sequential circuit that corresponds to

all zeros, it may be required to use the asynchronous preset and clear pins to initialize the ring counter. A

schematic of a ring counter using an active-LOW initialization signal (labeled RST) is shown in Figure 12.13.

Q

D Q

CLR

PRE

Q

D Q

CLR

PRE

Q

D Q

CLR

PRE

Q

D Q

CLR

PRE

CLK

RST

Figure 12.13: Circuit diagram of a 4-bit ring counter using an asynchronous initialization signal.

It is also possible to build a ring counter that is able to initialize without the use of asynchronous flip-flop

inputs. This type of ring counter is also able to recover from any possible glitches that would cause it to

be situated in a locked-up state (all flip-flops have an output of zero). This type of ring counter feeds the

primed output of each flip-flop into an AND gate into the input of the first flip-flop. A schematic of this

type of ring counter is shown in Figure 12.14.
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Q
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Q
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Figure 12.14: Circuit diagram of a 4-bit ring counter using a synchronous initialization signal.

12.6 Johnson Counters

Instead of propagating through a single logic HIGH value, Johnson counters propagate through an increasing

sequence of HIGH values surrounded by LOW values. The output of each flip-flop in a 4-bit Johnson counter

during nine clock cycles is shown in table 12.2.

Clock Flip-Flop Outputs
Cycle A B C D
1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 1 0
5 1 1 1 1
6 0 1 1 1
7 0 0 1 1
8 0 0 0 1
9 0 0 0 0

Table 12.2: Flip-flop outputs in a 4-bit Johnson counter through nine subsequent clock cycles.

Johnson counters are as simple to design as ring counters, and do not require the use of asynchronous

inputs or special initialization logic. A schematic of a Johnson counter is shown in Figure 12.15.

Q

D Q

Q

D Q

Q

D Q

Q

D Q
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Figure 12.15: Circuit diagram of a 4-bit Johnson counter.
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12.7 Example Problems

Registers

1. Design the control logic on the input of a bi-directional shift register. The control inputs are S1S0.

The control inputs correspond to 00 (hold), 01 (shift left), 10 (shift right), 11 (load).

2. Design a 4-bit SISO register using SR flip-flops.

3. How long does it take the first bit of data to clock through an 8-bit SISO register if the propagation

delay on each flip-flop is 25 ns?

4. Draw a diagram of how you could connect together two 74LS194 4-bit bidirectional shift registers to

create an 8-bit bidirectional shift register.

5. The sequence 1011 is applied to the input of a 4-bit serial shift register that is initially cleared. What is

the state of the register initially and after the first six clock pulses? Assume the input signal becomes

zero once the sequence has been shifted in to the first flip-flop.

Synchronous Counters

1. Design a counter corresponding to the state diagram shown in Figure 12.16 out of D flip-flops.

1

5

2

6

0

3

Figure 12.16: State diagram for the synchronous counter to be designed in questions 1 and 2.

2. Design a counter corresponding to the state diagram shown in Figure 12.16 out of T flip-flops.

3. Design a counter corresponding to the state diagram shown in Figure 12.17 out of T flip-flops.

0

4

57

2

Figure 12.17: State diagram for the synchronous counter to be designed in question 3.
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4. Determine the actual state diagram for a synchronous counter corresponding to the state diagram

shown in Figure 12.18 assuming that state 000 uses don’t care values.

1

3

2

6

Figure 12.18: State diagram for the synchronous counter to be designed in questions 4 and 5.

5. Design a counter corresponding to the state diagram shown in Figure 12.18, but have state 000 tran-

sition to state 110.

Ripple Counters

1. Design a 4-bit ripple counter with D flip-flops.

2. Design a 3-bit ripple down counter with T flip-flops.

3. Design a 4-bit ripple counter that has the state diagram shown in Figure 12.19 using JK flip-flops with

active LOW asynchronous preset and clear inputs.

0

1 2 3 4 5

6

7891011

Figure 12.19: State diagram for the ripple counter to be designed in question 3.

4. Design a 4-bit ripple counter that has the state diagram shown in Figure 12.20 using T flip-flops with

active LOW asynchronous preset and clear inputs.

0 1 2 3 4

5

67

8

Figure 12.20: State diagram for the ripple counter to be designed in question 4.

5. Draw the waveforms for an entire count cycle for a 3-bit ripple counter that counts from 0–5. Each

flip-flop has a delay of 20 ns, and the NAND gate logic that controls the asynchronous clear has a

delay of 10 ns. Each flip-flop initially has a value of zero and the clock period is 40 ns.
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13 Finite-State Machines

A discussion of finite-state machines will conclude our brief exploration of digital systems in this book. A

finite-state machine is a sequential circuit with a finite number of states that occur in a prescribed manner.

In fact, the counters discussed in the last chapter are all finite-state machines. That is, they all have a

certain number of states, and our state diagram shows us how the circuit moves from one state to the next

on a clock trigger. The major difference between a counter and a finite-state machine in general is that

with a counter, the flip-flop outputs correspond to the state values. That is not necessarily true in a generic

finite-state machine. With finite-state machines in general, we do not usually care what values each flip-flop

takes on at any given moment. In addition, while counters are generally free of user inputs (with a few

exceptions), finite-state machines can be heavily input-driven.

The two types of finite-state machines are Moore machines and Mealy machines. We will use them to

create all manner of finite-state machines, including sequence detectors.

Regardless of the type of finite-state machine being designed, the process is the same.

1. Define all necessary states and their outputs.

2. Create a state diagram (this step can be skipped if desired).

3. Create a state table.

4. Decide which type of flip-flop to use

5. Create binary state assignments for each state.

6. Create a transition table.

7. Derive Boolean algebra expressions for each flip-flop input (called next-state expressions).

8. Derive Boolean algebra expressions for each output signal.

13.1 Moore Machines

A Moore machine is a finite-state machine with synchronous outputs. That is, each state has well-defined

values for the output signal(s) and the output signal(s) can only change when a clock triggers a state change.

Moore machines can be easier to design than Mealy machines, but generally require more states to implement.

A block diagram describing this operation of a Moore machine is shown in Figure 13.1.
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Next-State
Logic

Flip-Flops
Output
Logic

input(s)

output(s)

Figure 13.1: Block diagram describing the operation of a Moore machine.

State diagrams are slightly more complicated in Moore machines than they were in counter circuits.

Because each state has an output value, the circle with each state has the state name on top and the output

value(s) on the bottom. Arrows transitioning between states now depend on the value of input value(s) and

there can be multiple arrows extending out of each state as a result of this. An example state diagram for a

Moore machine is shown in Figure 13.2. The example state diagram only has one input, so there will be a

transition for each possible value of one input, which is to say that two transitions must be defined.

State 1
Output 1

State 2
Output 2

State 3
Output 3

X

X

XX

X

X

Figure 13.2: Example state diagram for a Moore machine.

A state table is a new concept in this chapter. We did not use them with counters because they were not

needed. A state table simply takes the information from a state diagram and puts it into tabular form. Note

that alphanumeric state designations are used; no binary values are necessarily present except for possibly

to define output values. The state table is also nonspecific to the type of flip-flop that is to be used in the

circuit. The state table that corresponds to the diagram given in Figure 13.2 is shown in table 13.1.

Current State Next State Output Value(s)
X=0 X=1

State 1 State 2 State 1 Output 1
State 2 State 2 State 1 Output 2
State 3 State 2 State 1 Output 3

Table 13.1: Example state table for a Moore machine.

After the state diagram and state table have been derived, the choice of flip-flop can be made and state

assignments created for each state. n flip-flops are required to implement a finite-state machine that has

2n states. Each state assignment will therefore be n bits long. State assignments are necessary in order to
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give binary values to each state. It is not possible to conduct Boolean algebra with generic alphanumeric

characters (not to mention, the names given to each state can take on literally any value, making them

meaningless in the context of actual logic design).

The state assignments are largely arbitrary, but some important considerations must be made. Be-

cause flip-flops may initialize with arbitrary values, it is important to designate a reset state that can be

asynchronously entered into using the flip-flop clear pins. This means the reset state should have a state

assignment corresponding to all zeros. (It is possible to use a different state assignment for the reset state if

preset and clear pins are used. However, while clear pins are frequently included in flip-flop chips, preset pins

are not always available.) Other guidelines for state assignments will be discussed later on in this chapter.

Transition tables are derived in exactly the same way that they were designed with synchronous counter

circuits. You can think of transition tables as a “translation” from written English to binary, as they contain

no new information but simply portray prior information in a different way. If anything other than D

flip-flops are used, state transitions are used to determine the flip-flop values. Transition tables are used to

determine Boolean expressions for each flip-flop input (called next state expressions) and output expressions.

Output expressions in Moore machines will only be a function of the states, and will not contain any input

variables, due to the synchronous nature of Moore machines.

Example: Simple elevator circuit

Design the circuitry for an elevator in a three story building. The elevator can be on any one of the

three floors. Each of the floors is a state. There is one input signal X. When X is one it means that

the elevator up button has been pressed. When X is zero it means that the elevator down button

has been pressed. The output of the finite-state machine is the binary value of the floor number, so

that it can be displayed on a 7-segment display.

The first step in designing a finite-state machine is to define each of the states and their output

values.

• S1 – First floor, output: 01

• S2 – Second floor, output: 10

• S3 – Third floor, output: 11

The next step is to draw a state diagram.

S1
01

S2
10

S3
11

1

0 1

0

1

0

cbna Alyssa J. Pasquale, Ph.D. 254 Last updated: 2025/05/12



13 Finite-State Machines 13.1 Moore Machines

Note that it is a design choice to keep the elevator on the first floor if the down button is pressed,

and to keep the elevator on the third floor if the up button is pressed.

Now that there is a state diagram visually displaying transitions between each state and their

outputs, a state table can be derived. Note that it contains no new information; it simply lays out

the information in tabular rather than graphical form.

Current State Next State Output

X=0 X=1 YZ

S1 S1 S2 01

S2 S1 S3 10

S3 S2 S3 11

Choosing to design this circuit with D flip-flops, we will choose the following state assignments.

• S1 – 00 (this will be the default power-on or reset state)

• S2 – 10

• S3 – 11

Now a transition table can be created.

Current State Next State Output

X=0 X=1 YZ

00 00 10 01

01 ×× ×× ××

10 00 11 10

11 10 11 11

Using any Boolean algebra minimization, it is possible to find expressions for the input of each

flip-flop as well as each output.

DA = X +B

DB = XA

Y = A

Z = A′ +B

The circuit diagram for the completed finite-state machine is shown below.
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13.2 Mealy Machines

A Mealy machine is a finite-state machine with asynchronous outputs. That is, the output(s) are not defined

completely by the state that the circuit is in, but also by the value of the input at any given moment.

Changing the input can immediately change the value of the output variable(s). Mealy machines generally

have fewer states than otherwise identical Moore machines. Some types of outputs are better suited for

Moore machines, and some are better suited for Mealy machines. A block diagram describing the operation

of Mealy machines is shown in Figure 13.3.

Next-State
Logic

Flip-Flops
Output
Logic

input(s)

output(s)

Figure 13.3: Block diagram describing the operation of a Mealy machine.

State diagrams differ in a Mealy machine in that the outputs are not defined with the states, but on the

transitions between states. Each transition arrow will now contain the input value(s) on top and the output

value(s) on the bottom of the part that looks like a fraction. An example Mealy machine state diagram is

shown in Figure 13.4.
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Figure 13.4: Example state diagram for a Mealy machine.

State tables still contain exactly the same information as state diagrams. In the case of a Mealy machine,

because the output is a function of the state and the input(s), there needs to be more than one column

describing the outputs. The state table that corresponds to the diagram in Figure 13.4 is given in table 13.2.

Current State Next State Output Value(s)
X=0 X=1 X=0 X=1

State 1 State 2 State 1 Z2 Z1
State 2 State 2 State 1 Z3 Z4
State 3 State 2 State 1 Z5 Z6

Table 13.2: Example state table for a Mealy machine.

After the state table is completed, the rest of the process of solving for the expressions is identical to that

of a Moore machine. A flip-flop type is chosen, state assignments are determined, a transition table derived,

and expressions are derived using a minimization technique.

Example: Simple vending machine circuit

We will design the circuitry for a very simple vending machine. Every item in the vending machine

costs 15¢, and the vending machine only accepts nickels. The input variable N is zero when no nickel

has been inserted, and is one when a nickel has been inserted. The output variable V is zero when

insufficient funds have been inserted, and V is one when enough funds have been inserted to vend

the snack out of the machine.

Because the outputs change on transitions between states, it is only necessary to have three states.

(A 15¢ state is not necessary, because as soon as the last nickel is inserted, the vending machine will

go back to its reset mode.)

• 0¢ – No money has been inserted (this will be the reset state)

• 5¢ – Five cents have been inserted

• 10¢ – Ten cents have been inserted
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We can now create a state diagram. Note that alphanumeric notation is used on the input values

(N and N ′ instead of 1 and 0). Either method can be used to define inputs in state diagrams.

