
Microcontrollers

ENGIN 2223

Alyssa J. Pasquale, Ph.D.

College of DuPage
cbna Alyssa J. Pasquale, Ph.D.

Contents

1 Changelog 15

2 Introduction 17
2.1 Author Note . 17

2.2 License & Attribution Information 17

3 Course Prerequisites 19

4 Introduction to Microcontrollers & Embedded System Design 21
4.1 Computer Components 21

4.2 Microprocessor . 23

4.3 Microcontroller . 23

4.4 Embedded Systems . 24

4.5 Choosing a Microcontroller 24

4.6 Atmel AVR Microcontroller & Arduino 25

4.7 Embedded System Programming 26

4.8 Compilers . 28

4.9 Embedded System vs. Computer Program Design 28

4.10 Top-Down Design / Bottom-Up Implementation 30

4.11 Design Tools . 31

4.12 Debugging . 32

5 General Principles of Microcontrollers 33
5.1 CPU Architectures . 33

5.2 Reduced Instruction Set Computing (RISC) 34

5.3 Machine Instructions . 34

5.4 Instruction Decoder . 37

5.5 Arithmetic and Logic Unit (ALU) 37

5.6 Registers . 37

5.7 Program Counter (PC) . 39

5.8 Memory . 40

5.9 Instruction Execution Process & Timing 44

6 Status Register (SREG) 47
6.1 I – Global Interrupt Enable Flag 47

6.2 T – Bit Copy Storage Flag 47

microcontrollers 3

6.3 H – Half Carry Flag . 48

6.4 N – Negative Flag . 48

6.5 V – 2’s Complement Overflow Flag 48

6.6 S – Sign Flag . 49

6.7 Z – Zero Flag . 49

6.8 C – Carry Flag . 49

6.9 Practice Problems . 49

7 Memory Addressing Modes 51
7.1 Flash Program Memory 51

7.2 SRAM Data Memory . 51

7.3 EEPROM Data Memory 53

7.4 Memory Addressing . 53

7.5 Bit Addressing . 61

7.6 The Stack & Stack Operations 61

7.7 Practice Problems . 63

8 Model Microcontroller 65
8.1 Microcontroller Instructions 65

8.2 Microcontroller Operation Codes (Opcodes) 66

8.3 Model Microcontroller Program 68

8.4 Practice Problems . 70

9 The ATmega328P Microcontroller 71
9.1 Pinout Diagrams . 71

9.2 Writing Programs to Memory 74

9.3 Fuse Bytes . 74

9.4 Practice Problems . 75

10 I/O Port Registers 77
10.1 Electrical Characteristics 78

10.2 Internal Pull-Up Resistors 79

10.3 Alternate Pin Functions 80

10.4 Practice Problems . 80

11 Analog to Digital Conversion 83
11.1 Sampling . 84

11.2 Quantization . 84

11.3 Encoding . 85

11.4 ADC Architectures . 86

11.5 The ADC on the ATmega328P 89

11.6 Digital to Analog Conversion 89

11.7 Practice Problems . 90

12 Sensors & Sensor Calibration 93
12.1 Choosing Resistor Values 95

4 alyssa j. pasquale, ph.d.

12.2 Sensor Calibration . 96

12.3 Mitigating Fluctuating Data & Sensor Noise 98

13 Interrupts 101
13.1 Program Flow . 101

13.2 Interrupt Service Routine (ISR) 102

13.3 ISR Execution . 102

13.4 ISR Categories . 103

13.5 Enabling / Disabling Interrupts 104

13.6 Practice Problems . 105

14 Clocks, Timers / Counters & Pulse-Width Modulation 107
14.1 ATmega328P Clock . 108

14.2 Timer / Counters . 109

14.3 Timer / Counter Modes of Operation 113

14.4 Pulse-Width Modulation (PWM) 114

14.5 Watchdog Timer (WDT) 118

14.6 Practice Problems . 119

15 Serial Communication 121
15.1 Simplex & Duplex . 122

15.2 Architecture . 122

15.3 Data Transfer Protocol . 122

15.4 Universal Synchronous / Asynchronous Receiver / Trans-
mitter (USART) . 123

15.5 Serial Peripheral Interface (SPI) 125

15.6 Two-Wire Interface (TWI) 127

15.7 Serial Communication Errors 129

15.8 Practice Problems . 130

16 Power Management & Sleep Modes 133
16.1 Sleep Modes . 133

16.2 Wake-Up Sources . 134

17 Control Systems & Feedback 135
17.1 Proportional Feedback Control 136

17.2 Proportional-Integral (PI) Control 137

17.3 Proportional-Integral-Derivative (PID) Control 138

18 C Concepts for Microcontrollers 141
18.1 Standard Datatypes . 141

Practice Problems . 142

18.2 Variable Scope & Keywords 143

18.3 Arrays . 145

18.4 Bitwise Operations . 146

Practice Problems . 149

microcontrollers 5

18.5 Comparison & Boolean Operators 150

Practice Problems . 151

18.6 Compound Operators . 151

Practice Problems . 151

18.7 Control Flow: Conditional 152

18.8 Control Flow: Iterative . 155

Practice Problems . 159

19 Assembly 161
19.1 Data Transfer Instructions 161

Practice Problems . 162

19.2 Arithmetic & Logic Instructions 162

Practice Problems . 163

19.3 Branch (Control Flow) Instructions 164

Conditional Control Flow 165

Iterative Control Flow . 168

Control Flow & SREG . 170

Practice Problems . 170

19.4 Bit Manipulation Instructions 171

19.5 Miscellaneous Instructions 173

20 Index 175

List of Figures

4.1 A block diagram of a computer, consisting of memory,
a central processing unit, inputs and outputs. 21

4.2 Two possible schematics of bus lines. 23

4.3 Hierarchy of "micro" devices: microcomputers consist of
microcontrollers, which consist of microprocessors. . . 23

4.4 Hierarchy of language types and their relation to efficiency
and simplicity. 27

4.5 Example flowchart of a circuit that blinks an LED on and
off with one second delays in between. 31

5.1 A Harvard CPU architecture features separate program
and data memory. 33

5.2 A von Neumann CPU architecture features a single bus
for program and data memory. 34

5.3 Block diagram of the ATmega328P central processing unit
(CPU). 35

5.4 Schematic of a 4-bit serial in / serial out (SISO) register. 38

5.5 Schematic of a 4-bit parallel in / parallel out (PIPO) reg-
ister. 38

5.6 Schematic of a 4-bit serial in / parallel out (SIPO) regis-
ter. 39

5.7 Schematic of a 2-bit parallel in / serial out (PISO) regis-
ter. 39

5.8 Schematic of a program counter (PC). 40

5.9 Schematic of a Static RAM cell. 41

5.10 Schematic of a Dynamic RAM cell. 42

5.11 Schematic of a flash floating-gate cell. 43

5.12 State diagram of microcontroller instruction execution pro-
cess. 45

5.13 Timing diagram of parallel instruction fetch process. . 46

5.14 Timing diagram of single cycle ALU operation timing. 46

7.1 Memory map of the flash program memory and SRAM
data memory on the ATmega328P. 52

microcontrollers 7

7.2 Memory addressing occurs in a simple system with a de-
coder. A 16 to 2

16 decoder is capable of addressing 65,536

words of data. 53

7.3 Direct, single register addressing occurs when an instruc-
tion contains a single general purpose register as an operand. 54

7.4 Direct, two register addressing occurs when an instruc-
tion contains two general purpose registers as operands. 54

7.5 I/O register addressing occurs when an instruction con-
tains an I/O registers as an operand. 56

7.6 Data direct addressing occurs when an instruction con-
tains a 16-bit data address as an operand. 57

7.7 Data indirect addressing occurs when an operand address
is the contents of an indirect addressing pointer register. 58

