Name: \_

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (30 points) Determine if  $M \equiv N$ . (Hint: you may first want to reduce each table to a minimum number of states!)

| M     |       |       |   |  |  |  |
|-------|-------|-------|---|--|--|--|
|       | X = 0 | X = 1 |   |  |  |  |
| $S_0$ | $S_3$ | $S_1$ | 0 |  |  |  |
| $S_1$ | $S_0$ | $S_1$ | 0 |  |  |  |
| $S_2$ | $S_0$ | $S_2$ | 1 |  |  |  |
| $S_3$ | $S_0$ | $S_3$ | 1 |  |  |  |

| N |       |       |   |  |  |  |
|---|-------|-------|---|--|--|--|
|   | X = 0 | X = 1 |   |  |  |  |
| A | E     | A     | 1 |  |  |  |
| В | F     | В     | 1 |  |  |  |
| С | E     | D     | 0 |  |  |  |
| D | E     | С     | 0 |  |  |  |
| E | В     | D     | 0 |  |  |  |
| F | В     | С     | 0 |  |  |  |

- 2. Create a **disjoint window** Mealy machine that detects the sequence **1101**. The output only occurs at the end of the window.
  - (a) (4 points) Given the following inputs, indicate the output at each time. (Hint: do we care what the output is during the first 3 clock cycles for a disjoint window detector?)

| x = | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| z = |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

(b) (7 points) Fill out the following state diagram with correct state names and transition / output arrows. Do not add any extra states, the state diagram template below is sufficient to realize this circuit!



(c) (1 point) How many flip-flops are necessary to build this sequential circuit?

- Exam 4
  - (d) (28 points) Fill out the following state table.

| Current<br>State | Next  | State | Output |       |  |  |
|------------------|-------|-------|--------|-------|--|--|
|                  | X = 0 | X = 1 | X = 0  | X = 1 |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |
|                  |       |       |        |       |  |  |

(e) (3 points) Use the guidelines for state assignment to find reduced binary representations for each state.
Guideline 1:

Guideline 2:

Guideline 3:

(f) (7 points) Use a K-map to determine state assignments for each state. Indicate the binary values for each state.

(g) (28 points) Fill out the following transition table.

| Current<br>State | Next  | State | Out   | put   |
|------------------|-------|-------|-------|-------|
|                  | X = 0 | X = 1 | X = 0 | X = 1 |
|                  |       |       |       |       |
|                  |       |       |       |       |
|                  |       |       |       |       |
|                  |       |       |       |       |
|                  |       |       |       |       |
|                  |       |       |       |       |
|                  |       |       |       |       |

|    |    | X  | A  |    |    |   |
|----|----|----|----|----|----|---|
| BC | 00 | 01 | 11 | 10 | BC | 0 |
| 00 |    |    |    |    | 00 |   |
| 01 |    |    |    |    | 01 |   |
| 11 |    |    |    |    | 11 |   |
| 10 |    |    |    |    | 10 |   |

(h) (20 points) Using D flip-flops, derive an equation for each flip-flop.

|    | XA |    |    |    |  |  |  |
|----|----|----|----|----|--|--|--|
| BC | 00 | 01 | 11 | 10 |  |  |  |
| 00 |    |    |    |    |  |  |  |
| 01 |    |    |    |    |  |  |  |
| 11 |    |    |    |    |  |  |  |
| 10 |    |    |    |    |  |  |  |

|    | XA |    |    |    |  |  |  |
|----|----|----|----|----|--|--|--|
| BC | 00 | 01 | 11 | 10 |  |  |  |
| 00 |    |    |    |    |  |  |  |
| 01 |    |    |    |    |  |  |  |
| 11 |    |    |    |    |  |  |  |
| 10 |    |    |    |    |  |  |  |

(i) (10 points) Derive an equation for the output.

|    | XA |    |    |    |  |  |  |
|----|----|----|----|----|--|--|--|
| BC | 00 | 01 | 11 | 10 |  |  |  |
| 00 |    |    |    |    |  |  |  |
| 01 |    |    |    |    |  |  |  |
| 11 |    |    |    |    |  |  |  |
| 10 |    |    |    |    |  |  |  |