0¢ 5¢

10¢

N
0

N’
0

N
0

N’
0

N
1 N’

0

The state table simply takes the information from the state diagram and puts it into tabular form.

Current State Next State Output (V)

N=0 N=1 N=0 N=1

0¢ 0¢ 5¢ 0 0

5¢ 5¢ 10¢ 0 0

10¢ 10¢ 0¢ 0 1

We will use T flip-flops to design this vending machine circuit. The state assignments are mostly

arbitrary except for our choice of the 00 state. It would make the most sense for the vending machine

to power on into the 0¢ state.

• 0¢ – 00

• 5¢ – 01

• 10¢ – 10

We can put this all together into a transition table.

Current State Next State Flip-Flop Values Output (V)

N=0 N=1 N=0 N=1 N=0 N=1

00 00 01 00 01 0 0

01 01 10 00 11 0 0

10 10 00 00 10 0 1

11 ×× ×× ×× ×× × ×
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The expressions for each flip-flop and output are given below.

TA = N(A+B)

TB = NA′

V = NA

Q

T Q

Q

T Q
V

N

CLK

13.3 Sequential Circuit Clock Frequency Constraints

Frequency describes the number of rising edges (or falling edges) of a clock signal that occur every second.

It is defined by the symbol f and has a unit of Hz (hertz). Period, on the other hand, describes the amount

of time that elapses between subsequent rising edges (or falling edges) in a clock signal. Period is defined by

the symbol T and has a unit of s (seconds). Frequency and period are reciprocal values. That is,

f =
1

T
.

It is also important to define each of the possible limiting delays that occur in a synchronous circuit.

These are defined in Table 13.3.
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Symbol Name Description

tp Propagation delay
The amount of time it takes the output of a flip-flop to become valid
after the clock ticks.

tc Combinational delay
The amount of time it takes the input of a flip-flop to become valid
due to any combinational logic delay.

tsu Setup time
The amount of time a flip-flop input must be stable before a triggering
clock edge.

th Hold time
The amount of time a flip-flop input must be stable after a triggering
clock edge.

tsk Clock skew The amount of delay between flip-flop clock inputs (described below).

Table 13.3: Delays that exist in a synchronous circuit.

Clock skew refers to the situation where not all flip-flops in a sequential circuit receive an update-triggering

signal at the clock input at the same time. This could be substantial if there are big differences in wire length

from one flip-flop clock input to another. While clock skew depends on the exact circuit layout, a datasheet

can be used to determine setup time, hold time, propagation delay, and combinational delay for each circuit.

If the minimum clock period is determined for a circuit (the fastest amount of time that can elapse between

subsequent triggering edges), the largest allowable frequency can be calculated by taking the reciprocal of

the minimum period. It is important to ensure that all circuit elements in a synchronous circuit have a

suitable amount of time to generate valid signals every clock cycle. For example, given the diagram shown

in Figure 13.5, we can discuss the issues that can occur if FF 1 and FF 2 are clocked too quickly.

Q

D Q

FF 1

input
logic

Q

D Q

FF 2

input
logic

CLK

Figure 13.5: Schematic of a finite-state machine consisting of two flip-flops.

A setup violation occurs if one of the flip-flops (for example, FF 1, as depicted in Figure 13.5) clocks,
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causing the input of the other flip-flop (FF 2, which has combinational logic potentially including the output

value of FF 1 as an input) to be unstable before FF 2 clocks on the next clock cycle. Essentially, the clock

is ticking too quickly for input values to become stable on the next cycle. This problem can be addressed

by ensuring the clock speed is not too fast. In order to prevent setup violations,

tmin = tp + tc + tsu + tsk

must be satisfied. This will limit the fastest allowable clock frequency.

A hold violation occurs if FF 1 (depicted in Figure 13.5) clocks first and the input of FF 2 (which has

combinational logic potentially including the output value of FF 1 as an input) changes before the previous

data can be clocked. This problem cannot be addressed by using a slower clock frequency. In order to

prevent hold violations,

tp + tc ≥ tsk + th

must be satisfied. Note that a hold violation also applies if FF 2 clocks prior to FF 1 on the same clock

cycle.

13.4 Sequence Detectors

A sequence detector is capable of detecting one or more strings of binary numbers. Usually, when the output

is detected, the output becomes a one, otherwise the output is zero. (If we want to design active LOW logic,

the output would be a one if not detected, or a zero if detected.) There are three types of sequence detectors,

each of which has its own application.

13.4.1 Overlapping Sliding Window

Sliding window detectors have to do with the fact that a “window” of the same bit length as the sequence

slides along looking for the sequence. If the sequence shows up in that window, then the output will become

a one. If the window shows binary numbers that do not correspond to the sequence, then the output will be

a zero. The graphic shown in Figure 13.6 depicts a 4-bit sliding window.
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slide direction

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

Figure 13.6: Graphic depiction of how a 4-bit window slides along a series of numbers to look for a pattern.

An overlapping sliding window detector indicates that a sequence that overlaps with another sequence

will lead to an output of one. The same sequence used in Figure 13.6 would therefore lead to the sequences

highlighted in red squares as being detected, shown in Figure 13.7. Output values are also shown at each

step in the sequence.

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

Z = 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

Figure 13.7: Detected sequences of 1010 inside the test pattern.

Generally, with sliding window detectors, states are defined for the reset state (nothing has been detected

yet), and incrementally for each set of values being detected. For example, if detecting 1010, we would have

the following states for a Moore machine:

• reset (output = 0)

• 1 has been detected (output = 0)

• 10 has been detected (output = 0)

• 101 has been detected (output = 0)

• 1010 has been detected (output = 1)

With Mealy machines, one less state is required to implement a sequence detector because of the fact

that outputs are changed on transitions and are not connected to states. A Mealy machine detecting 1010

would therefore have the following states:

• reset
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• 1 has been detected

• 10 has been detected

• 101 has been detected

When deriving state diagrams, it can be simplest to start at the reset state and note that the input values

must be equal to the sequence values in order to move to the next state. These are the easiest transitions

to determine in the state diagram. Figure 13.8 shows these state transitions for detecting 1010 for both a

Moore machine and a Mealy machine.

S0
0

S1
0

S2
0

S4
1

S3
0

1

0

1

0

S0

S1

S2

S3

1
0

0
0

1
0

Figure 13.8: Simple sequence transitions for a Moore machine (left) and Mealy machine (right) detecting
1010.

The state diagrams shown in Figure 13.8 are not complete. There must be transitions corresponding

to all valid input values. In this case, it means there must be two transitions defined for each state. The

status of the sequence in each state must be appraised, and based on the input value, if there is a state that

corresponds to the sequence that would arise, the state machine should go to that state.

For the Moore machine, the following transitions are derived, leading to the state diagram shown in

Figure 13.9.

• reset (S0) – 0 would lead to no sequence that is defined as a state: stay in the reset state

• 1 detected (S1) – 1 would lead to a sequence of 11: because 11010 would lead to a sequence detection,

the circuit should remain in state S1

• 10 detected (S2) – 0 would lead to a sequence of 100 which does not correspond to any defined state:

go back to reset

• 101 detected (S3) – 1 would lead to a sequence of 1011 which does not completely reset the sequence

but should bring the circuit back to the 1 state which is S1

• 1010 detected (S4)

– 0 would lead to 10100, which completely resets the sequence: go back to reset

– 1 would lead to 10101, which corresponds to a 101: go to state S3
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S0
0

S1
0

S2
0

S4
1

S3
0

1

0

0

1

1

0

0
1

1

0

Figure 13.9: State diagram of the overlapping sliding window Moore machine detector (sequence 1010).

At this point, it is helpful to refer to the test sequence that we derived above and follow it along using the

state diagram to check that the state diagram is correct. This step is very important in helping to understand

the circuit better. Note that the test sequence was cleverly crafted to include overlapping sequences, non-

overlapping sequences, and not-quite sequences to test what would happen in each of these situations.

For the Mealy machine, the following transitions are derived, leading to the state diagram shown in

Figure 13.10.

• reset (S0) – 0 would lead to no sequence that is defined as a state: stay in the reset state

• 1 detected (S1) – 1 would lead to a sequence of 11: because 11010 would lead to a sequence detection,

the circuit should remain in state S1

• 10 detected (S2) – 0 would lead to a sequence of 100 which does not correspond to any defined state:

go back to reset

• 101 detected (S3)

– 0 would lead to 1010, which is both the correct sequence (leading to an output of 1) and also is

halfway to a second 1010 sequence as the last two bits, 10, are part of the sequence: go to state

S2

– 1 would lead to 1011, which brings the sequence back to a 1 state: go to state S1
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S0

S1

S2

S3

1
0

0
0

0
0

1
0

1
0

0
0

0
1

1
0

Figure 13.10: State diagram of the overlapping sliding window Mealy machine detector (sequence 1010).

13.4.2 Non-Overlapping Sliding Window

With a non-overlapping detector, sequences cannot overlap with each other. This means we need to be

vigilant when determining the transitions between states on the state diagrams. Assume we will still detect

the sequence 1010. The same sequence used in Figure 13.6 would therefore lead to the sequences highlighted

in red squares as being detected, shown in Figure 13.11. The output values are also shown.

0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

Z = 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Figure 13.11: Detected sequences of 1010 inside the test pattern (overlapping sequences are no longer al-
lowed).

The same states as defined with an overlapping detector can be used for both Moore machines and Mealy

machines, and the partial state diagrams shown in Figure 13.8 are still valid. The remaining transitions

must be more carefully derived.

For the Moore machine, the only transition that changes is from state S4 when a one is detected. Because

we cannot allow the overlap of 1010 with the next one, the circuit must transition to S1. the following

transitions are derived, leading to the state diagram shown in Figure 13.12.
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S0
0

S1
0

S2
0

S4
1

S3
0

1

0

0

1

1

0

0
1

0

1

Figure 13.12: State diagram of the non-overlapping sliding window Moore machine detector (sequence 1010).

For the Mealy machine, the only transition that changes is when a zero is detected after the S3 state. We

do not want to allow it to overlap, so the circuit must go back to the reset state instead. The non-overlapping

state diagram is shown in Figure 13.13.

S0

S1

S2

S3

1
0

0
0

0
0

1
0

1
0

0
0

0
1

1
0

Figure 13.13: State diagram of the non-overlapping sliding window Mealy machine detector (sequence 1010).

13.4.3 Disjoint Window

In a disjoint window detector, rather than the “window” sliding along the input sequence, the window moves

over in increments of n bits, where n is the length of the sequence that is being detected. The same test

sequence from before, looking for 1010, would result in the graphic shown in Figure 13.14. The output values

are shown as well.
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0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0

Z = 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 13.14: Detected sequences inside of a disjoint window detector.

When designing a disjoint window detector, there is no worry about overlaps. The only thing to consider

is whether or not the sequence is correct so far or not. There is a “good” path corresponding to the sequence

being detected, and a “bad” path corresponding to the sequence not being detected. The only way to remain

on the “good” path is to continue receiving the correct inputs in the correct order. Any time the wrong input

is received, the circuit transitions over to the bad path. To detect 1010, the Moore machine state diagram

is shown in Figure 13.15. Notice that every time the state changes, the same level of the state diagram is

reached. This insures that the window remains disjoint rather than sliding.

good path bad path

S0
0

S1
0

S2
0

S3
0

S4
1

S5
0

S6
0

S7
0

S8
0

1 0

0 1

1 0

0 1

1

0, 1

0, 1

0, 1

0

10

Figure 13.15: State diagram of the disjoint window Moore machine detector (sequence 1010).

The Mealy machine diagram, shown in Figure 13.16 is much the same as the Moore machine but with

fewer states, as is the case with Mealy machines. Otherwise the sequencing of states is very similar.
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good path bad path

S0

S1

S2

S3

S4

S5

S6

1
0

0
0

0
0

1
0

1
0

0
0

0
1 ,

1
0 0

0 ,
1
0

0
0 ,

1
0

0
0 ,

1
0

Figure 13.16: State diagram of the disjoint window Mealy machine detector (sequence 1010).

13.4.4 More Complicated Sequence Detectors

It is possible to design state machines that are capable of detecting multiple sequences. It is also possible to

design a state machine that is designed to detect a sequence only once and ignore subsequent detections. Or

we could create a state machine that, upon detection of a sequence, then looks for a second sequence. We

will look at examples of each of these.

Example: Detect two different sequences

This state machine will be a Mealy machine capable of detecting two independent sequences: 010

and 1001. Overlapping is allowed. First we define each state. Note that the first three states help to

define the first sequence (010), and the last three states along with the reset state help to define the

second sequence (1001).

• reset

• 0 has been detected

• 01 has been detected

• 1 has been detected

• 10 has been detected

• 100 has been detected

Each of the simple transitions can now be placed onto the state diagram.
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S0

S1

S2

S5

S3

S4

0
0

1
0

1
0

0
0

0
0

Now all of the subsequent transitions can be thought out.