7.8 Data indirect addressing with displacement occurs when
an operand address is the result of the contents of an in-
direct addressing pointer register added to 6 bits (q) con-
tained in the instruction word. 59

7.9 Data indirect with pre-decrement addressing occurs when
an operand address is the contents of an indirect address-
ing pointer register, which is decremented prior to the
instruction. 59

7.10 Data indirect with post-increment addressing occurs when
an operand address is the contents of an indirect address-
ing pointer register, which is incremented after the instruc-
tion. 60

7.11 Program memory addressing accesses the full memory
space given by the address in pointer register Z. The LSB
of Z indicates if the low or high byte should be returned
as a result. 60

7.12 Direct program addressing accesses the full memory space
given by a pointer loaded into the program counter. . . 61

7.13 Bit addressing is used to access specific bits in registers. 61

7.14 Stack operations. (a) Memory in the stack, (b) after a PUSH

instruction, and (c) after a POP instruction. 62

8.1 A block diagram of the model microcontroller with in-
put and output devices, two registers, and an ALU. . . 65

8.2 Hardware schematic of a simple arithmetic and logic unit
(ALU). 69

9.1 Pinout diagram for 28-pin PDIP package. 71

9.2 Pinout diagram for 32-lead TQFP package. 72

9.3 Pinout diagram for 28-pad QFN package. 73

9.4 Pinout diagram for 32-pad QFN package. 73

8 alyssa j. pasquale, ph.d.

10.1 Hardware schematic of I/O port registers: DDRxn con-
trols the data direction, PORTxn controls the data sent
to output pins, and PINxn contains the data state of in-
put pins. 78

10.2 Hardware schematic of I/O port input pull-up resistors. 80

10.3 Hardware schematic of alternate I/O port functionality. 80

11.1 An analog signal takes on continuous values and contains
an infinite number of points. 83

11.2 An analog signal sampled every millisecond. 84

11.3 An analog signal sampled every 1 ms that has been quan-
tized in a 3-bit system. 84

11.4 Quantized analog signals and associated quantization er-
ror for a 3-bit ADC (left) and an 8-bit ADC (right). The
sample rate is 4× per millisecond. 85

11.5 A 3-bit flash analog to digital converter. 86

11.6 Process flow for a 4-bit successive approximation regis-
ter analog to digital converter. 87

11.7 A 12-bit pipelined ADC with 3-bit flash ADC stage. . . 88

11.8 Analog to digital converter block diagram. 89

11.9 Schematic of a 3-bit R-2R digital to analog converter. . 90

12.1 Diagram of how the TMP36 temperature sensor trans-
duces temperature to voltage, as well as how a photore-
sistor transduces light level to resistance. 93

12.2 Schematics of how to connect sensors that output (V) volt-
age and (R) resistance to the ADC on the ATmega328P. 94

12.3 The maximum and minimum voltages and contrast as
a function of the value of RC. 95

12.4 Linear relationship between temperature and ADC value
of the TMP36 temperature sensor, given by the TMP36

datasheet. 96

12.5 Example of one-point calibration; finding an offset value
changes the measured response to the ideal (expected)
result. 97

12.6 Example of multiple point calibration to determine the
ADC value given at different sound intensity levels. . . 98

12.7 Temperature data subjected to rolling average with dif-
ferent values of n. 99

12.8 Flow chart and example array of values in a circular buffer. 99

13.1 Program flow of software that uses continuous polling
to monitor systems, vs. software that uses interrupts to
asynchronously handle important events. 101

microcontrollers 9

13.2 The program counter is initialized to a value of 0x0000
when system power is shut off. 104

14.1 Schematic of the AVR clock distribution system. 109

14.2 Block diagram of each timer / counter unit on the AT-
mega328P. 110

14.3 Block diagram of the timer / counter output compare unit.111

14.4 Block diagram of the timer / counter 1 input capture unit.112

14.5 Using the timer / counter 1 input capture unit to calcu-
late the period of an input signal. 112

14.6 Using the timer / counter 1 input capture unit to calcu-
late the period and duty cycle of an input signal. . . . 113

14.7 Clear timer on compare match (CTC) mode waveform. 114

14.8 Pulse-width modulation waveforms with various duty
cycles. The average voltage is indicated with a dashed line.115

14.9 Pulse-width modulation waveforms with various frequen-
cies. All have a duty cycle of 25%. 115

14.10 Example of a fast PWM waveform. 116

14.11 Example of a phase-correct PWM waveform. 118

15.1 Schematic difference between parallel I/O (which uses
many wires) and serial I/O (which can use as few as one
wire). 121

15.2 USART block diagram. 123

15.3 SPI primary-secondary connection diagram. 125

15.4 Independent secondary configuration in SPI. 126

15.5 Daisy-chained secondary configuration in SPI. 126

15.6 Device configuration using the TWI protocol. 127

15.7 Overview schematic of the TWI module on the ATmega328P.128

17.1 The temperature response in the room with a single win-
dow. 135

17.2 Block diagram of proportional control. 136

17.3 Proportional control output. The setpoint value is the thick
black curve. The outputs are shown for a small value of
KP (dashed line, overdamped system) and a large value
of KP (gray solid line, underdamped system). 137

17.4 Block diagram of proportional-integral control. 137

17.5 Proportional-integral control output. The setpoint value
is the thick black curve. All outputs have KP = 0.1 The
dashed curve has no integral constant, the dark gray curve
has KI = 0.05, and the light gray curve has KI = 0.10. . 138

17.6 Block diagram of proportional-integral-derivative con-
trol. 138

10 alyssa j. pasquale, ph.d.

17.7 Proportional-integral-derivative control output. The set-
point value is the thick black curve. The dashed curve cor-
responds to only a proportional term with KP = 0.1. The
dark gray curve adds an integral term of KI = 0.05. The
light gray curve adds a derivative term of KD = 0.10. . 139

18.1 A flowchart representation of the difference between au-
tomatic and static variables. 144

18.2 A bitwise AND operation takes the logical AND of each
corresponding bit of the two operands. 147

18.3 A bitwise OR operation takes the logical OR of each cor-
responding bit of the two operands. 147

18.4 A bitwise XOR operation takes the logical OR of each cor-
responding bit of the two operands. 148

18.5 A bitwise NOT operation takes the logical NOT of each
bit of the operand. 148

18.6 An example bitshift right operation. 148

18.7 An example bitshift left operation. 149

18.8 A flowchart depicting the operation of microcontroller
during an if statement. 153

18.9 A flowchart depicting the operation of microcontroller
during an if/else statement. 153

18.10 A flowchart depicting the operation of microcontroller
during an if/else if/else statement. 154

18.11 Flowchart and associated code for a switch case statement.155

18.12 Flowchart indicating the usage of a for loop. 156

18.13 Flowchart indicating the usage of a while loop. 157

18.14 Flowchart indicating the usage of a do/while loop. . . 158

19.1 An example of conditional control flow (equivalent to a
simple if statement) in assembly. 165

19.2 An example of conditional control flow (equivalent to a
more complicated if/else statement) in assembly. . . 167

19.3 An example of iterative control flow (equivalent to a for

loop) in assembly. 168

19.4 Flowchart indicating the usage of a while loop. 169

19.5 Rotate left through carry. 172

19.6 Rotate right through carry. 172

List of Tables

1.1 Table of changes made to this textbook. 15

3.1 Prerequisite topics to understand before taking microcon-
trollers. 19

3.2 Recommended textbooks. 19

4.1 Five of the major 8-bit microcontrollers and their manu-
facturers. 24

4.2 Project requirement and additional accessory considera-
tions when choosing a microcontroller. 25

4.3 ATmega328P datasheet front page. 25

4.4 Embedded system vs. computer application programming
and resource differences. 28

4.5 Top-down design and bottom-up implementation process. 30

4.6 Hardware testing and software debugging procedures. . 32

5.1 Description of Static RAM modes of operation. 41

5.2 Description of Dynamic RAM modes of operation. . . . 42

5.3 Description of flash modes of operation. 44

6.1 Contents of the status register (SREG). 47

6.2 BCD arithmetic, adding 39 and 48 yields an incorrect sum
unless 6 is added again into the least significant nibble of
the result. 48

