Name: \qquad

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops must be shown on K-maps. Point values are as indicated.

1. (30 points) Determine if $M \equiv N$. (Hint: you may first want to reduce each table to a minimum number of states!)

	M		
S_{0}	S_{3}	S_{1}	0
S_{1}	S_{0}	S_{1}	0
S_{2}	S_{0}	S_{2}	1
S_{3}	S_{0}	S_{3}	1

	N		
	$X=0$	$X=1$	
A	E	A	1
B	F	B	1
C	E	D	0
D	E	C	0
E	B	D	0
F	B	C	0

2. Create a disjoint window Mealy machine that detects the sequence 1101. The output only occurs at the end of the window.
(a) (4 points) Given the following inputs, indicate the output at each time. (Hint: do we care what the output is during the first 3 clock cycles for a disjoint window detector?)

$x=$	0	0	1	1	0	1	1	0	1	1	0	1	0	1	0	0	1	1	0	1
$z=$																				

(b) (7 points) Fill out the following state diagram with correct state names and transition / output arrows. Do not add any extra states, the state diagram template below is sufficient to realize this circuit!

(c) (1 point) How many flip-flops are necessary to build this sequential circuit?
(d) (28 points) Fill out the following state table.

(e) (3 points) Use the guidelines for state assignment to find reduced binary representations for each state.

Guideline 1:

Guideline 2:

Guideline 3:

(f) (7 points) Use a K-map to determine state assignments for each state. Indicate the binary values for each state.
(g) (28 points) Fill out the following transition table.

(h) (20 points) Using D flip-flops, derive an equation for each flip-flop.

	$X A$			
$B C$	00	01	11	10
00				
01				
11				
10				

	$X A$			
$B C$	00	01	11	10
00				
01				
11				
10				

	$X A$			
$B C$	00	01	11	10
00				
01				
11				
10				

(i) (10 points) Derive an equation for the output.

	$X A$			
$B C$	00	01	11	10
00				
01				
11				
10				