• 0 has been detected (S1) – 0 would lead to the possibility of a 010 detection still (0010 for

example), so the circuit should remain in state S1

• 01 has been detected (S2) – if a 0 is detected the output should be 1, and we should go to S4

because the most recently entered digits are 10; if a 1 is detected the circuit should to go S3

because 1 is the most recent useful sequence

• 1 has been detected (S3) –if a 1 is detected, the possibility of 1001 is still possible, so the circuit

should remain in state S3

• 10 has been detected (S4) – if a 1 is detected, the most recent useful sequence is 01, so the

circuit will go to state S2

• 100 has been detected (S5) – if a 0 is detected the circuit should go to state S1; if a 1 is detected

the output should be 1 and the circuit should go to S2 because the most recent useful sequence

is 01

S0

S1

S2

S5

S3

S4

0
0

1
0

1
0

0
0

0
1

1
0

1
0

0
0

0
0

1
0

1
1

0
0
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Example: Detect a sequence once and never again

Design a Moore machine that has an output of one if 101 is detected for the first time. After that,

the output will remain zero.

We first define each of the states, and then determine the simple transitions.

• reset (output = 0)

• 101 not yet detected, 1 detected (output = 0)

• 101 not yet detected, 10 detected (output = 0)

• 101 detected for the first time (output = 1)

• any input value once 101 has been detected (output = 0)

S0
0

S1
0

S2
0

S4
0

S3
1

1

0

1

Now the other transitions can be analyzed, determined, and added to the state diagram.

• reset (S0) – 0 would lead to no sequence that is defined as a state: stay in the reset state

• 101 not yet detected, 1 detected (S1) – 1 would lead to the possibility of 1101, so the circuit

should stay in state S1

• 101 not yet detected, 10 detected (S2) – 0 would lead to a reset of the sequence: go to S0

• 101 detected for the first time (S3) – regardless of the input value received, the circuit should

go to S4 to prevent any other sequences from being detected

• any input values once 101 has been detected (S4) – regardless of input value, the circuit needs

to stay in this state to prevent any further detections
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S0
0

S1
0

S2
0

S4
0

S3
1

1

0

0

1

1

0

0, 1

0, 1

Example: Detect a sequence once then detect a second sequence multiple times

Design a Mealy machine that detects 100 once, then after that detects 001 multiple times. No overlap

between the detection of 100 and 001 is allowed.

• reset

• 110 not yet detected, 1 detected

• 110 not yet detected, 11 detected

• 110 has been detected, no progress towards the second sequence

• 110 has been detected, 0 detected

• 110 has been detected, 00 detected

S0

S1S2

S3

S4S5

1
0

1
0

0
1

0
0

0
0

Analyze the other transitions.

• reset (S0) – if 0 is detected, no progress is being made, stay in the reset state
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• 110 not yet detected, 1 detected (S1) – if 0 is detected, all progress toward the sequence is lost,

go back to reset

• 110 not yet detected, 11 detected (S2) – if 1 is detected, it’s still possible to get to 110 (1110 or

11110 for example), so the circuit should stay put in S2

• 110 has been detected, no progress toward second goal (S3) – if 1 is detected, no progress is

made toward the second goal, so the circuit should stay in S3

• 110 detected, 0 detected (S4) – progress toward the second sequence has been ruined so the

circuit should return to S3

• 110 detected, 00 detected (S5) – if a 0 is detected, it is still possible to detect 001 (0001 or

00001 for example), so the circuit should stay in S5; if a 1 is detected, the output should be 1

as the sequence was detected, and the circuit should return to S3

S0

S1S2

S3

S4S5

1
0

0
0

1
0

0
0

0
1

1
0

1
0

0
0

0
0

1
0

0
0

1
1

13.5 Sequential Comparison Logic

As discussed in section 12.2, using registers and sequential logic can substantially decrease the footprint and

hardware required to implement addition and multiplication. It is also possible to use sequential logic to

generate a finite-state machine to compare two binary numbers.

There are commercially available comparator chips that can be purchased (notably, the 74LS85 is a 4-bit

magnitude comparator), all of which have a limit to the number of bits that can be compared. These chips

generally have separate outputs that are asserted if input A is greater than input B, if input A is less than

input B, or if the two inputs are equal. It is possible to cascade multiple chips together to increase the

bit-width, however, this creates propagation delay between stages and increases the footprint of the overall
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circuit.

Generating an expression using an SOP or POS implementation quickly becomes unwieldy. When two

n-bit numbers are compared, there are

• 2n minterms to realize the output expression A = B,

• 22n−1 − 2n−1 minterms to realize the output expression A > B, and

• 22n−1 − 2n−1 minterms to realize the output expression A < B.

Comparing two n-bit binary numbers sequentially is a relatively straightforward process using a finite-

state machine and a shift register. The MSB of each number is compared together, followed by the next

significant bit, and so on, iterating for n clock cycles (or stopping once one binary number is found to be

greater than the other). Each clock cycle, the shift register shifts so that the next bit is input into the finite-

state machine input circuitry. The sequential approach requires more time to execute but uses a smaller

footprint and allows for the comparison of inputs of as many bits as needed without any change in the

register control logic.

Given two binary numbers A and B, the state diagram in Figure 13.17 can be used to generate control

logic for a sequential magnitude comparator. The inputs of the Moore machine are Ai and Bi (the ith bit of

each binary number), and the outputs are A > B, A = B, and A < B. The states are defined as follows.

• S0 – A and B are equal.

• S1 – A is greater than B.

• S2 – A is less than B.

Once the comparator finds that one number is larger than the other, no more bits need be checked.

S0
010

S1
100

S2
001

00,11

10 01

Figure 13.17: State diagram for comparing the magnitude of two n-bit binary numbers.

13.6 Finite-State Machine Derivation

Now that we have discussed the fundamentals of Mealy and Moore machine, as well as how to create sequence

detectors, we can look at some more complicated finite-state machine scenarios. Once we can deal with the

following situations, any finite-state machine can be designed.
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13.6.1 Multiple Outputs

Technically, the Moore machine elevator example had two outputs as the output displayed the floor number

which required two bits to specify. We will do one more example to demonstrate the use of multiple outputs.

When there are multiple outputs, it is important to be specific about the order in which the outputs are

specified on the state diagram.

Example: Changing the color of an RGB LED every time a button is pressed

This finite-state machine will progress through a sequence of different colors every time a button is

pressed. This makes for an interesting example, as the button press can serve as the clock signal on

the flip-flops as well as the input value. Because each LED color corresponds to a state, this must be

designed as a Moore machine. The sequence of colors will be red → yellow → green → cyan → blue

→ white → back to red again.

Each of the outputs in the state diagram is ordered as shown below. That is, when there are three

numbers, the first would be the output of the red anode of the LED (FR), the second would be the

output of the green anode of the LED (FG), and the third would be the output of the blue anode of

the LED (FB).

state
FrFgFy

The full state diagram is relatively simple to derive, as no button press (X = 0) leads to no change

in color, and a button press (X = 1) leads to a change in color.

A
100

B
110

C
010

D
011

E
001

F
111

0

0

00

0

0

1

1

1

1

1

1

The state table is not derived in any different manner than how they were derived in previous

examples.
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Current State Next State Outputs

X=0 X=1 Fr Fg Fb

A A B 1 0 0

B B C 1 1 0

C C D 0 1 0

D D E 0 1 1

E E F 0 0 1

F F A 1 1 1

Use T flip-flops to design this circuit. The state assignments are mostly arbitrary except for our

choice of the 000 state, which will correspond to state A.

• A – 000

• B – 001

• C – 010

• D – 011

• E – 100

• F – 101

Put this all together into a transition table.

Current State Next State Flip-Flop Values Outputs

X=0 X=1 X=0 X=1 Fr Fg Fb

000 000 001 000 001 1 0 0

001 001 010 000 011 1 1 0

010 010 011 000 111 0 1 0

011 011 100 000 001 0 1 1

100 100 101 000 001 0 0 1

101 101 000 000 101 1 1 1

110 ××× ××× ××× ××× × × ×

111 ××× ××× ××× ××× × × ×

The Boolean expressions for the flip-flops and outputs can be derived from k-maps, Quine-
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McCluskey, or Boolean algebra.

TA = XC(A+B)

TB = XA′C

TC = X

FR = B′(A′ + C)

FG = B + C

FB = A+BC

13.6.2 Multiple Inputs

So far, each of the examples we have analyzed have only had a single input. However it is possible to have

more than one input. In the case of multiple inputs, more next-state columns are required in a state table.

For every n inputs, there will be 2n next state columns on the state table.

When using multiple inputs, it is very important to ensure that transitions corresponding to each possible

input combination accounted for. (It is much easier to account for each transition when there is only one

input value!) A method for checking for the completeness of state diagrams are described in a subsequent

section of this chapter.

Example: Sequence detector capable of detecting 2-bit binary numbers

Design a Moore machine that detects the sequence 0–2–3 (00–10–11 in binary). Each of the states is

described below.

• reset (output = 0)

• 0 detected (output = 0)

• 0–2 detected (output = 0)

• 0–2–3 detected (output = 1)
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S0
0

S3
1

S1
0

S2
0

1, 2, 3

0

0

1, 3

2

1, 2
3

0

1, 2, 3

0

Current State Next State Output

XY=00 XY=01 XY=10 XY=11 Z

S0 S1 S0 S0 S0 0

S1 S1 S0 S2 S0 0

S2 S1 S0 S0 S3 0

S3 S1 S0 S0 S0 1

13.6.3 Incompletely Specified State Machines

There are different ways in which a finite-state machine can be incompletely specified. We have already

seen what happens when we have to use n flip-flops and fewer than 2n states; in those situations the state

assignments that are unused become don’t cares.

Another way in which a finite-state machine can be incompletely specified is in the input values. It’s

possible that there may be some binary values corresponding to the input variables that are not accounted

for. In those situations, the next states, outputs, and flip-flop values will be don’t cares.

Example: Slightly more complicated vending machine

Design a Mealy machine vending machine that has a candy bar that costs $20. Change is given

(G = 1) when more than $20 has been inserted, otherwise no change is given. The candy bar is

vended (V = 1) when at least $20 has been inserted into the vending machine, otherwise no candy

bar is vended (V = 0). The output is shown on the state diagram in the form GV . The input is in the

form XY where 00 indicates no money has been inserted, 01 indicates that a $5 bill has been inserted,

10 indicates that a $10 bill has been inserted, and 11 will never happen. Each state corresponds to

how much money has been inserted into the vending machine.
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$0

$5

$10

$15

00
00

01
00

10
00

00
00

01
00

10
00

10
01

01
00

00
00

00
00

01
01 ,

10
11

Current Next State Outputs (GV)

State XY=00 XY=01 XY=10 XY=11 XY=00 XY=01 XY=10 XY=11

$0 $0 $5 $10 × 00 00 00 ××

$5 $5 $10 $15 × 00 00 00 ××

$10 $10 $15 $0 × 00 00 01 ××

$15 $15 $0 $0 × 00 01 11 ××

13.6.4 Alphanumeric State Diagrams and State Diagram Completeness

Sometimes, it can be simpler to use alphanumeric notation for input variables rather than to define binary

numbers for each transition on a state diagram.

Let’s say we have a state machine that corresponds to three positions that a remote controlled vehicle

can be in. The vehicle moves forward when the forward button (F ) is pressed and moved backward when

the reverse button (R) is pressed. A simplistic version of the state diagram is shown in Figure 13.18.

S0
Z0

S2
Z2

S1
Z1

F

R

F

R

F

R

Figure 13.18: Simplistic state diagram corresponding to a vehicle moving in forward or reverse through each
position.

However, this state diagram has some problems as currently defined. What happens if both inputs F

and R are zero simultaneously? That transition is not defined on the state diagram. What if both inputs F

and R are one simultaneously? That transition is over-defined on the state diagram, as the diagram shows
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movement in both directions, which shouldn’t be allowed. Priority should be given to one direction. As

circuit designers, we can choose to design our circuit however we wish to overcome these issues. For the

sake of showing a completed example, we will make the vehicle stay in its current state if both inputs are

zero simultaneously. We will also give priority to the F input, so F must be zero for reverse to occur. The

updated state diagram is shown in Figure 13.19.

S0
Z0

S2
Z2

S1
Z1

F

FR

F R

F

FR

F R

F

FR

F R

Figure 13.19: Updated state diagram corresponding to vehicle motion.

It can be difficult, and at times, unwieldy, to simply visually inspect the values of each transition to

determine if the states are complete or not. In that case, we can use an algorithm to check for state diagram

completeness.

To ensure that there are a sufficient number of transitions defined at each state, take the logical OR of

every transition coming out of each state. The result should be one. If the result is anything other than one,

then there is at least one combination of input values not accounted for.

Using the example given in Figure 13.18, we can take the logical OR of each transition coming out of

state S0.

F +R

Because this does not reduce to one, there are states missing. We can now see how the newly defined S0

from Figure 13.19 holds up to scrutiny.