6.3 Information about the sign flag (S) flag based on the neg-
ative flag (N) and the 2’s complement overflow flag (V). . 49

7.1 Assembly code that loads immediate data to GP registers,
adds the contents together, and stores the result in a des-
tination register. 56

7.2 Assembly code that loads PIN data to GP registers, subtracts
the contents, and stores the result in a destination regis-
ter. 57

7.3 Assembly code that loads indirect from pointer register Y
with displacement. 59

12 alyssa j. pasquale, ph.d.

8.1 Listing and description of the instructions available from
a model microcontroller. 66

8.2 Model microcontroller instructions in machine code, reg-
ister transfer language, and assembly. 67

8.3 Program instructions for the model microcontroller. . . . 68

8.4 Program instructions for the model microcontroller in ma-
chine code given in both binary and hexadecimal. 68

8.5 Program instructions for the model microcontroller in as-
sembly language and register transfer language. 69

8.6 Listing and description of the four opcodes available on
the simple arithmetic and logic unit. 69

10.1 ATmega328P data ports and their corresponding Arduino
pins. 77

11.1 Listing of digital and analog sensors. 83

12.1 Various types of sensors. 93

12.2 Issues that can result if n is chosen to be either small or large.. 98

13.1 Abridged version of the ATmega328P interrupt vector ta-
ble. 103

14.1 A list of various clock sources. 107

14.2 Important definitions to understand the operation of the
timer / counter system. 111

15.1 SPI defined logic signals. 125

15.2 Example of error detection using parity-checking. 130

16.1 Sleep modes on the ATmega328P, indicating the active pe-
ripheral clocks. 133

16.2 Wake-up sources for each of the sleep modes on the AT-
mega328P. 134

18.1 C datatypes used on the Arduino Uno using the Arduino
IDE. 142

18.2 An array of six unsigned char variables. 145

18.3 An two-dimensional array consisting of ten unsigned char

variables. 146

18.4 Comparison operators with examples. 150

18.5 Boolean operators. 150

18.6 Compound operators with examples. 151

19.1 Logical instructions can be used to emulate bitwise oper-
ators. 162

microcontrollers 13

19.2 Branch instructions check the status of flags in SREG. . . 170

14 alyssa j. pasquale, ph.d.

1
Changelog

This section will be modified when changes are made to this text-
book.

Table 1.1: Table of changes made to this
textbook.

Date Chapter(s) Description of Change(s)

2021/02/15 all
Changed license to
CC-BY-NC-SA

2021/07/12 all
Modified formatting and
moved all figures to be in-line
with the text

2021/07/12 4.10

Included clarifying details on
top-down vs. bottom-up
design

2021/07/12 4.11

Updated list of simulation
software tools used in digital
systems

2021/07/12 4.11

Added caveat about
limitations to Tinkercad’s
Arduino simulation

2021/07/12 5.8

Added more explanation
about what is meant by
random-access memory and
included information on its
opposite (sequential-access
memory)

2021/07/12 9.1
Included more information
on each type of chip package

16 microcontrollers

2021/07/12 15

Changed terminology used in
serial communication
architecture (see author note)

2021/07/14 note
Added attribution
information

2022/03/23 14

Added more information on
fast PWM and phase-correct
PWM

2022/04/18 6

Added a reference for packed
BCD addition in the half
carry flag section

2022/04/20 10

Corrected a typo in output
low current section and
changed the wording in the
current-level compatibility
section to be more clear how
current and logic levels are
related.

2022/04/27 all
Made minor formatting
changes

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

2
Introduction

This book contains all of the information you will need to learn about
the ATmega328P microcontroller as well as about embedded sys-
tem design. First, microcontrollers and embedded systems will be
described and explained at a zoomed-out level. Then, each of the
peripheral features of the microcontroller will be explored in more
detail. These topics include I/O port registers, analog to digital con-
version, interrupts, timers/counters, clock systems, pulse-width
modulation, serial communication, memory addressing, CPU regis-
ters and condition codes, and a basic overview of assembly language.
Some chapters have additional practice problems to aid in studying
the material.

This book should be used in conjunction with the ATmega328P
datasheet1 as well as with the course lab manual. A list of other 1 Atmel, "ATmega328/P Datasheet

Complete," November 2016useful and recommended textbooks is included in chapter 3.

2.1 Author Note

The original versions of this textbook contained racist terminology
for terms used in serial communication. I am sincerely sorry for us-
ing this terminology, and am making a concerted effort to become
more educated. This has been changed as of 2021. However, due to
the fact that the ATmega328P microcontroller still uses this termi-
nology in their documentation, I will do my best to try to alleviate
confusion due to the differences in terminology. There is a great arti-
cle from Boston University that explains this situation.

2.2 License & Attribution Information

This book is licensed under creative commons as CC-BY-SA-NC. This
license allows reusers to distribute, remix, adapt, and build upon the
material in any medium or format for noncommercial purposes only,
and only so long as attribution is given to the creator. If you remix,

http://www.bu.edu/articles/2020/striking-out-racist-terminology-in-engineering/
http://www.bu.edu/articles/2020/striking-out-racist-terminology-in-engineering/

18 microcontrollers

adapt, or build upon the material, you must license the modified
material under identical terms. For more information, visit https:
//creativecommons.org.

This license (CC-BY-SA-NC) includes the following elements:
b BY – Credit must be given to the creator
n NC – Only noncommercial uses of the work are permitted
a SA – Adaptations must be shared under the same terms
The suggested attribution for this book is “Microcontrollers” by

Alyssa J. Pasquale, Ph.D., College of DuPage, is licensed under CC
BY-NC-SA 4.0.

The entirety of this work was created by Alyssa J. Pasquale, Ph.D.
All circuit diagrams and figures in this text were created by the au-
thor using LATEX libraries.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

https://creativecommons.org
https://creativecommons.org
https://doctor-pasquale.com/wp-content/uploads/2021/02/The-Yellow-Book.pdf
https://doctor-pasquale.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

3
Course Prerequisites

The topics in Table 3.1 should be well-understood before beginning
this course.

Prerequisite Topics

Number systems (especially decimal, binary and hexadecimal)
Binary arithmetic, both signed and unsigned
Detection of overflow in binary arithmetic (signed and unsigned)
Hexadecimal addition
ASCII code
Boolean logic
AND, OR, NOT, XOR, NAND, NOR gates
Multiplexers and decoders
Combinational and sequential logic design
Shift registers (especially PIPO, SIPO and PISO)

Table 3.1: Prerequisite topics to under-
stand before taking microcontrollers.

Textbooks that may assist you in learning the material for this
course are listed in Table 3.2.

Title Author

Introduction to Embedded Systems:
Using ANSI C and the Arduino
Development Environment

David Russell

The Atmel AVR Microcontroller:
MEGA and XMEGA in Assembly and
C

Han-Way Huang

AVR Microcontroller and Embedded
Systems: Using Assembly and C

Muhammad Ali Mazidi,
Janice Mazidi

Atmel AVR Microcontroller Primer:
Programming and Interfacing

Steven F. Barrett, Daniel
J. Pack

Table 3.2: Recommended textbooks.

