Name: .

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (25 points) Design a Mealy Machine that generates an even parity bit (Z) for the 3 preceding bits of input (X). An example sequence of inputs and outputs are given below. Define all of the states and derive a reduced state table. (There are exactly enough rows on the state table template that is given below.)

X =	0	0	1	1	0	1	1	0	0	1	0	1	0	1	0	0	1	1	1	1
Z =	0	0	1	0	0	0	0	0	1	1	1	0	1	0	1	1	1	0	1	1

Current State	Next	State	Output			
	X = 0	X = 1	X = 0	X = 1		

1

Current State	Next	State	Output			
	X = 0	X = 1	X = 0	X = 1		
A	F	В	0	0		
В	E	A	0	1		
C	H	G	0	1		
D	Н	D	1	0		
E	В	F	1	1		
F	G	В	0	0		
G	A	С	0	0		
Н	С	A	1	1		

2. Your buddy (who may or may not be any good at digital systems) gives you the following state table...

(a) (5 points) Is this a Mealy machine or a Moore machine? Explain how you know.

(b) (10 points) Use an implication table to reduce the number of states. Indicate which (if any) states are equivalent.

Exam 4

3. (20 points) Determine if the two sequential circuits (given below as state tables) are equivalent. Justify your answer.

C.S.	N.	YZ	
	X = 0	X = 1	
A	В	D	00
В	D	В	01
C	C	В	11
D	A	C	10

C.S.	N.	YZ	
	X = 0	X = 1	
S_0	S_2	S_4	00
S_1	S_1	S_2	11
S_2	S_4	S_5	01
S_3	S_5	S_4	00
S_4	S_3	S_1	10
S_5	S_4	S_2	01

4. (25 points) You wish to design a Moore machine non-overlapping sliding window detector that has an output Z = 1 when the input sequence contains **10101**. Clearly define all states that are required to implement this circuit, then draw the state diagram for this circuit.

Current State	Next	Output	
	X = 0	X = 1	
A	A	В	0
В	C	В	0
C	D	E	0
D	A	В	1
E	F	В	0
F	D	E	1

5. The following is a fully reduced state table.

(a) (5 points) How many flip-flops will you need to implement this circuit?

(b) (5 points) Implement the guidelines for state assignment. **Guideline 1: Guideline 2: Guideline 3:**

(c) (5 points) Use a K-map to determine state assignments for each state. Indicate the binary values for each state.

	AB						
C	00	01	11	10			
0							
1							

(d) (10 points) Fill out the corresponding transition table.

Current State	Next	Output (Z)	
	X = 0	X = 1	
000			
001			
011			
010			
100			
101			
111			
110			