F ′R′ + F + F ′R =

F ′ + F =

= 1

To ensure that there aren’t too many transitions defined at each state, take the logical AND of every

combination of transitions at each state. Each of these AND operations should result in zero.
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We can analyze the transitions from S0 from Figure 13.18.

FR

This implies that there are redundancies in the transitions. We saw that this corresponded to the issue

that arises when both F and R are one at the same time.

This problem is resolved in Figure 13.19, as shown.

(F )(F ′R′) = 0

(F )(F ′R) = 0

(F ′R′)(F ′R) = 0

13.7 Reduction of State Tables

We saw how to ensure that a sufficient number of transitions (but not too many!) are defined at each state.

But how can we ensure that we have the correct number of states defined in our finite-state machine in

the first place? What happens if we have over-defined some states in our state machine that are otherwise

redundant? There are two methods that we can use to reduce state tables to eliminate redundant states.

First, it is important to understand what defines redundant states. Two states are said to be equivalent

if they have the same output values (given the same input values, if it’s a Mealy machine), and if the next

states for each input value are equivalent.

13.7.1 Visual Reduction of State Tables

While this method is not foolproof (as we will see in the next section about implication tables), it is a good

start to help in the process of eliminating redundant states. Let’s consider the crafting of a disjoint window

Mealy machine that has an output of 1 when either sequence 0101 or 1001 is detected. If every possible

input combination is analyzed, table 13.4 shows the resulting state table.
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Input Sequence Current State Next State Output
X=0 X=1 X=0 X=1

reset A B C 0 0
0 B D E 0 0
1 C F G 0 0
00 D H I 0 0
01 E J K 0 0
10 F L M 0 0
11 G N P 0 0
000 H A A 0 0
001 I A A 0 0
010 J A A 0 1
011 K A A 0 0
100 L A A 0 1
101 M A A 0 0
110 N A A 0 0
111 P A A 0 0

Table 13.4: Overdesigned state table for a disjoint window Mealy machine.

It is pretty clear from visually inspecting this state table that many states are equivalent. For example,

H, I, K, M , N , and P all have A as the next state for both values of X, and the same output for both

values of X. Therefore, they are equivalent. It is also clear that J and L are equivalent. This newly reduced

state table is shown in table 13.5.

Current State Next State Output
X=0 X=1 X=0 X=1

A B C 0 0
B D E 0 0
C F G 0 0
D H H 0 0
E J H 0 0
F J H 0 0
G H H 0 0
H A A 0 0
J A A 0 1

Table 13.5: Overdesigned state table after a first round of visual state reduction.

Now that the first round of visual inspection has been completed, it is clear that D ≡ G and E ≡ F .

The final, reduced, state table is shown in table 13.6.
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Current State Next State Output
X=0 X=1 X=0 X=1

A B C 0 0
B D E 0 0
C E D 0 0
D H H 0 0
E J H 0 0
H A A 0 0
J A A 0 1

Table 13.6: Final version of the overdesigned state table.

13.7.2 Implication Tables

The visual reduction method is recommended as the first step in reducing state tables, because it is simple

and effective. However, it does not always find equivalent states. After completing a visual inspection of

equivalent states, an implication table should be used to confirm that there are no further equivalent states.

The state table shown in tab 13.7 does not have any obviously identical states. This doesn’t mean that

there aren’t any equivalent states, however!

Current State Next State Output
X=0 X=1

A D C 0
B F H 0
C E D 1
D A E 0
E C A 1
F F B 1
G B H 0
H C G 1

Table 13.7: State table with no obvious visual matches for equivalent states.

An implication table is used to compare each state with every other state. The steps for creating and

using an implication table are given below.

1. Construct a chart that contains a square for each pair (i, j) of states.

2. Compare pairs of rows on the state table.

• If Z is different for (i, j), place an × in the corresponding box to indicate that i ̸= j.

• If Z is the same, place the state names in the square.

• If the next states and outputs are the same, place a checkmark to indicate that i ≡ j.

3. Go through square by square. If i− j is an ×, place an × in that square.

4. If you made any ×’s in step 3, repeat until no more × are placed.

5. For each square that doesn’t have an ×, i ≡ j.
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The implication table corresponding to the state table in table 13.7 is shown in table 13.8.

A B C D E F G

H

G

F

E

D

C

B
D-F
C-H

×

C-E

×

×

D-B
C-H

×

×

F-A
H-E

×

×

F-B

×

×

D-A

E-F
D-B

×

E-C
D-G

×

×

A-B
E-H

×

C-F
A-B

×

A-G

×

F-C
B-G

×

Table 13.8: Implication table for the state table given in table 13.7.

The implication table, after this process has been carried out, is shown in table 13.9. The red ×’s

correspond to the first pass of step 3. The blue ×’s correspond to the second pass of step 3.

A B C D E F G

H

G

F

E

D

C

B
D-F
C-H

×

C-E

×

×

D-B
C-H

×

×

F-A
H-E

×

×

F-B

×

×

D-A

E-F
D-B

×

E-C
D-G

×

×

A-B
E-H

×

C-F
A-B

×

A-G

×

F-C
B-G

×

Table 13.9: Completed implication table for the state table given in table 13.7.

From the completed implication table, it can be concluded that A ≡ D and C ≡ E, by looking at the

boxes that do not contain an ×. The reduced state table is shown in table 13.10.
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Current State Next State Output
X=0 X=1

A A C 0
B F H 0
C C A 1
F F B 1
G B H 0
H C G 1

Table 13.10: Reduced state table after using an implication table.

13.8 State Machine Equivalence

Just as individual states can be deemed equivalent by using an implication table, entire state machines can

be checked for equivalence by using an implication table. Two sequential circuits are equivalent if for every

state Si on one circuit, there is an equivalent state Tj in the other.

Let us consider the two finite-state machines as described in the state tables in table 13.11.

Current State Next State Output
X=0 X=1 X=0 X=1

A B A 0 0
B C D 0 1
C A C 0 1
D C B 0 0

Current State Next State Output
X=0 X=1 X=0 X=1

S0 S3 S1 0 1
S1 S3 S0 0 0
S2 S0 S2 0 0
S3 S2 S3 0 1

Table 13.11: Two finite-state machine state tables.

An implication table is made in much the same manner as with the types used to determine state

equivalence; the major difference is that the implication table is square shaped to compare every state in

the first state machine with every state in the second state machine. When determining state equivalence,

the implication table is not square shaped because each state does not have to be compared with itself.

The implication table for the finite-state machines defined in table 13.11 are shown in table 13.12.
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S0 S1 S2 S3

D

C

B

A ×

C-S3
D-S1

A-S3
C-S1

×

B-S3
A-S0

×

×

C-S3
B-S0

B-S0
A-S2

×

×

C-S0
B-S2

×

C-S2
D-S3

A-S2
C-S3

×

Table 13.12: Implication table comparing the state tables shown in table 13.11.

Just as before, every square will be compared, and an × placed if the states inside the squares cannot

be equivalent. After going through one round of comparisons, the implication table is shown in table 13.13.

Because for each state in circuit one there is an equivalent state in circuit two, we can conclude that the two

circuits are equivalent. B ≡ S0, D ≡ S1, A ≡ S2, and C ≡ S3.

S0 S1 S2 S3

D

C

B

A ×

C-S3
D-S1

A-S3
C-S1

×

B-S3
A-S0

×

×

C-S3
B-S0

B-S0
A-S2

×

×

C-S0
B-S2

×

C-S2
D-S3

A-S2
C-S3

×

Table 13.13: Completed implication table comparing the state tables shown in table 13.11.

13.9 State Assignment

Up until right now, our state assignments have been mostly arbitrary (except for the reset state which is

given all zeros). When there are only a few states, finding the state assignments that lead to the lowest

cost (fewest gates and inputs) can be a simple trial-and-error process. However, the number of distinct

state assignments increases non-linearly with the number of states in a finite-state machine. The number of

flip-flops required to implement a circuit based on the number of states, and the number of distinct state
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assignments that can be made, are shown in table 13.14.

States Flip-Flops Distinct Assignments
2 1 1
3 2 3
4 2 3
5 3 140
6 3 420
7 3 840
8 3 840
9 4 10,810,800
... ... ...
16 4 ≈ 5.5× 1010

Table 13.14: Number of flip-flops required, and number of distinct state assignments possible, given the num-
ber of states in a finite-state machine.

The first step in ensuring the most optimized expressions is to make sure that the state table is fully

reduced (in other words: there are no redundant states) by using an implication table.

Once there are at least five states, it is not possible to use a trial-and-error approach to finding the

assignments that lead to the most minimized Boolean expressions for the flip-flops and output(s). The

following guidelines for state assignment can be used to help lead to optimized state assignments. Note that

these guidelines only apply when using D flip-flops.

1. States that have the same next state for a given input (columns) should be adjacent.

2. States that are the next states of the same state (rows) should be adjacent.

3. States that have the same output for a given input (columns) should be adjacent.

Assignments are said to be adjacent if they differ by only one variable. We saw earlier in this book

how this applied to adjacent squares in a k-map. Therefore k-maps can be used to place each state in the

assignment process.

The state table shown in table 13.15 cannot be reduced with an implication table. Because it has seven

states, it would take 840 trial and error takes to find the best state assignments leading to the most minimized

expressions.
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Current State Next State Output
X=0 X=1 X=0 X=1

A G B 0 1
B C E 0 0
C A D 1 0
D G B 1 1
E B F 0 0
F C A 0 1
G A E 1 1

Table 13.15: Example state table for a Mealy machine.

If a straight binary assignment (i.e. A=000, B=001, etc.) is used to assign states, the expressions would

use ninteen logic gates and sixty inputs. The transition table is shown in table 13.16.

Current State Next State Output
X=0 X=1 X=0 X=1

000 110 001 0 1
001 010 100 0 0
010 000 011 1 0
011 110 001 1 1
100 001 101 0 0
101 010 000 0 1
110 000 100 1 1
111 ××× ××× × ×

Table 13.16: Transition table (using a straight binary assignment) for the state table shown in table 13.15.

The corresponding expressions for the flip-flop inputs and the output are shown below.

A+ = X ′A′B′C ′ +XA′B′C +X ′BC +XAC ′

B+ = X ′A′B′ +XA′BC ′ +X ′C

C+ = AB′C ′ +XA′C ′ +XA′B

Z = XA′B′C ′ +X ′B +BC +XAC +AB

Instead, we will use the guidelines for state assignment to try to obtain a better optimization of expres-

sions. Guideline one means that we must examine the next state columns. Because states A and D both

have G as the next state, A and D should be adjacent. Because B and F both have C as the next state, B

and F should be adjacent, and so on. All of the states that should be adjacent based on guideline one are

listed below.

• A, D (× 2)

• C, G

• B, F
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• B, G

Guideline two means that we must examine the next states for each row in a state table. Because G and

B are the next states of A, G and B should be adjacent. Because C and E are the next states of B, C and

E should be adjacent. All of the guideline two states are shown below.

• B, G (× 2)

• C, E

• A, D

• B, F

• A, C

• A, E

Guideline three means that we must examine the output columns. All states that share a given output

value for an input value should be adjacent, as shown below.

• A, B, E, F

• C, D, G

• A, D, F , G

• B, C, E

It’s not possible to satisfy all of the recommendations from the guidelines. Guideline one has the most

importance, followed by guideline two and guideline three. Any states that show up multiple times to be

adjacent in any guideline should take the most weight.

A more optimized set of state assignments than the straight binary assignment are given below.

• A = 000

• B = 111

• C = 001

• D = 100

• E = 010

• F = 011

• G = 101
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Current State Next State Output
X=0 X=1 X=0 X=1

000 101 111 0 1
001 000 100 1 0
010 111 011 0 0
011 001 000 0 1
100 101 111 1 1
101 000 010 1 1
110 ××× ××× × ×
111 001 010 0 0

Table 13.17: More optimized transition table for the state table given in table 13.15.

The updated transition table is shown in table 13.17. This selection of state assignments leads to the use

of fifteen logic gates and thirty-nine inputs, which is a big improvement over the binary assignment.

The expressions for the flip-flops and output are shown below.

A+ = XA′B′ +X ′C ′ +AC ′

B+ = XC ′ +XA+BC ′

C+ = C ′ +X ′B

Z = XB′C ′ +X ′B′C +XA′BC +AB′

13.9.1 One-Hot State Assignment

The previous part of this section emphasized finding state assignments that lead to a minimized implemen-

tation of a finite-state machine (using as few flip-flops as possible, with expressions using a minimum number

of logic gates and inputs). Programmable logic devices such as FPGAs and PAL/GALs contain a flip-flop

on every output. It doesn’t necessarily make sense to reduce the number of flip-flops when using those types

of devices.

One-hot state assignment is a beneficial type of assignment to use when the number of flip-flops does

not need to be minimized. (Note that it is still beneficial to reduce the state table to a minimum number

of states!) There will be a flip-flop for every state; one flip-flop will be “hot” (have an output of one) at a

time. An example state table is shown in table 13.18. Note that there are four states, so there will be four

flip-flops.