4
Introduction to Microcontrollers & Embedded System
Design

To understand microcontrollers, one must first understand
computers. What is a computer? These ubiquitous devices may be
very familiar, but to understand their design more analytically, their
components must be understood. A block diagram, shown in Fig-
ure 4.1, breaks down the components of a computer.

MEMORY

CONTROL

UNIT

ARITHMETIC &

LOGIC UNIT (ALU)

INPUT(S) OUTPUT(S)

CENTRAL PROCESSING UNIT

Figure 4.1: A block diagram of a com-
puter, consisting of memory, a central
processing unit, inputs and outputs.

4.1 Computer Components

The main computer components, as highlighted in this block dia-
gram, include: memory, a control unit, an arithmetic and logic unit
(ALU), inputs, outputs, and bus lines. Each of these components are
explained briefly in this chapter, and then in more detail in chapter 5.

Computer Memory

Computer memory contains all of the information necessary to allow
the computer to boot up, run programs, and access data. The instruc-

22 microcontrollers

tions that tell the computer how to boot up is known as firmware.
Program memory is referred to as software. As discussed later, this
is much different from how microcontroller memory is organized.
However, memory still plays a large role in storing program instruc-
tions and variable data information.

Control Unit

The control unit reads and interprets program instructions. It also
sends control signals through the control bus. These signals instruct
the computer to read or write to memory, control the timing of data
transfer, and otherwise sequences the computer processor to take the
necessary steps in the necessary timing to carry out the program.

The control unit uses something called a program counter (which
is explored in more detail in chapter 5) to keep track of the current
instruction, and a special piece of memory known as the status reg-
ister (which is explained in chapter 6) to keep track of the most re-
cently executed operation.

Arithmetic and Logic Unit (ALU)

As may seem obvious from the name, the arithmetic and logic unit
(ALU) is capable of performing many arithmetic (addition, sub-
traction, multiplication) and logic (AND, XOR, OR) functions. The
functions that are available in the ALU dictate the types of instruc-
tions that are possible to execute on the computer. The ALU together
with the control unit form the central processing unit (CPU) of a
computer.

Input and Output (I/O) Devices

Computers use a large number of input and output devices. Input
devices gather information from the outside world to help the com-
puter make decisions about what processes to carry out. Common
computer inputs include: keyboard, mouse, touch screen, micro-
phone, switches, and light detectors. Output devices allow the com-
puter to display information for humans to see. Common computer
outputs include: monitor, speakers, haptic feedback, LEDs, displays,
and buzzers.

Bus Lines

Bus lines are interconnections between components. Bus lines are
simply connections of multiple "normal" wires. Bus lines in this
book are indicated by very thick lines. However, they may also be

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

introduction to microcontrollers & embedded system design 23

drawn as lines with a slash. A number next to the slash indicates
the number of bits in each bus. Both of these possibilities are shown
schematically in Figure 4.2.

n Figure 4.2: Two possible schematics of
bus lines.

Many "micro" devices exist today: microcomputers, micro-
controllers, and microprocessors. Understanding this hierarchy of
devices, outlined in Figure 4.3, will put microcontrollers in context,
after which they will be focused on exclusively.

microprocessor

microcontroller

microcomputer
Figure 4.3: Hierarchy of "micro" de-
vices: microcomputers consist of
microcontrollers, which consist of
microprocessors.

4.2 Microprocessor

A microprocessor is a single integrated circuit (IC), generally con-
sisting of just the CPU. If you have ever built a computer, this is the
part that you purchase from AMD or Intel, and place into the moth-
erboard. Thermal paste is put on top to thermally link it to a heat
sink, which allows heat to safely dissipate away from the sensitive
electronics inside of the processor. Less expensive, less powerful mi-
croprocessors are available for tasks that are not as extensive as those
needed in general purpose computing. Advantages of microprocessors

• Small

• Inexpensive

• Customizable and versatile: the user
can decide what and how many
peripheral devices to include

Disadvantages of microprocessors

• No on-chip memory

• No peripheral functions included

• Cannot use directly with I/O
devices

4.3 Microcontroller

A microcontroller is a microprocessor that includes memory and
I/O functionality. These are used in embedded systems, and are
ubiquitous in today’s technological world. Five of the major 8-bit
microcontrollers are outlined in Table 4.1.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

24 microcontrollers

Vendor Microcontroller(s)

Freescale Semiconductor 68HC08/68HC11

Intel 8051

Zilog Z8

Microchip AVR*
PIC

Table 4.1: Five of the major 8-bit micro-
controllers and their manufacturers.

Each of the microcontrollers listed in Table 4.1 has a specific in-
struction set, their own set of peripheral devices and I/O pins, and
are generally not interchangeable. *Note: Atmel, the original pro-
ducer of AVR microcontrollers, was acquired by Microchip in 2016.
Many AVR manuals and datasheets still contain the Atmel logo.

4.4 Embedded Systems

Whereas a PC or a laptop is a general use machine (used for games,
Internet, music, word processing, etc.) embedded systems refer to
single-function devices. There are many examples of these in the
world around us, but a good rule of thumb is that an embedded
system is capable of performing computations without the use of
an operating system (such as Windows, Linux, macOS, iOS, etc.).
Embedded systems can be found in watches, MP3 players, vending
machines, and more. In these examples, a full computer would be
detrimental to the operation of the device. Imagine having to boot up
Windows to run a dishwasher!

4.5 Choosing a Microcontroller

How does one choose a microcontroller to use in an embedded sys-
tem project? It first must meet all project requirements and it must
include peripherals and accessories that make it relatively simple to
develop products around the microcontroller. In addition, it is impor-
tant to ensure that the microcontroller not only is available now, but
will also be available into the future. Some considerations in making
this determination are outlined in Table 4.2.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

introduction to microcontrollers & embedded system design 25

Project Requirements

Speed
Packaging (DIP, surface-mount, etc.)
Power consumption
Memory
Peripherals (timers, ADC, etc.)
Number of I/O pins
Ease of upgrade
Cost

Additional Accessories

An available assembler
A debugger
A compiler for high-level programming languages such as C
Technical support

Table 4.2: Project requirement and
additional accessory considerations
when choosing a microcontroller.

4.6 Atmel AVR Microcontroller & Arduino

The microcontroller that will be used in this class is the AVR AT-
mega328P. It is packaged in an Arduino Uno which contains extra
features including (but not limited to): power regulator, bootloader,
USB connection, I/O pins connected to headers, and the availability
of the Arduino IDE for writing C code. The Arduino is a relatively
inexpensive microcontroller package. By the end of this class, you
will have all of the information you need to develop your own em-
bedded systems and "smart projects" at home using this platform.

The ATmega328P datasheet1 is the single most useful and im- 1 Atmel, "ATmega328/P Datasheet
Complete," November 2016.portant document to understanding everything that needs to be

known about the microcontroller. It is available for download on the
Microchip website. The first time you look at it, it may seem over-
whelming. Perhaps you only understand a few words here and there.
Do not be intimidated. Every time you refer to the datasheet, you
will find that you understand a little more. Eventually, your knowl-
edge will expand, and more and more of the datasheet will be part
of your understanding. At the very least, become comfortable with
the features of the ATmega328P, which are detailed on the front page
of the datasheet. Some of this front page has been paraphrased in
Table 4.3

Table 4.3: ATmega328P datasheet front
page.