Current State Next State Output
X=0 X=1 X=0 X=1

S0 S0 S1 0 0
S1 S2 S0 0 1
S2 S2 S3 1 0
S3 S1 S0 0 1

Table 13.18: Example state table for one-hot state assignment.
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The state assignments will be

S0(A,B,C,D) = 1000,

S1(A,B,C,D) = 0100,

S2(A,B,C,D) = 0010,

S3(A,B,C,D) = 0001.

Because only one flip-flop will have a value of one at a time, the state equations (using D flip-flops) are

simple to derive.

Flip-flop A (which is active when the circuit is in state S0) needs to be activated when X = 0 and the

circuit is in S0; when X = 1 and the circuit is in S1; or when X = 1 and the circuit is in S3. This leads to

the following expression for A+.

A+ = X ′A+XB +XD

Note that each term corresponds to the flip-flop that is active in the current state as well as the value of

X to get to the next state. Because only one flip-flop is active at a time, all of the other flip-flop values can

be ignored.

Flip-flop B (which is active when the circuit is in state S1) needs to be activated when X = 1 and the

circuit is in state S0; or when X = 0 and the circuit is in state S3. This leads to the following expression for

B+.

B+ = X ′D +XA

Flip-flop C (which is active when the circuit is in state S2) needs to be activated when X = 0 and the

circuit is in state S1; or when X = 0 and the circuit is in state S2. This leads to the following expression for

C+.

C+ = X ′B +X ′C

Flip-flop D (which is active when the circuit is in state S3) needs to be activated when X = 1 and the

circuit is in state S2. This leads to the following expression for D+.

D+ = XC

Finally, the output expression can be derived for Z. The output is one when X = 1 and the circuit is in

state S1; when X = 0 and the circuit is in state S2; or when X = 1 and the circuit is in state S3. This leads
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to the following expression for Z.

Z = XB +X ′C +XD

There may be an issue with one-hot state assignment. As has been discussed in this textbook, it is typical

to define a reset state that has a state assignment of all zeros. None of the states in the above example

would therefore be a good candidate for a reset state. If preset pins are available on the flip-flops, then this

challenge can be overcome by presetting the flip-flop corresponding to the reset state (in other words, the

reset state will be, for example, 1000, and can be entered into by presetting flip-flop A after powering up

the circuit). If there are no preset pins available on the flip-flops, then the expressions need to be modified.

Using the above example, let’s say that state S0 (corresponding to flip-flop A) is the reset state. To

obtain expressions that lead to a state assignment of all zeros for state S0, every term that has an A in

it needs to be complemented. This would lead to the following expressions. The state assignments would

become S0(A,B,C,D): 0000, S1(A,B,C,D): 1100, S2(A,B,C,D): 1010, and S3(A,B,C,D): 1001.

A+ = X ′A′ +XB +XD

B+ = X ′D +XA′

C+ = X ′B +X ′C

D+ = XC

Z = XB +X ′C +XD
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13.10 Example Problems

Moore Machines

1. Derive a state table for the state diagram shown in Figure 13.20.

A
0

D
1

C
0

B
0

E
0

F
1

0
1

1

0

0

1

0

1

0

1

0

1

Figure 13.20: State diagram corresponding to Moore machine question 1.

2. Given the state table shown in table 13.19 and the following state assignments, derive minimum SOP

expressions for each flip-flop and output using D flip-flops. A = 000, B = 001, C = 101, D = 010,

E = 011, F = 100.

Current State Next State Output
X=0 X=1

A A B 0
B C B 0
C D E 0
D A B 1
E F B 0
F D E 1

Table 13.19: State table corresponding to Moore machine question 2.
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3. Given the circuit diagram in Figure 13.21, and the state assignments (A = 00, B = 01, C = 10,

D = 11) derive a state diagram for the finite-state machine.

K Q

J Q

K Q

J Q

X

CLK

Y

Z

Figure 13.21: Moore machine finite-state machine circuit diagram.

4. Given the state table shown in table 13.20 and the state assignments (A = 000, B = 001, C = 010,

D = 100), derive minimum SOP expressions for each flip-flop and output using D flip-flops.

Current State Next State Output
X=0 X=1

A B C 0
B D A 1
C A D 0
D D B 0

Table 13.20: State table corresponding to Moore machine question 4.

5. Design a Moore machine that either counts up if X = 0 or counts out of order (0–4–5–1–2–6–7–3–0...)

if X = 1. The state assignment corresponds to the binary number of the state. The output is an even

parity bit. Use D flip-flops.
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Mealy Machines

1. Derive a state table for the state diagram shown in Figure 13.22.

A

B CF

E D

0
00

1
00

0
01

1
00

0
10

1
11

0
00

1
00

0
01

1
11

0
10

1
00

Figure 13.22: State diagram corresponding to Mealy machine question 1.

2. Derive the state table for a Mealy machine that generates an even parity bit for the three preceding

bits of input. Define all of the states.

3. Given the circuit diagram in Figure 13.23 and the state assignments (A = 00, B = 01, C = 10, D = 11)

derive a state table for the finite-state machine.

Q

T Q

Q

T Q

Z

X

Y

CLK

Figure 13.23: Mealy machine finite-state machine circuit diagram.
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4. Given the state table in table 13.21 and the state assignments (A = 000, B = 001, C = 011, D = 010,

E = 100, F = 101), derive expressions for the inputs to each JK flip-flop and the output Z.

Current State Next State Output
X=0 X=1 X=0 X=1

A D C 0 0
B E A 0 1
C F B 1 0
D A F 1 1
E C E 0 0
F B D 0 1

Table 13.21: State table corresponding to Mealy machine question 4.

5. Given the state diagram in Figure 13.24 and the state assignments (A = 000, B = 001, C = 010,

D = 100, E = 111) derive expressions for the inputs to each D flip-flop and the output Q.

A

B

C

E

D

0
0

1
0

0
1

1
1

0
0

1
1

0
0

1
0

0
1

1
0

Figure 13.24: State diagram corresponding to Mealy machine question 5.

Sequence Detectors

1. Derive a state diagram for a disjoint window Mealy machine that detects the sequence 1101.

2. Derive a state table for a non-overlapping sliding window Moore machine that detects the sequence

101101. Define each state that is required to implement the state machine.

3. Derive a state table for an overlapping sliding window Mealy machine that detects the sequence 10101.

Define each state that is required to implement the state machine.

4. Derive a state diagram for a non-overlapping Moore machine that has an output of one when two

consecutive ones are detected. Define each state that is required to implement the state machine.

5. Derive a state table for a Mealy machine that has an output of one when the sequence 01 is detected.

After 01 has been detected, 00 must be detected to enable another detection of 01. (The 00 can overlap

with the 01.) Define each state that is required to implement the state machine.
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State Machine Completeness

1. Consider the state diagram shown in Figure 13.25. Determine if any states have too many transitions,

too few transitions, both problems, or no problems.

S1 S2X
1

Y
0

XY
1

X’Y’
0

Figure 13.25: State diagram corresponding to state machine completeness question 1.

2. Consider the state diagram shown in Figure 13.26. Determine if any states have too many transitions,

too few transitions, both problems, or no problems.

S1
Y1

S2
Y2

S3
Y3

A

A’

B A

A’B’

A’

A+B

Figure 13.26: State diagram corresponding to state machine completeness question 2.

3. Consider the state diagram shown in Figure 13.27. Determine if any states have too many transitions,

too few transitions, both problems, or no problems.

A
Z0

B
Z1

D
Z3

C
Z2

X’X

X’Y’

XY

Y Y’

X

Y

Figure 13.27: State diagram corresponding to state machine completeness question 3.
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4. Consider the state diagram shown in Figure 13.28. Determine if any states have too many transitions,

too few transitions, both problems, or no problems.

Q0

Q1 Q3

Q2

R

R’S’

QR Q’+R’

Q’R

QRS Q+R

S

S’

Figure 13.28: State diagram corresponding to state machine completeness question 4.

5. Consider the state diagram shown in Figure 13.29. Determine if any states have too many transitions,

too few transitions, both problems, or no problems.

W
00

X
01

Z
11

Y
10

A+B

A’B’C’ B’C

A’

A

C’

BC

AB

A’B’

BC’

B

B’

Figure 13.29: State diagram corresponding to state machine completeness question 5.
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State Table Reduction

1. Reduce the state machine in Figure 13.30 to a minimum number of states.

F
0

C
0

B
1

E
0

D
0

A
11

0

1

0

0
1

0

10
1

0

1

Figure 13.30: State diagram corresponding to state table reduction question 1.

2. Reduce the state table in table 13.22 to a minimum number of states.

Current State Next State Output
X=0 X=1 X=0 X=1

A F B 0 0
B E A 0 1
C H G 0 1
D H D 1 0
E B F 1 1
F G B 0 0
G A C 0 0
H C A 1 1

Table 13.22: State table corresponding to state table reduction question 2.
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3. Reduce the state table in table 13.23 to a minimum number of states.

Current State Next State Output
X=0 X=1

a e e 1
b c e 1
c i h 0
d h a 1
e i f 0
f e g 0
g h b 1
h c d 0
i f b 1
j f a 0

Table 13.23: State table corresponding to state table reduction question 3.

4. Reduce the state table in table 13.24 to a minimum number of states.

Current State Next State Output
X=0 X=1 X=0 X=1

A B C 0 1
B C A 0 1
C D B 1 0
D C A 0 1

Table 13.24: State table corresponding to state table reduction question 4.

5. Reduce the state table in table 13.25 to a minimum number of states.

Current State Next State Output
X=0 X=1 X=0 X=1

A E D 0 0
B A F 1 0
C C A 0 1
D B A 0 0
E D C 1 0
F C D 0 1
G H G 1 1
H C B 1 1

Table 13.25: State table corresponding to state table reduction question 5.
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State Machine Equivalence

1. Using the state tables given in table 13.26, determine if the two state machines are equivalent.

Current State Next State Output
X=0 X=1

S0 S3 S1 0
S1 S0 S1 0
S2 S0 S2 1
S3 S0 S3 1

Current State Next State Output
X=0 X=1

A E A 1
B F B 1
C E D 0
D E C 0
E B D 0
F B C 0

Table 13.26: State tables for state machine equivalence question 1.

2. Using the state tables given in table 13.27, determine if the two state machines are equivalent.

Current State Next State Outputs
X=0 X=1

A B D 00
B D B 01
C C B 11
D A C 10

Current State Next State Outputs
X=0 X=1

S0 S2 S4 00
S1 S1 S2 11
S2 S4 S5 01
S3 S5 S4 00
S4 S3 S1 10
S5 S4 S2 01

Table 13.27: State tables for state machine equivalence question 2.

3. Using the state tables given in table 13.28, determine if the two state machines are equivalent.

Current State Next State Output
X=0 X=1

A A B 0
B C D 0
C B C 1
D D A 0

Current State Next State Output
X=0 X=1 X=0 X=1

S0 S0 S1 0 0
S1 S2 S3 0 0
S2 S1 S2 1 1
S3 S3 S0 0 0

Table 13.28: State tables for state machine equivalence question 3.
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4. Using the transition tables given in table 13.29, determine if the two state machines are equivalent.

Current State Next State Outputs
X=0 X=1

000 001 011 00
001 010 011 01
010 000 111 10
011 111 000 01
100 ××× ××× ××
101 ××× ××× ××
110 ××× ××× ××
111 011 001 11

Current State Next State Outputs
X=0 X=1

000 101 011 00
001 ××× ××× ××
010 ××× ××× ××
011 111 000 01
100 000 111 10
101 100 011 11
110 ××× ××× ××
111 011 101 00

Table 13.29: Transition tables for state machine equivalence question 4.

5. Using the circuit diagrams given in Figure 13.31, determine if the two state machines are equivalent.

Q

T Q

Q

T Q

K Q

J Q

K Q

J Q

Y

Z
X

CLK

Y

Z

CLK

X

Figure 13.31: Circuit diagrams for state machine equivalence question 5.
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14 Solutions to Example Problems

14.1 Chapter 1

Number System Conversions

1. 1101100.0011

2. 10001000

3. 11011.110

4. 223300010330

5. 63.51

Binary Addition

1. 01011

2. 11000

3. 00010

4. Overflow: adding two positive numbers yielded a negative result

5. 11001

Binary Subtraction

1. Overflow: negative minus positive should be negative, but the solution is positive

2. 0001

3. 101111

4. 0111

5. Overflow: positive minus negative should be positive, but the solution is negative

Binary Multiplication

1. Overflow: overflow bits indicate a negative solution, but the sign bit of the result indicates a positive

answer

2. 1111 1000

3. 11111 10111
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4. Overflow: overflow bits indicate a negative solution, but the sign bit of the result indicates a positive

answer

5. 111111 101110

Binary Codes

1. 0011 0101 0010

2. 0100 0111 0011

3. 1110001

4. 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000

5. 2-4-2-1 is a complete binary code. The numeral encodings for 0–9 in order are: 0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111, 1110, 1111

14.2 Chapter 2

Circuit Diagrams, Truth Tables, and Boolean Expressions

1. The circuit diagram for question 1 is shown in Figure 14.1.

F

A

B

A

C

A
B
C

Figure 14.1: Circuit diagram corresponding to question 1.

2. F and G are equivalent. You can use a truth table to show that they are equivalent, or you can reduce

both expressions to minimum SOP and verify that they are identical when reduced.

3. F and G are equivalent. You can use a truth table to show that they are equivalent, or you can reduce

both expressions to minimum SOP and verify that they are identical when reduced.
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4. The answer is shown in table 14.1

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 14.1: Truth table answer for Circuit Diagrams, Truth Tables, and Boolean Expressions question 4.

5. G = A(BC +B′C ′)

Minimum Sum of Products Expressions

1. F = A′B +A′C ′ +AB′C

2. F = CD′ +A′C ′D +BC ′D

3. F = BD +AC ′D +A′B′C

4. F = A′C +BD +AB′C ′D′

5. F = A′BC ′ +BC ′D

Minimum Product of Sums Expressions

1. F = (B + C)(A′ +B′)

2. F = (A′ +B + C +D)(A+B′ + C ′ +D′)

3. F = (B + C ′)(A′ +B +D′)(B′ + C +D′)

4. F = (A′ + C)(A+B)

5. F = (A+ C ′)(A+B + E′)(A′ +B′)(A′ + C +D)

XOR and XNOR Circuits

1. F = (A+B′ + C)(A′ +B +D′)(A′ +B′ + C ′)
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2. The answer is given in table 14.2

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 14.2: Truth table answer for XOR and XNOR circuits question 2.

3. F = (A+B)(B′ + C)(B′ +D)(B + C ′ +D′)

4. F = ACD +ABD +A′BD′

5. F = (W +X)(W + Z ′)(W ′ + Z)(X + Y )(W ′ +X ′ + Y ′)

14.3 Chapter 3

Design Applications

1. Warning light W = 0 (OFF) or 1 (ON). W = A′ + BC. Compressor C = 0 (OFF) or 1 (ON).

C = A′ +B + C +DE.

2. FRED = BC ′D′+AC ′+ABD′. FGREEN = B′C ′D+A′C+AB′D. FBLUE = A′B′C ′D′+A′BC ′D+

AB′CD′ +ABCD.

3. F = X ′Y ′A+XY B +XY A.

4. Motor M = 0 (OFF) or 1 (ON). Give change G = 0 (don’t give change) or 1 (give change). Enough

money E = 0 (not enough money was inserted) or 1 (enough money was inserted). Too much money

T = 0 (not too much money was inserted) or 1 (too much money was inserted). Selection button B =

0 (not pressed) or 1 (pressed). G = TB, M = EB or M = B(T + E).
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5. This answer names the two 2-bit unsigned binary inputs as AB and CD. The result, which is a 4-bit

number F3F2F1F0 (where F3 is the MSB and F0 is the LSB) is shown in Figure 14.2.

I1 Σ

I0 COUT

I1 Σ

I0 COUT

A

C
F3

F2

A

D

B

C F1

B

D
F0

Figure 14.2: Schematic of a 2-bit unsigned binary multiplier using half adders.

Minterm Expressions

1. FSOP (A,B,C) = A′B′ +B′C +ABC ′, FPOS(A,B,C) = (A+B′)(B′ + C ′)(A′ +B + C)

2. F (A,B,C,D) = AD +B′C ′D′. Don’t care term d11 was used to minimize the expression.

3. F (A,B,C) = B′ +A′C.

4. F (A,B,C,D) = A′C ′D′ +BD. Don’t care terms d5 and d15 were used to minimize the expression.

5. F (A,B,C,D) = (B′ +D)(A+B)(B + C). Don’t care term D0 was used to minimize the expression.

Maxterm Expressions

1. F (A,B,C) = A′B′ +AC ′

2. F (A,B,C) = (A+B′)(A′ + C ′). Don’t care term D7 was used to minimize the expression.

3. F (A,B,C,D) = (A+B)(A′ +B′ +C ′). Don’t care terms D0, D3, and D15 were used to minimize the

expression.

4. There are two possible solutions. Solution one is F (A,B,C,D) = (A′ +C)(A+C ′ +D)(A+B +C ′),

which uses don’t care term D12 to minimize the expression. Solution two is F (A,B,C,D) = (A′ +

C)(A+ C ′ +D)(A+B +D′), which uses don’t care terms D1 and D12 to minimize the expression.

5. F (A,B,C,D) = BD +AB′C. Don’t care terms d11 and d15 were used to minimize the expression.
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Minterm and Maxterm Expansions

1. F (A,B,C,D) = Σm(1, 3, 5, 7, 11, 15)

2. F (A,B,C,D) = Σm(1, 3, 6, 7, 8, 9, 10, 11)

3. F (A,B,C,D) = ΠM(0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 15)

4. F (A,B,C,D) = Σm(3, 5, 10, 11, 12, 13)

5. F (A,B,C,D) = ΠM(0, 1, 2, 3, 4, 5, 7, 9, 13)

14.4 Chapter 4

Three Variable K-Maps

1. F (A,B,C) = A′C + AC ′ + A′B′ (looping m0 with m1), or F (A,B,C) = A′C + AC ′ +B′C ′ (looping

m0 with m4). The k-map is shown in Figure 14.3.

A

BC 0 1

00 1 1

01 1 0

11 1 0

10 0 1

Figure 14.3: K-map corresponding to three variable k-map question 1.
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2. F (A,B,C) = A+BC. The k-map is shown in Figure 14.4.

A

BC 0 1

00 0 1

01 0 1

11 1 1

10 0 1

Figure 14.4: K-map corresponding to three variable k-map question 2.

3. Minterms: m0, m2, m3, m4, m5. Groups of 2: m0 −m2, m0 −m4, m2 −m3, m4 −m5.

4. F (A,B,C) = Σm(2, 6, 7). The k-map is shown in Figure 14.5.

A

BC 0 1

00 0 0

01 0 0

11 0 1

10 1 1

Figure 14.5: K-map corresponding to three variable k-map question 4.
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5. The k-maps are shown in Figure 14.6. Note that term AB′C cannot be both a zero and a one, making

it a don’t care term.

A

BC 0 1

00 0 1

01 1 1

11 1 0

10 0 0

A

BC 0 1

00 0 1

01 1 0

11 1 0

10 0 0

Figure 14.6: K-maps corresponding to three variable k-map question 5. The k-map on the left corresponds to
F = A′C +AB′, and the k-map on the right corresponds to G = (A′ + C ′)(B′ + C)(A+ C).

Four Variable K-Maps

1. F (A,B,C,D) = ABC ′ +A′C ′D +BD +ACD +A′CD′. The k-map is shown in Figure 14.7.

AB

CD 00 01 11 10

00 0 0 1 0

01 1 1 1 0

11 0 1 1 1

10 1 1 0 0

Figure 14.7: K-map corresponding to four variable k-maps question 1.
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2. F (A,B,C,D) = B′D′ +A′C +B′C. The k-map is shown in Figure 14.8.

AB

CD 00 01 11 10

00 × 0 × 1

01 0 0 × 0

11 1 1 0 1

10 1 1 0 ×

Figure 14.8: K-map corresponding to four variable k-maps question 2.

3. F (A,B,C,D) = (A+B′+C ′+D′)(A′+C+D′)(B+D)(A′+B). The k-map is shown in Figure 14.9.

AB

CD 00 01 11 10

00 0 1 1 0

01 1 1 0 0

11 1 0 1 0

10 0 1 1 0

Figure 14.9: K-map corresponding to four variable k-maps question 3.
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4. FSOP (A,B,C,D) = A′C+A′B′D+CD, FPOS(A,B,C,D) = (C+D)(A′+D)(B′+C)(A′+C). The

k-map is shown in Figure 14.10.

AB

CD 00 01 11 10

00 0 0 × 0

01 1 0 × 0

11 1 1 × 1

10 1 1 × 0

Figure 14.10: K-map corresponding to four variable k-maps question 4.

5. GSOP (A,B,C,D) = A′CD+A′B′C, GPOS = (A′)(C)(B′ +D). The k-map is shown in Figure 14.11.

AB

CD 00 01 11 10

00 0 0 × 0

01 0 0 × 0

11 1 1 × 0

10 1 0 × 0

Figure 14.11: K-map corresponding to four variable k-maps question 5.
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Prime Implicant Tables

1. F (A,B,C,D) = CD′ +A′BD. The PI table is given in table 14.3.

PI 2 5 6 7 10 14
A’BD × ×
A’BC × ×
CD’ × × × ×

Table 14.3: PI table for question 1.

2. F (A,B,C,D) = (B + C +D′)(B′ + C ′ +D)(A+B). The PI table is given in table 14.4.

PI 0 1 2 3 6 9 14
B+C+D’ × ×
A+C’+D × ×
B’+C’+D × ×
A+B × × × ×

Table 14.4: PI table for question 2.

3. F (A,B,C,D,E) = A′CE +ABDE′ +A′BC ′D. The PI table is given in table 14.5.

PI 5 10 11 15 26 30
A’CE × ×
A’BC’D × ×
BC’DE’ × ×
A’BDE × ×
ABDE’ × ×
BCDE ×
ABCD ×

Table 14.5: PI table for question 3.

4. The two minimum SOP expressions for F (A,B,C,D) are B′CD′+A′BC ′+AC+BC ′D and B′CD′+

A′BC ′ +AC +ABD. The PI table is given in table 14.6.

PI 2 4 5 10 11 13 14 15
A’C’D ×
B’CD’ × ×
A’BC’ × ×
AB’D’ ×
BC’D × ×
ABD × ×
AC × × × ×

Table 14.6: PI table for question 4.
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5. The essential PIs are (A+B′ + C ′) and (B′ + C ′ +D). The PI table is given in table 14.7.

PI 1 2 3 4 5 12 13 15 16 17 20 28 29
A+B+D+E’ × ×
B+C+E’ × × ×
B+C+D’ × ×
B+D’+E ×
A+C’+D × × × ×
A’+B+C × ×
A’+B+E × ×
A+B’+C’ × × ×
B’+C’+D × × × ×
C’+E × × × ×

Table 14.7: PI table for question 5.

14.5 Chapter 5

1. F (A,B,C) = A′C +AB′. The Quine-McCluskey columns are shown in table 14.8.

Column 1 Column 2 Column 3
one 1. 001 1-3: 0−1

4. 100 1-5: −01
two 3. 011 4-5: 10−

5. 101

Table 14.8: Quine-McCluskey columns for question 1.

2. F (A,B,C,D) = B′D′ +AB′. The Quine-McCluskey columns are shown in table 14.9.

Column 1 Column 2 Column 3 Column 4
zero 0. 0000 0-2: 00−0 0-2-8-10: −0−0
one 2. 0010 0-8: −000 0-8-2-10

8. 1000 2-10: −010 8-9-10-11 10−−
two 9. 1001 8-9: 100− 8-10-9-11

10. 1010 8-10: 10−0
three 11. 1011 9-11: 10−1

10-11: 101−

Table 14.9: Quine-McCluskey columns for question 2.
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3. F (A,B,C,D,E) = A′B′C ′D′E′ +AB′CE+A′B′CD or F (A,B,C,D,E) = A′B′C ′D′E′ +AB′CE+

B′CDE. The Quine-McCluskey columns are shown in table 14.10.

Column 1 Column 2 Column 3 Column 4
zero 0. 00000 6-7: 0011−
one – 6-14: 0−110
two 6. 00110 7-23: −0111
three 7. 00111 21-23: 101−1

14. 01110
21. 10101

four 23. 10111

Table 14.10: Quine-McCluskey columns for question 3.

4. F (A,B,C,D,E) = B′C ′D′+BDE+A′BE. The Quine-McCluskey columns are shown in table 14.11.

Column 1 Column 2 Column 3 Column 4
zero 0. 00000 0-1: 0000− 0-1-16-17: −000−
one 1. 00001 0-16: −0000 0-16-1-17

16. 10000 1-9: 0−001 –
two 9. 01001 1-17: −0001 9-11-13-15: 01−−1

17. 10001 16-17: 1000− 9-13-11-15
three 11. 01011 9-11: 010−1 11-15-27-31: −1−11

13. 01101 9-13: 01−01 11-27-15-31
four 15. 01111 11-15: 01−11

27. 11011 11-27: −1011
five 31. 11111 13-15: 011−1

15-31: −1111
27-31: 11−11

Table 14.11: Quine-McCluskey columns for question 4.
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5. Z(A,B,C,D,E, F,G) = ABC ′D′E′F ′G′+A′BDEF ′+B′C ′D′G. The Quine-McCluskey columns are

shown in table 14.12.