High Performance, Low Power
Atmel AVR 8-Bit Microcontroller Family

Advanced RISC Architecture

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

26 microcontrollers

131 Powerful Instructions
32 × 8 General Purpose Working Registers
Up to 20 MIPS Throughput at 20MHz

High Endurance Non-volatile Memory Segments

32KBytes Flash program memory
1KBytes EEPROM
2KBytes Internal SRAM
Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
Data retention: 20 years at 85

◦C/100 years at 25
◦C

Peripheral Features

Two 8-bit Timer / Counters
One 16-bit Timer / Counter
Six PWM Channels
6-channel 10-bit ADC in PDIP Package
Programmable Serial USART
Primary/Secondary SPI Serial Interface
Byte-oriented 2-wire Serial Interface (Philips I2C compatible)
Programmable Watchdog Timer with Separate On-chip
Oscillator
On-chip Analog Comparator
Interrupt and Wake-up on Pin Change

Special Microcontroller Features

Power-on Reset and Programmable Brown-out Detection
Internal Calibrated Oscillator
External and Internal Interrupt Sources
Six Sleep Modes

Power Consumption at 1MHz, 1.8V, 25◦C

Active Mode: 0.2mA
Power-down Mode: 0.1µA
Power-save Mode: 0.75µA (Including 32kHz RTC)

4.7 Embedded System Programming

Computers and microcontrollers are useless without operating in-
structions, which are written in various programming languages.
There is a hierarchy of language types, from machine language to
high-level programming languages such as C. This hierarchy is de-
picted in Figure 4.4.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

introduction to microcontrollers & embedded system design 27

MACHINE

LANGUAGE

ASSEMBLY

LANGUAGE

HIGH-LEVEL

LANGUAGE

programs are more efficient

programs are easier to code

Figure 4.4: Hierarchy of language types
and their relation to efficiency and
simplicity.

Machine Language

Machine language is the instruction set of the microprocessor con-
verted into binary. For example, the instruction 0001 1101 0100 1111

on the ATmega328P adds numbers from two registers (15 and 20)
together. This code is then routed through hardware (the digital logic
“guts” of the microprocessor) via the instruction decoder to route the
appropriate control, address, and data signals to the associated hard-
ware to carry out the desired task. Machine language can be very
tedious to write and difficult to debug. It used to be accomplished
using punch cards and magnetic tape.

Assembly Language

Assembly language uses mnemonic codes to refer to each instruction
rather than the actual binary code. The above machine instruction
could be rewritten into assembly as ADD 15,20. Assembly is con-
verted into machine code by a program called an assembler. Families
of microcontrollers and microprocessors have specific instructions
that they are capable of carrying out. For this reason, assembly code
cannot be copy/pasted directly from an AVR microcontroller to an
Intel processor, for example. The ATmega328P, being an AVR mi-
crocontroller, uses the AVR instruction set. Being familiar with the
allowable instructions on a microcontroller means that code can be
written very efficiently and compactly; assembly code generally uses
less memory and takes less time to execute than code written using
higher-level languages. AVR assembly is discussed in more detail in
chapter 19.

High-Level Programming Language

High-level programming languages use functions to accomplish what
assembly and machine language does. Addition can be carried out
using familiar arithmetic symbols, for example: f = 152 + 38; High-

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

28 microcontrollers

level language code is converted into assembly and from there to
machine language by a compiler. Examples of high-level languages
are C, C++, Python and Visual Basic.

Using high-level languages means that more time can be spent
working on algorithms rather than on the specifics of what machine
instructions to call in assembly. Initialization occurs without specifi-
cally having to do so; the stack, stack pointer, memory addresses, etc.
are all allocated automatically by the compiler. In addition, high-level
programs in the same language can more-or-less be recycled from
one microcontroller to another (with caveats, not all registers have the
same names, some functions may be a bit different, etc.). C concepts
that are pertinent to microcontroller programming is discussed in
more detail in chapter 18.

4.8 Compilers

Compilers ensure that the high-level programming language code is
correct, both in syntax and in memory allocation. Errors or warnings
are usually displayed in these cases, and codes with errors are not
loaded onto the microcontroller. Once the code is correct, the com-
piler takes the code and converts it into assembly language, and from
there generates a HEX file which contains all of the machine code
that needs to go into memory on the microcontroller.

4.9 Embedded System vs. Computer Program Design

Designing for embedded systems is very different from writing pro-
grams for computer (desktop, laptop, and mobile) applications. This
has a lot to do with the resources, especially memory, available on
each type of device. These differences are outlined in Table 4.4.

Embedded System Computer

Program Data
Location

ROM RAM

RAM Capacity 2 kB (ATmega328P) Nearly unlimited

ROM Capacity
32 kB
(ATmega328P)

Nearly unlimited

Use of Peripherals
(ADC, clock, etc)

Frequent Rare

Assembly Code
Usage

Frequent Rare

Table 4.4: Embedded system vs. com-
puter application programming and
resource differences.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

introduction to microcontrollers & embedded system design 29

Desktop Memory

Desktop computers and laptops have a nearly unlimited supply of
memory of all types.

Onboard flash memory is used to store non-changing informa-
tion containing instructions that tell the computer what to do when it
boots up. This is usually known as BIOS (basic I/O system).

Random-Access Memory (RAM), while somewhat a misnomer,
stores program data while the program is running. For example,
clicking on a PDF copies the entire Adobe program into RAM where
it runs from there. This happens because there are many gigabytes of
RAM available on most computers, and RAM tends to be faster than
other computer memory types.

Read-Only Memory (ROM), which historically has mostly been
made from magnetic disk drives, and these days is being usurped by
solid-state memory, contains program executable storage and non-
variable data files.

Embedded Systems Memory

Embedded systems have much more limited memory capacity and
options.

Flash memory is non-volatile and stores program instructions and
defined (constant) data.

RAM is volatile memory that contains variable data. Because RAM
is a limited resource, it is necessary to be aware of size constraints
while writing applications. For example, an array with 500 float
values uses more RAM than the ATmega328P microcontroller can
support.

Use of On-Chip Features

With embedded systems, a lot of peripheral features are used to
interface with and control I/O devices, which doesn’t happen on a
PC. Configuring each of these peripheral functions requires a high ATmega328P Peripheral Features

• Analog to Digital Converters

• External Interrupts

• 8- and 16-Bit Timers

• Watchdog Timer

• USART, SPI, and TWI Serial Com-
munication

level of understanding of each of their individual control registers.

Use of Assembly Code

Assembly code is frequently, but not always, used to program in-
structions onto a microcontroller. Assembly code uses less memory

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

30 microcontrollers

than equivalent C code, and their programs tend to be more efficient.
Using assembly leads to great knowledge of the microcontroller.

4.10 Top-Down Design / Bottom-Up Implementation

For embedded control projects it is important to design before writ-
ing code or wiring up hardware. Rather than diving in head first and
starting to wire things up and write code, it is important to first un-
derstand the problem. Break down the project into as many modules
or parts as you can think of, and consider how they interconnect or
interrelate. This is called top-down design (as if you are looking at
the project from above and looking at each individual part). Once
each module or part has been defined, then design and implement
each one individually, rather than trying to tackle the entire project at
once. This is called bottom-up implementation. This design process is
explained in Table 4.5.

Top-Down Design

Understand the problem completely
– STOP – do not write any code yet!
– Specify requirements
– Think about possible errors
– Think about the "what", not the "how"
– Don’t get caught up in minutiae
Design in levels
– Break the problem into parts
– Then break those parts into even more parts
– Build a block diagram of all parts and how they interrelate
– Start refining details

Bottom-Up Implementation

Implement one subsystem at a time
– Implement simpler subsystems first
– Integrate everything at the end

Table 4.5: Top-down design and
bottom-up implementation process.

At every step, it is important to keep detailed documentation
of the project. Engineers keep notebooks in order to record ideas,
thoughts, requirements, things that don’t work, and things that do
work.

The benefits of this design strategy is that it helps to clarify the
problem. You can’t design something if you’re not completely sure
what it should do. In addition, as parts get broken down into smaller
pieces, they become less complicated. You may realize that parts of

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

introduction to microcontrollers & embedded system design 31

the solution may be reusable (e.g. a module built for one compo-
nent may have have code that can be used elsewhere in the design).
Finally, when breaking a system down into parts, more than one
person can work on the solution.

4.11 Design Tools

Design tools are always available to aid in project design and imple-
mentation.

One important design tool is the use of flowcharts. Flowcharts
describe the steps that a program must implement, so that it is sim-
pler to write the corresponding software code. Another benefit of
flowcharts is that they are language-independent. In other words,
given a flowchart, the program could then be implemented using
the C programming language as easily as in Assembly. An example
flowchart is shown in Figure 4.5.

START
configure pin D7

as output

turn on LED

(set pin D7)

delay 1 s

turn off LED

(clear pin D7)

delay 1 s

Figure 4.5: Example flowchart of a
circuit that blinks an LED on and off
with one second delays in between.

Another important design tool is circuit simulation software
which tests circuit functionality before wiring any hardware or writ-
ing any software code. Working with simulation software may be
a large part of your future job. There are many different software
packages that exist. You may have used CircuitVerse, Logisim, or NI
Multisim in Introduction to Digital Systems, which are hardware sim-
ulation packages. Tinkercad has circuit simulation software that al-
lows testing of both the hardware and software of the Arduino Uno.
This gives you the benefit of trying out new designs without nec-
essarily having any access to an Arduino or any other components.
(Note that not all Arduino functionality is possible on Tinkercad.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

https://circuitverse.org
http://www.tinkercad.com

32 microcontrollers

Notably, many of the serial communication protocols have not been
implemented in Tinkercad as of early 2020.)

4.12 Debugging

Once a project has been designed implementation is begun, it will
inevitably be time to start debugging. In order to make debugging as
painless as possible, be smart about how code is implemented. Work
on high-level functions first. Once they are working perfectly, add
other subroutines only one at a time. If more than one bit of extra
functionality is added at once, and something doesn’t work, it will be
difficult to determine what component of the design doesn’t work.
In the process, keep code well-commented, and document design
decisions, research, implementation ideas, and notes about what does
and doesn’t work (and why) in a design notebook.

If something doesn’t work (which will inevitably happen in any
design), rather than diving in headfirst and changing code, find out
what the code is actually doing. Then, and only then, can you change
it to what it should be doing. This requires an intimate understand-
ing of both the software and hardware components of your design.
It may first need to be determined if hardware or software is at fault.
For this reason it is imperative to test hardware before integrating it
with software, to avoid problems later on. Several hardware testing
and software debugging steps are suggested in Table 4.6.

Hardware Testing

Check that LEDs light before using them
Check pushbuttons with a multimeter on continuity mode
Use a tabletop multimeter or digital logic probe (for static
signals)
Use an oscilloscope (for time-varying signals)

Software Debugging

Code walkthroughs: have your peers take a look at your code
Walk through the code step-by-step and see what results
Comment out lines of code one line at a time until the program
works, then uncomment one line at a time until it doesn’t work

Table 4.6: Hardware testing and soft-
ware debugging procedures.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

5
General Principles of Microcontrollers

The central processing unit (CPU) of a microcontroller contains
many parts that are crucial to carrying out all possible instructions,
including the arithmetic and logic unit, registers, program counter,
instruction decoder, and memory.

5.1 CPU Architectures

There are two main types of CPU architectures used in computing
devices. Harvard architectures keep program and data memory
separate. This allows the microcontroller to simultaneously read
an instruction and write information to data memory. A simplified
Harvard architecture CPU block diagram is shown in Figure 5.1.
This simultaneous instruction and data access increases the speed
of the device. Separate storage also means that program and data
memories can be different widths. Data memory is restricted to 8

bits, but program memory is 16 bits on the ATmega328P.

CONTROL

UNIT

PROGRAM

MEMORY

DATA

MEMORY

ALUI/O

Figure 5.1: A Harvard CPU architecture
features separate program and data
memory.

In contrast, von Neumann architecture (named after mathemati-
cian and physicist John von Neumann) addresses program and data

34 microcontrollers

memory with a single bus. A simplified von Neumann architecture
CPU block diagram is shown in Figure 5.2. It is used extensively on
PCs because RAM and ROM are external to the CPU and using sepa-
rate wire-traces for each on the motherboard would be expensive.

CPU I/O

MEMORY

UNIT

Figure 5.2: A von Neumann CPU
architecture features a single bus for
program and data memory.

ATmega328P Microcontroller

The ATmega328P microcontroller makes use of a Harvard architec-
ture, meaning that program memory and data memory are stored
in different locations. A block diagram of the ATmega328P CPU is
shown in Figure 5.3. (Note that while virtually all of the intercon-
nects are in actuality buses, bus notation is not used in this block
diagram for simplicities sake.)

5.2 Reduced Instruction Set Computing (RISC)

Computers in the 1980s started to be programmed with every con-
ceivable instruction, not all of which were used, which led to very
complicated instruction codes and CPUs. Reduced instruction set
computing (RISC) processors use only a limited number of instruc-
tions and have a fixed instruction size; most ATmega328P instruc-
tions are 16 bits (some are 32 bits).

Computers making use of RISC generally feature many regis-
ters, because data cannot be manipulated directly in memory (data
must first be loaded into a register). RISC processors have a small
instruction set, which is not a problem when using a high-level pro-
gramming language such as C (but can make assembly coding more
tedious). Most RISC instructions can be completed within a single
clock cycle.

5.3 Machine Instructions

Instructions form the basis of all digital computing. A piece of binary
data, called an instruction, contains information about the specific
operation to be carried out. There are arithmetic operations such as

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 35

8-Bit Data Bus

32 × 8

General

Purpose

Registers

ALU

Data

Memory

D
ire

ct
A

dd
re

ss
in

g

EEPROM

Status

Register

Peripherals

Program

Counter

In
di

re
ct

A
dd

re
ss

in
g

Program

Memory

Instruction

Register

Instruction

Decoder

Control Lines

Figure 5.3: Block diagram of the AT-
mega328P central processing unit
(CPU).addition and subtraction, branch operations such as jump to another

piece of code, data transfer operations such as loading or copying
data from one place to another in memory, bit instructions such as
clearing and shifting data, and control instructions such as sleeping
or resetting the watchdog timer. In addition to containing informa-
tion about the operation (known as the opcode), the instruction also
contains information about what data is to be manipulated (known
as the operand or operands). Each of these instructions is then parsed
in hardware by the instruction decoder, which then routes the ap-
propriate control and data signals to the arithmetic and logic unit
(ALU).

In general, for every n opcodes, there must be a ⌈log2(n)⌉ bit num-
ber to store it. The AVR instruction set for 8-bit microcontrollers,
which is used for the ATmega328P microcontroller, has approxi-
mately 130 unique instructions.1 ⌈log2(130)⌉ = 8, which means that 8

1 Atmel, "AVR Instruction Set Manual,"
November 2016.bits are needed in each 16-bit instruction to specify which operation

will occur. This leaves only 8 bits for the remaining operand(s). There

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

36 microcontrollers

are 32 general purpose registers that can be used to temporarily store
data and many instructions exist that require the contents of two of
these registers. In that case, 8 bits is insufficient to properly address
both of these registers (each of which requires 5 bits to address).