Column 1 Column 2 Column 3 Column 4
one 0. 0000001 1-3: 00000−1 1-3-5-7: 0000−−1 1-3-5-7- −000−−1
two 3. 0000011 1-5: 0000−01 1-3-65-67: −0000−1 65-67-69-71

5. 0000101 1-65: −000001 1-5-3-7 1-3-65-67-
65. 1000001 3-7: 0000−11 1-5-65-69: −000−01 5-7-69-71
96. 1100000 3-67: −000011 1-65-3-67 1-5-65-69

three 7. 0000111 5-7: 00001−1 1-65-5-69 3-7-67-71
44. 0101100 5-69: −000101 3-7-67-71: −000−11
67. 1000011 65-67: 10000−1 3-67-7-71
69. 1000101 65-69: 1000−01 5-7-69-71: −0001−1

four 45. 0101101 7-71: −000111 5-69-7-71
60. 0111100 44-45: 010110− 65-67-69-71: 1000−−1
71. 1000111 44-60: 01−1100 65-69-67-71

five 61. 0111101 67-71: 1000−11 44-45-60-61: 01−110−
69-71: 10001−1 44-60-45-61
45-61: 01−1101
60-61: 011110−

Table 14.12: Quine-McCluskey columns for question 5.

14.6 Chapter 6

NAND-Only Circuits

1. F (A,B,C,D) = [(A′BC ′)′(BC ′D)′(A′D)′]′

2. F (A,B,C,D) = [(BD′)′(A′C ′D)′(A′B′D)′(ABC)′]′

3. F (A,B,C,D) = {[A′B′(CD′)′]′[AB(C ′D′)′]′}′

4. F (A,B,C,D,E) = {A′(B′C)′(B[D′(EC ′)′]′)′}′

5. F (A,B,C,D) = {[(A′B′)′(ABD′)′(C ′D)′]′}′

NOR-Only Circuits

1. F (A,B,C) = [(A+B′ + C)′ + (A′ + C ′)′]′

2. F (A,B,C,D) = {[(B′ + C ′)′ +A]′ + [B + C ′ +D′]′}′

3. F (A,B,C,D,E) = {[A+ (B + C +D)′]′ + [B + C + (D′ + E′)′]′}′

4. F (A,B) = {[(A′ +B′)′ + (A+B)′]′}′

5. F (A,B,C,D) = {[(C ′ +D)′ +A+B]′ + [(C +D)′ +A′ +B′]′}′
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14.7 Chapter 7

Least Cost Implementation

1. Factored SOP is the lowest cost with four gates and eight inputs. F (A,B,C,D) = C(A′ +B′) +BD′

2. Factored POS is the lowest cost with five gates and twelve inputs. F (A,B,C,D) = (C ′+D+AB′)(C+

D′ +A′B′)

3. Factored SOP is the lowest cost with five gates and thirteen inputs. F (A,B,C,D,E) = B′C ′(D′ +

E) +A′BC(D + E)

4. POS is the lowest cost with four gates and twelve inputs. F (A,B,C,D) = (A + B + D′)(A′ + B′ +

D′)(B + C ′ +D′)

5. SOP is the lowest cost with three gates and seven inputs. F (A,B,C,D) = A′BD + CD′

Multiple Output Optimization

1. X(A,B,C,D) = A′C +BC ′D′ +AB′CD′, Y (A,B,C,D) = BC +BC ′D′ +AB′CD′. This implemen-

tation saves two gates and four inputs over using a minimum SOP implementation.

2. X(A,B,C,D) = B′CD′ + A′B′D′ + A′BCD, Y (A,B,C,D) = B′C ′D′ + A′B′D′ + A′BCD. This

implementation saves one gate and two inputs over using a minimum SOP implementation.

3. X(A,B,C,D) = B′C ′D + A′B′D′ + ABCD, Y (A,B,C,D) = AC ′D′ + A′B′D′ + ABCD. This

implementation is exactly the same as the minimum SOP implementation.

4. X(A,B,C,D) = B′D + BCD′ + A′BC, Y (A,B,C,D) = ABD′ + A′BC. This implementation is

exactly the same as the minimum SOP implementation.

5. X(A,B,C,D) = B′C+AC ′D+A′BCD, Y (A,B,C,D) = C ′D+ABC+A′BCD. This implementation

saves one gate and one input over using a minimum SOP implementation.
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14.8 Chapter 9

Timing Diagrams

1. The output Z(A,B,C) is shown in Figure 14.12. Note the static 1 hazard from 30–32 ns.

0 5 10 15 20 25 30 35 40

t (ns)

Z

Figure 14.12: Timing diagram for question 1.

2. The output F (A,B,C) is shown in Figure 14.13.

0 5 10 15 20 25 30 35 40

t (ns)

F

Figure 14.13: Timing diagram for question 2.

3. The output F (A,B,C,D) is shown in Figure 14.14. Note the static 0 hazard from 30–32 ns.

0 5 10 15 20 25 30 35 40

t (ns)

F

Figure 14.14: Timing diagram for question 3.

4. The output F (A,B,C,D) is shown in Figure 14.15.

0 5 10 15 20 25 30 35 40

t (ns)

F

Figure 14.15: Timing diagram for question 4.
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5. The output 1Y 1 is shown in Figure 14.16.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

t (ns)

1Y
1

Figure 14.16: Timing diagram for question 5.

Hazards

1. F (A,B,C) = AC +BC +A′B

2. F (A,B,C,D,E) = A′BCE′ +BCD′E′ +ABD′E′ +ABCD′ +B′CE + CDE +ACE

3. F (A,B,C,D) = [(A′B′C ′)′(A′B′D)′(A′BD′)′(B′CD)′(C ′D′)′]′

4. F (A,B,C,D) = [(B′ + C ′ +D)′ + (A′ + B + C ′)′ + (A′ + C ′ +D)′ + (A +D′)′ + (B +D′)′ + (C +

D′)′ + (A+B′)′]′

5. F (A,B,C,D) = [(A+ C)′ + (C +D′)′ + (A′ +D′)′ + (A′ + C ′)′ +B′]′

14.9 Chapter 10

Multiplexers

1. The schematic is shown in Figure 14.17.

2 to 1
MUX

2 to 1
MUX

A

F

I2

B

I0

I1

Figure 14.17: Circuit schematic corresponding to multiplexers question 1.

2. F (A,B,C,D) = A′D′(B′) +A′D(C) +AD′(1) +AD(C ′)

3. F (A,B,C,D) = B′D′(1) +B′D(A′) +BD′(A⊕ C) +BD(0)
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4. The timing diagram for F is shown in Figure 14.18.

0 10 20 30 40

t (ns)

Z

Figure 14.18: Timing diagram for question 4.

5. F (A,B,C,D) = A′C ′(D′ +B) +A′C(0) +AC ′(1) +AC(D′ +B)

Demultiplexers

1. The output timing diagrams are shown in Figure 14.19.

Z
0

Z
1

Z
2

0 10 20 30 40

t (ns)

Z
3

Figure 14.19: Timing diagram corresponding to demultiplexers question 1.
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2. The schematic is shown in Figure 14.20.

1 to 2
DEMUX

1 to 2
DEMUX

1 to 2
DEMUX

A

I

B

B

Z0

Z1

Z2

Z3

Figure 14.20: Circuit schematic corresponding to demultiplexers question 2.

3. Five control bits would be required.

4. Z0 = A′B′C ′I, Z1 = A′B′CI, Z2 = A′BC ′I, Z3 = A′BCI, Z4 = AB′C ′I, and Z5 = AB′CI

5. The schematic is shown in Figure 14.21.

3 to 8
decoder

A

BA

CB

EN

F0

F1

F2

F3

F4

F5

F6

F7

I

Z0

Z1

Z2

Z3

Figure 14.21: Circuit diagram corresponding DEMUX question 5.
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Decoders

1. There are an equal number of minterms and maxterms, so either implementation would work. The

circuit diagram is shown in Figure 14.22.

4 to 16
decoder

AA

BB

CC

DD

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F

4 to 16
decoder

AA

BB

CC

DD

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F

Figure 14.22: Circuit diagrams corresponding to decoders answer 1.
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2. There are fewer minterms, so that will be the most efficient implementation of F . The circuit diagram

is shown in Figure 14.23.

4 to 16
decoder

A A

B B

C C

D D

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F

Figure 14.23: Circuit diagram corresponding to decoders answer 2.

3. The correctly labeled schematic of the 3 to 8 decoder is shown in Figure 14.24.

EN

EN

ENC

Vcc

A

A
B

B

F0

F2

F4

F6
F1

F3

F5

F7

Figure 14.24: Decoder schematic corresponding to question 3.
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4. Because there are fewer minterms, that leads to the minimum implementation. The corresponding

circuit diagram is shown in Figure 14.25.

3 to 8
decoder

AA

BB

CC

F0

F1

F2

F3

F4

F5

F6

F7

F

Figure 14.25: Circuit diagram corresponding to decoders answer 4.

5. The segment output expressions in minimum SOP form are Fa = B + AC + A′C ′, Fb = A′ + C ′,

Fc = B′ + C, Fd = B +AC +A′C ′, Fe = A′C ′, Ff = A+B′C ′, and Fg = A+B.

Encoders

1. 011

2. A = I2 + I3, B = I3 + I1I
′
2, DATA = I0 + I1 + I2 + I3

3. A = I ′0I
′
1I3 + I ′0I

′
1I2, B = I ′0I1 + I ′0I

′
2I3, DATA = I0 + I1 + I2 + I3

4. A2A1A0 = 010

5. A3A2A1A0 = 1001

Memory

1. 218 = 262,144 bytes

2. 2× 213 = 16,384 bytes

3. Sixteen address bits are required
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4. The schematic is shown in Figure 14.26.

2 to 4
dec

EN

A Q

256 × 8
ROM

EN

A Q

256 × 8
ROM

EN

A Q

256 × 8
ROM

EN

A Q

256 × 8
ROM

AA9

BA8

F0

F1

F2

F3

8

A7–A0

8

Q7–Q0

Figure 14.26: Extending 256 × 8 ROM to create 1024 × 8 ROM.

5. 16× 1024 = 16,384 bytes

Programmable Logic

1. F (A,B,C) = A′B′C ′ +A′BC ′ +AB′C
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2. The PAL/GAL digram is shown in Figure 14.27.

A

B

C

F (A,B,C)

6

6

6

×××

×××

×××

Figure 14.27: Simplified PAL/GAL diagram for question 2.

3. The input to the XOR gate should be one. This will toggle output values from zero to one and vice

versa.

4. F (A,B) = A′B +AB′
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5. P (A,B,C,D,E) = A′B′C ′D′ +A′B′C ′E′ and L(A,B,C,D,E) = A′ +B′C ′D′ +B′C ′E′. The PAL/-

GAL is shown in Figure 14.28.

A

B

C

D

E

P (A,B,C,D,E)

L(A,B,C,D,E)

10

10

10

10

10

××××

××××

×

×××

×××

Figure 14.28: Simplified PAL/GAL diagram for question 5.

14.10 Chapter 11

SR Latch

1. The output timing diagram is shown in Figure 14.29.

0 10 20 30 40

t (ns)

Q

Figure 14.29: Timing diagram corresponding to SR latch question 1.
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2. The schematic corresponding to this question is in Figure 14.30.

4 to 1
MUX

S
R

0

1

Q

Figure 14.30: Circuit schematic corresponding to SR latch question 2.

3. The latch will reset when G and H = 0. The latch will hold when G = 0 and H = 1. Any time G is

1, the latch will set.

4. The Q output is the output of the NAND gate with the S′ input. The Q′ output is the output of the

NAND gate with the R′ input.

5. The circuit diagram is shown in Figure 14.31.

S
R

Q

Figure 14.31: AND/OR SR latch circuit diagram corresponding to question 5.

D Latch

1. The timing diagram is given in Figure 14.32.

0 10 20 30 40

t (ns)

Q

Figure 14.32: Input signals for D latch question 1.
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2. The NAND gate D latch is shown in Figure 14.33.

Q

Q′

D

EN

Figure 14.33: NAND gate D latch corresponding to question 2.

3. The circuit diagram for the primary-secondary D flip-flop is shown in Figure 14.34.

EN Q

D Q

R Q

EN

S QD

EN

Q

Q′

Figure 14.34: Primary-secondary D flip-flop corresponding to question 3.

4. Pins four and thirteen are the enable pins. They are active HIGH enable.

5. There are two enable pins per latch and both are active LOW enable.

D Flip-Flop

1. On the next rising edge, Q = 0.

2. On the next rising edge, Q = 0.

3. The circuit diagram for a T flip-flop created from a D flip-flop is given in Figure 14.35.

Q

D Q
T

CLK

Q

Figure 14.35: A T flip-flop designed from a D flip-flop.
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4. The circuit diagram is given in Figure 14.36.

2 to 1
MUX

Q

D Q

Q

D Q

D

CLK

Q

Figure 14.36: D flip-flop that updates Q on both rising and falling edges.

5. The circuit diagram for the scan flip-flop is given in Figure 14.37.

Q

D Q

D

TE

TI

CLK

Q

Q′

Figure 14.37: Scan flip-flop circuit diagram.

T Flip-Flop

1. The timing digram is shown in Figure 14.38.

0 5 10 15 20 25 30 35 40 45 50

t (ns)

Q

Figure 14.38: Output signal for T flip-flop question 1.
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2. The timing diagram is shown in Figure 14.39.