To get around this limitation, the AVR instruction set uses the con-
cept of variable length instructions, or expanding opcodes. Instruc-
tions that have many or lengthy operands are designed to have short
opcodes while instructions with few or no operands are designed
to have long opcodes. Most AVR instructions are 16 bits, with a few
32-bit instructions used as needed. There are 32 general purpose
(GP) registers, and the ATmega328P additionally has 32,768 bytes
of program memory and 2,048 bytes of data memory, which need to
be addressed. In addition, there are other specialty registers such as
a status register and stack register that can be affected by machine
instructions.

To highlight the use of expanding opcodes, consider the following
instructions which run the gamut from having a long opcode to
having a short opcode.

• The instruction CLI is used to clear the global interrupt flag in the
status and control register SREG. Because this instruction requires
no operands, the full 16 bits of instruction are used to store the
opcode.

• The instruction NEG converts the contents of a single GP register
into a 2’s complement number. Because there are 32 GP registers, 5

bits are required for the operand, leaving 11 bits remaining for the
opcode.

• Most instructions have two GP registers as operands. For example,
the instruction ADD will sum the contents of two GP registers. 10

bits are required to address both of the operands, leaving 6 bits for
the opcode.

• A few instructions require very long operands. In order to prop-
erly address up to 4 MB of memory, it is necessary to use 22 bits of
data for the operand. In order to accomplish this, a 32-bit instruc-
tion is used. 22 bits are dedicated to the memory address with the
other 10 bits used for the opcode.

While expanding opcodes allows for much greater flexibility in
instruction operands, it also makes for more difficult instruction
decoding. This is because there is no longer a fixed position and
length for each opcode within each instruction.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 37

5.4 Instruction Decoder

The instruction decoder translates the instruction into appropriate
control and address signals. This can take place using combinational
logic gates or by using a programmed ROM. As an example, the
ADD (add without carry) instruction requires two general purpose
(GP) registers as operands (one of which is also designated as the
destination register where the result will be saved). The instruction
decoder will address these two GP registers and route their contents
to adder hardware in the ALU, then route the solution back to the
destination register.

5.5 Arithmetic and Logic Unit (ALU)

The ALU contains all of the hardware that is necessary to perform
arithmetic and logic operations. While most ALU hardware designs
are proprietary, taking a look at the instruction set gives a good idea
of the type of hardware that must be included within the ALU. For
example, the AVR ALU must contain, at the very least, an adder,
logic gates such as AND, OR, XOR, and NOT, and other similar
hardware.

5.6 Registers

Registers are ubiquitous in microcontroller design. General pur-
pose registers contain data that we can immediately operate on, and
allows us to store data with easy access to the ALU before saving re-
sults back to memory. Memory address registers or pointer registers
tell the microcontroller where to look in program data for the next
instruction to perform. Status registers (SREG on the ATmega328P)
store information related to the most recent operation that has been
executed on the microcontroller. I/O registers and extended I/O
registers (sometimes called peripheral registers) store information
regarding the operation of the I/O pins and their peripheral features.
Some of these, DDRxn, PORTxn, and PINxn are discussed in chapter 10.
In addition, there is a stack pointer register that is used to hold
memory addresses in short term storage.

Register Architectures

There are four main types of register architectures: serial in / serial
out (SISO), parallel in / parallel out (PIPO), serial in / parallel out
(SIPO) and parallel in / serial out (PISO). They are defined by their
size, which has to do with the number of flip-flops that they consist

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

38 microcontrollers

of, and ultimately tells us how many bits of data can be stored within
them. Data can be loaded either serially or in parallel. A shift oper-
ation can be added to registers to increase their functionality, at the
expensive of added electronics.

Serial in / serial out (SISO) registers can be used in data buffer-
ing, storing data temporarily while it is in between its source and its
destination. Serial data is sent to the input of the first flip-flop, and
at each clock cycle the signal is shifted through subsequent flip-flops.
Registers with serial input take the longest time for data to transmit
from one end to the other. Registers with serial output additionally
take longer than parallel output devices to access the data stream at
the end. A schematic of a 4-bit SISO register is shown in Figure 5.4.

D Q D Q D Q D QSerial In Serial Out

CLK

Figure 5.4: Schematic of a 4-bit serial in
/ serial out (SISO) register.Parallel in / parallel out (PIPO) registers are used in general pur-

pose I/O registers, among other applications. Data is immediately
made accessible to all flip-flops simultaneously. In addition, all of the
outputs are immediately available. At each clock cycle, the outputs
are updated to reflect any new data available on the inputs. PIPO
shift registers are available that have control signals to either paral-
lel load the data or to shift data in either direction. A schematic of a
4-bit PIPO (non-shift) register is shown in Figure 5.5.

D Q

D0

Q0

D Q

D1

Q1

D Q

D2

Q2

D Q

D3

Q3

CLK

Figure 5.5: Schematic of a 4-bit parallel
in / parallel out (PIPO) register.Serial in / parallel out (SIPO) registers are used to input serial

data from a serial communication protocol, and then output that data

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 39

either to a general purpose register or memory. Serial data is sent
to the input of the first flip-flop, and at each clock cycle the signal is
shifted through subsequent flip-flops. All outputs are immediately
available. A schematic of a 4-bit SIPO register is shown in Figure 5.6.

D Q D Q D Q D QSerial In

Q0 Q1 Q2

CLK

Q3

Figure 5.6: Schematic of a 4-bit serial in
/ parallel out (SIPO) register.Parallel in / serial out (PISO) registers are used to input data

from a general purpose register or memory and to output that data
serially through a serial communication protocol. A schematic of a
2-bit PISO register is shown in Figure 5.7 (only two bits are shown to
save space). A control signal W/S is used to control if the data loads
into the flip-flops (which occurs when the signal is held LOW) or if
data shifts through the flip-flops (which occurs when the signal is
held HIGH).

D Q D Q Serial Out

CLK

W/S

D0 D1

Figure 5.7: Schematic of a 2-bit parallel
in / serial out (PISO) register.

5.7 Program Counter (PC)

The program counter contains the address (in memory) of the first
byte of the instruction to be executed. It is incremented after ev-
ery instruction. A schematic, shown in Figure 5.8, shows the inner
workings of a program counter. When the power is switched on, the
program counter is forced to 0 and the instruction fetch starts from
address 0 (reset = 0 forces the flip-flops to a value of 0).

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

40 microcontrollers

reset

D Q

system powerCLK

MUX1

0

1

1

branch offset

branch

x

ADDER

y

program memory

M
U

X
20

1jump target

jump

Figure 5.8: Schematic of a program
counter (PC).

If the instruction is a conditional branch instruction (which is
discussed in chapter 6), branch = 1, and the sum of the current PC
value (Qs) is added to the branch offset (which is passed through
MUX1) and that value is sent to Ds to update the PC value.

If the instruction is a jump instruction, then the value of jump
target (which is passed through MUX2) is loaded into Ds to update
the PC value.

If the instruction is not a program flow control instruction (i.e. it
is not a branch or jump instruction), then the PC is incremented by 1

after each instruction is fetched.

5.8 Memory

The two types of memory are volatile and non-volatile. This refers to
whether or not data can persist after power has been removed from
the microcontroller or computer. Before discussing these types of
memory systems, however, it is important to note that the way that
memory is addressed (i.e. how each piece of memory is stored or
recalled) is also of critical importance to the operation of a microcon-
troller. This is discussed in chapter 7.

Volatile Memory

Volatile memory is used for temporary storage because data is unable
to persist after power has been removed from the device. It is usually
called random-access memory (RAM). This concept of random-access
refers to the ability to obtain data from any arbitrary (or random)

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 41

address in memory at any given time. Types of RAM include static
RAM (SRAM), dynamic RAM (DRAM), and registers.