0 5 10 15 20 25 30 35 40

t (ns)

Q

Figure 14.39: Output signal for T flip-flop question 2.

3. The circuit diagram for a JK flip-flop created from a T flip-flop is given in Figure 14.40.

Q

T Q

CLK

K

J
Q

Figure 14.40: A JK flip-flop designed from a T flip-flop.

4. The circuit diagram for an SR flip-flop created from a T flip-flop is given in Figure 14.41.

Q

T Q

CLK

Q

S
R

Figure 14.41: An SR flip-flop designed from a T flip-flop.

cbna Alyssa J. Pasquale, Ph.D. 330 Last updated: 2025/05/12



14 Solutions to Example Problems 14.10 Chapter 11

5. The circuit diagram for a T flip-flop with active LOW asynchronous preset and clear inputs is given

in Figure 14.42.

K Q

J Q

CLK

T

CLR

PRE

Q

Q′

Figure 14.42: A T flip-flop with active LOW asynchronous preset and clear using a JK flip-flop.

JK Flip-Flop

1. The output timing diagram is shown in Figure 14.43.

0 5 10 15 20 25 30 35 40 45 50

t (ns)

Q

Figure 14.43: Output signal for JK flip-flop question 1.

2. The output timing diagram is shown in Figure 14.44.

0 10 20 30 40

t (ns)

Q

Figure 14.44: Output signal for JK flip-flop question 2.
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3. The circuit diagram for a primary-secondary JK flip-flop is shown in Figure 14.45.

K Q

J Q

K Q

J QJ

K

Q

Q′

CLK

Figure 14.45: Primary-secondary JK flip-flop.

4. The circuit diagram for a JK flip-flop created from a D flip-flop is given in Figure 14.46.

Q

D Q

CLK

K

J
Q

Figure 14.46: A JK flip-flop created with a D flip-flop.

5. The circuit diagram for an AB flip-flop created from a JK flip-flop is given in Figure 14.47.

K Q

J Q Q

CLK

A

B

Figure 14.47: An AB flip-flop created with a JK flip-flop.
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Registers

1. The circuit diagram for the bidirectional shift register is given in Figure 14.48.

Q

D Q

S0

S1
Qn+1

S0

S1
Qn−1

S0

S1

N

CLK

S0

S1

Figure 14.48: Control logic for a bi-directional shift register.

2. The SR flip-flop SISO register is shown in Figure 14.49.

R Q

S Q

R Q

S Q

R Q

S Q

R Q

S Q OUT

CLK

IN

Figure 14.49: 4-bit SISO register designed from SR flip-flops.

3. 200 ns
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4. The 8-bit bidirectional shift register is shown in Figure 14.50.

74LS194

CLR

S0

S1

CLK

SRSER

A

B

C

D

SLSER

74LS194

CLR

S0

S1

CLK

SRSER

A

B

C

D

SLSER

QA QA

QB QB

QC QC

QD QD

QA QE

QB QF

QC QG

QD QH

CLR

S0

S1

CLK

SR SER

A

B

C

D

E

F

G

H

SL SER

Figure 14.50: Two 74LS194 bidirectional shift registers daisy-chained together to create an 8-bit bidirectional
shift register.

5. Initial value: 0000, then 1000, 1100, 0110, 1011, 0101, 0010

Synchronous Counters

1. DA = A′(B ⊕ C), DB = A′ ⊕ C, DC = A′(B′ + C)

2. TA = B ⊕ C, TB = B′ ⊕ C, TC = B′C ′ +AC

3. TA = A′ ⊕B, TB = B ⊕ C, TC = A(B + C ′)

4. The actual state diagram for the counter designed using don’t cares on state 000 is shown in Fig-

ure 14.51.

0 7 1

3

2

6

Figure 14.51: State diagram for the synchronous counter designed in question 4.
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5. DA = A′C ′, DB = A′, DC = A+B′C

Ripple Counters

1. The schematic for the 4-bit ripple counter designed from D flip-flops is shown in Figure 14.52.

Q

D Q

D

QD

Q

D Q

C

QC

Q

D Q

B

QB

Q

D Q

A

QA

CLK

Figure 14.52: 4-bit ripple counter designed from D flip-flops.

2. The schematic for the 3-bit ripple down counter designed from T flip-flops is shown in Figure 14.53.

Q

T Q

C

QC

Q

T Q

B

QB

Q

T Q

A

QA

CLK

Figure 14.53: 3-bit ripple down counter designed from T flip-flops.

3. The circuit diagram for the 4-bit ripple counter is shown in Figure 14.54.

K Q

J Q

D

CLR

QD

K Q

J Q

C

CLR

QC

K Q

J Q

B

CLR

QB

K Q

J Q

A

CLR

QA

CLK

Figure 14.54: Ripple counter that counts from 0–11 designed from JK flip-flops.
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4. The circuit diagram for the 4-bit ripple counter is shown in Figure 14.55.

Q

T Q

D

QD

PRE

CLR
Q

T Q

C

QC

PRE

CLR
Q

T Q

B

QB

PRE

CLR
Q

T Q

A

QA

PRE

CLRCLK

Figure 14.55: Ripple counter corresponding to question 4.

5. The timing diagrams are shown in Figure 14.56. Notice the output glitch between 260–270 ns corre-

sponding to the delay on the NAND gate causing the asynchronous clear.

C
L
K

Q
C

Q
B

0 40 80 120 160 200 240 280 320

t (ns)

Q
A

Figure 14.56: Output signals for 3-bit 0–5 counter.
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Moore Machines

1. The state table is shown in table 14.13.

Current State Next State Output
X=0 X=1

A A B 0
B C B 0
C D E 0
D A B 1
E F B 0
F D E 1

Table 14.13: State table for Moore machine question 1.

2. A+ = X ′A′C, B+ = A, C+ = X +A′B′C, Z = BC ′ +AC ′

3. The state diagram corresponding to the circuit diagram is shown in Figure 14.57.

A
00

C
10

B
01

D
11

0

1

0

1

0

1

0, 1

Figure 14.57: State diagram of the Moore machine corresponding to question 3.

4. JA = X ′C +XB, KA = X, JB = XA′C ′, KB = 1, JC = X ′A′B′ +XA, KC = 1, Z = C

5. DA = XB′C+XBC ′+X ′A′BC+X ′AB′+X ′AC ′, DB = X ′B′C+X ′BC ′+XA, DC = X ′C ′+XB,

EV EN = A⊕B ⊕ C
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Mealy Machines

1. The state table is shown in table 14.14.

Current State Next State Outputs (YZ)
X=0 X=1 X=0 X=1

A B F 00 00
B C D 01 00
C A C 10 11
D E C 00 00
E B E 01 11
F E B 10 00

Table 14.14: State table corresponding to Mealy machine question 1.

2. The state table for the Mealy machine even parity bit generator is shown in table 14.15. The state

definitions are S0 reset; A 0; B 1; C 00; D 01; E 10; F 11.

Current State Next State Outputs (YZ)
X=0 X=1 X=0 X=1

S0 A B 0 0
A C D 0 0
B E F 0 0
C C D 0 1
D E F 1 0
E C D 1 0
F E F 0 1

Table 14.15: State table corresponding to Mealy machine question 2.

3. The state table corresponding to the circuit diagram is shown in table 14.16.

Current State Next State Output (Z)
XY=00 XY=01 XY=10 XY=11 XY=00 XY=01 XY=10 XY=11

A A C A C 1 1 0 0
B B D B D 0 0 0 0
C C B C A 1 1 0 0
D D A D B 0 0 0 0

Table 14.16: State diagram of the Mealy machine in question 3.

4. JA = X ′C + XBC ′, KA = X ′ + C, JB = A′C ′ + X ′C ′ + XAC, KB = 1, JC = XA′ + X ′A,

KC = A′B′ +XB′, Z = XB′C +X ′B +BC ′

5. DA = SB′C ′ + S′BC, DB = AB′ + SA′, DC = S′A′C ′ + SB′C ′, Q = A′C + SA′B + S′C
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Sequence Detectors

1. The state diagram for the Mealy machine disjoint window detector (sequence: 1101) is shown in

Figure 14.58.

A

B

C

D

E

F

G

1
0

0
0

1
0

0
0

0
0

1
0

0
0 ,

1
1 0

0 ,
1
0

0
0 ,

1
0

0
0 ,

1
0

Figure 14.58: State diagram of the disjoint window Mealy machine detector (sequence 1101).

2. The state table for the Moore machine non-overlapping sliding window detector (sequence: 101101) is

shown in table 14.17. The states are S0 reset (Z = 0); S1 1 (Z = 0); S2 10 (Z = 0); S3 101 (Z = 0);

S4 1011 (Z = 0); S5 10110 (Z = 0); S6 101101 (Z = 1).

Current State Next State Output
X=0 X=1

S0 S0 S1 0
S1 S2 S1 0
S2 S0 S3 0
S3 S2 S4 0
S4 S5 S1 0
S5 S0 S6 0
S6 S0 S1 1

Table 14.17: State table of the non-overlapping sliding window Moore machine detector (sequence 101101).
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3. The state table for the Mealy machine overlapping sliding window detector (sequence: 10101) is shown

in table 14.18. The states are A reset; B 1; C 10; D 101; E 1010.

Current State Next State Output
X=0 X=1 X=0 X=1

A A B 0 0
B C B 0 0
C A D 0 0
D E B 0 0
E A D 0 1

Table 14.18: State table of the overlapping sliding window Mealy machine detector (sequence 10101).

4. The state diagram for the Moore machine sequential 1 detector is shown in Figure 14.59. S0 reset

(Z = 0), S1 1 (Z = 0), S2 11 (Z = 1).

S0
0

S1
0

S2
1

0

1

0

1

0

1

Figure 14.59: State diagram of the Moore machine sequence detector corresponding to question 4.

5. The state table for the Mealy machine sequence detector is shown in table 14.19. S0 reset; S1 0; S2

01; S3 0 after 01.

Current State Next State Output
X=0 X=1 X=0 X=1

S0 S1 S0 0 0
S1 S1 S2 0 1
S2 S3 S2 0 0
S3 S1 S2 0 0

Table 14.19: State table of the Mealy machine sequence detector from question 5.

State Machine Completeness

1. State S1 is over-defined for one transition and under-defined for one transition. State S2 is under-

defined for two transitions.

2. State S1 has no problems. State S2 is over-defined for one transition. State S3 is under-defined for one

transition.
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3. States A and C have no problems. State B is under-defined for two transitions. State D is under-defined

for one transition and over-defined for one transition.

4. States Q1 and Q3 have no problems. State Q0 is under-defined for two transitions. State Q2 is

under-defined for two transitions and over-defined for two transitions.

5. State Z has no problems. State W is over-defined for one transition. State X is over-defined for six

transitions. State Y is under-defined for three transitions and over-defined for one transition.

State Table Reduction

1. The minimized state table is shown in table 14.20. A ≡ B, C ≡ D, and E ≡ F .

Current State Next State Output
X=0 X=1

A E A 1
C E C 0
E A C 0

Table 14.20: State table for state table reduction question 1.

2. The minimized state table is shown in table 14.21. A ≡ F ≡ G, B ≡ C, and E ≡ H.

Current State Next State Output
X=0 X=1 X=0 X=1

A A B 0 0
B E A 0 1
D E D 1 0
E B A 1 1

Table 14.21: State table for state table reduction question 2.

3. The minimized state table is shown in table 14.22. a ≡ b, c ≡ e, d ≡ g ≡ i, f ≡ h.

Current State Next State Output
X=0 X=1

a c c 1
c d f 0
d f a 1
f c d 0
j f a 0

Table 14.22: State table for state table reduction question 3.
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4. The minimized state table is shown in table 14.23. B ≡ D.

Current State Next State Output
X=0 X=1 X=0 X=1

A B C 0 1
B C A 0 1
C B B 1 0

Table 14.23: State table for state table reduction question 4.

5. The minimized state table is shown in table 14.24. A ≡ D, B ≡ E, and C ≡ F .

Current State Next State Output
X=0 X=1 X=0 X=1

A B A 0 0
B A C 1 0
C C A 0 1
G H G 1 1
H C B 1 1

Table 14.24: State table for state table reduction question 5.

State Machine Equivalence

1. The two state machines are equivalent. S0 ≡ E ≡ F , S1 ≡ C ≡ D, and S2 ≡ S3 ≡ A ≡ B.

2. The two state machines are equivalent. A ≡ S0 ≡ S3, B ≡ S2 ≡ S5, C ≡ S1, and D ≡ S4.

3. The two state machines cannot be equivalent; one of them is a Moore machine and the other is a Mealy

machine.

4. The two state machines are not equivalent.
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5. The two state machines are equivalent. The state diagram corresponding to the state machines is

shown in Figure 14.60.

A
00

B
01

C
10

D
11

0

1

0

1

0

1

0

1

Figure 14.60: State diagram of both state machines in question 5.
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