RAM differs from sequential-access memory, in which the data
must be accessed in the same order in which it was stored. Sequential-
access memory is the type of memory obtained when using rolls of
magnetic tape (for example). A tape reader must spool through the
entire reel to read from beginning to end in memory, and cannot skip
around.

SRAM is the type of volatile memory used in the ATmega328P. Static RAM Characteristics

• Uses flip-flops

• Faster than DRAM

• More expensive than DRAM

• Low power consumption

A schematic of SRAM is given in Figure 5.9, and the modes of oper-
ation are explained in Table 5.1. Each inverter in the schematic must
be connected to Vcc and ground in order to retain its data.

Q

WL

BL BL

Q

Figure 5.9: Schematic of a Static RAM
cell.

Modes Description

Standby WL = LOW, mosfets are OFF (open switches)
Q and Q will not change and are floating

Write WL = HIGH, mosfets are ON (closed switches)
BL and BL are asserted
Q = BL, Q = BL

Read WL = HIGH, mosfets are ON (closed switches)
read data from BL and BL

Table 5.1: Description of Static RAM
modes of operation.

DRAM is the type of volatile memory used in computers due to

Dynamic RAM Characteristics

• Uses one transistor and one capaci-
tor

• Slower than SRAM

• Cheaper than SRAM

• Takes less space than SRAM

• Consumes more power than SRAM

• Requires constant refreshing

its small size and low cost. A schematic of DRAM is given in Fig-
ure 5.10, with the modes of operation explained in Table 5.2. If the
capacitor is not continuously refreshed with either a value of one or
zero, it will discharge and memory will be lost.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

42 microcontrollers

BL

WL Figure 5.10: Schematic of a Dynamic
RAM cell.

Modes Description

Write WL = HIGH, mosfets are ON (closed switches)
BL is asserted, must wait for cap to charge or
discharge

Read WL = HIGH, mosfets are ON (closed switches)
charge stored on cap goes to BL
value must be re-written after every read

Table 5.2: Description of Dynamic RAM
modes of operation.

A subset of DRAM known as pseudostatic RAM (PSRAM) uses
memory cells similar to that of DRAM, but includes circuitry that
allows it to refresh itself, which means that it has the same ease-of-
use as SRAM.

Non-Volatile Memory

Non-volatile memory is used for more permanent storage because
the data persists after power has been removed from the device. Over
the years, non-volatile memory has taken on many different diverse
forms: paper punch cards; wax cylinders and records; optical CD
and DVD disks; magnetic disks, drives and tape; and semiconduc-
tor drives. Because non-volatile memory doesn’t require power to
hold on to stored data, it is used to store firmware on computers,
and program instructions and constants on microcontrollers. It is
usually referred to as read-only memory (ROM), due to the fact that
in regular operation the memory is effectively read-only. Writing to
ROM typically requires a higher voltage than a read operation re-
quires, and in addition write operations take more time than read
operations.

The first types of ROM included mask ROM, which was manu-
factured in a clean room in a manner similar to the fabrication of
integrated circuits. This meant that all of the bits of memory were
hard-wired onto the device and could not be erased or rewritten after
the fact. Mask ROM is therefore inefficient for small projects that may
require debugging, or for embedded systems that require firmware

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 43

updates or other types of memory changes.
EPROM is known as electrically programmable ROM. These chips

generally contain a quartz window over the integrated circuit; expo-
sure to UV light for an extended period of time erases the memory
and sets all bits to a value of 1. An external programmer is used to
electrically program all of the desired data to memory. EPROM has
the advantage of being re-writable, but suffers from needing to be
physically removed from a circuit to be erased and reprogrammed. In
addition, the quartz window is expensive to make and EPROM chips
can be more expensive than other types of memory. However, they
were an improvement over one-time-programmable (PROM) chips,
which, as the name implies, could only be programmed a single time
and could not be erased and re-written.

Flash memory is used as program memory in the ATmega328P. It
uses floating-gate transistors, one of which is shown in Figure 5.11 in
"NOR" architecture. CG stands for control gate, and is where control
signals are asserted. FG stands for floating gate, and is where elec-
trons are either injected or removed to store data. S stands for source,
which is generally the low potential (or ground) connection of a tran-
sistor. D is the drain, which is generally the high potential connection
of a transistor.

CG

FG

S D

Figure 5.11: Schematic of a flash
floating-gate cell.

The modes of operation of the flash floating-gate cell are detailed
in Table 5.3.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

44 microcontrollers

Mode Description

Clear ≈ 12 V applied to CG, channel on
electrons travel from S to D
in the process they tunnel through oxide to FG

Set ≈ −12 V applied to CG
electrons tunnel from FG to CG and are removed

Read 5 V applied to CG
if FG has electrons, a channel will not form (0)
if FG has no electrons, a channel will form (1) from S to D

Table 5.3: Description of flash modes of
operation.

Flash ROM is a subset of EEPROM, also known as electrically
erasable programmable ROM. Today, there is little difference between
EEPROM and flash architectures. However, the ATmega328P contains
both flash and EEPROM storage for non-volatile memory. Flash is
where program data and an optional bootloader are stored. The
EEPROM on the ATmega328P is used for data storage that can be
re-written but is not intended to change frequently. (For example, a
passcode for a garage door opener can be reprogrammed, but mostly
remains the same, and must be saved during power outages.) A fuse
bit on the ATmega328P can be configured to allow the EEPROM
storage to remain programmed in between chip erases, allowing
additional functionality for the microcontroller.

5.9 Instruction Execution Process & Timing

This is the process by which the microcontroller executes each in-
struction. In this fashion, the CPU is nothing more than a very com-
plicated finite state machine. The state diagram is shown in Fig-
ure 5.12.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

general principles of microcontrollers 45

1. fetch

instruction

2. decode

instruction

3. PC

increments

4. load data

to registers

5. perform

ALU operation

6. write data

to mem/reg/

I/O

ADD, SUB

MOV, IN, OUT

Figure 5.12: State diagram of microcon-
troller instruction execution process.

1. The next instruction in memory is read, indicated by the address
stored in the program counter

2. The instruction is decoded into a set of commands or signals for
each of the components in the processor

3. The program counter increments so that it points to the next loca-
tion in memory

4. Data is loaded from memory (or input device(s)) into register(s),
the location of this data is usually stored in the instruction code as
an operand

5. If the ALU is required to execute the operation, the processor
instructs the hardware to carry this out

6. The result is written back to a memory location, to a register, or
even to an output device

7. Jump back to step 1

The ATmega328P uses a pipelining concept to speed up the rate at
which the CPU can process the next instruction. This is enabled by
its Harvard architecture, which allows the CPU to fetch the next in-
struction from memory while executing the current instruction. This
is known as a parallel instruction fetch and is depicted in Figure 5.13.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

46 microcontrollers

CPU CLK

1st Instr. Fetch

1st Instr. Exec.

2nd Instr. Fetch

2nd Instr. Exec.

3rd Instr. Fetch

3rd Instr. Exec.

4th Instr. Fetch

Figure 5.13: Timing diagram of parallel
instruction fetch process.

Figure 5.14 shows the internal timing for the CPU, and shows how
most of the instructions available on the ATmega328P are able to
occur within a single clock cycle.

CPU CLK

Total Exec.

Fetch Operands

ALU Operation

Write Result

Figure 5.14: Timing diagram of single
cycle ALU operation timing.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

6
Status Register (SREG)

The status register on the ATmega328P contains information
about the result of the most recently executed instruction on the
microcontroller. The information in SREG can be used to control the
flow of the program being executed by way of conditional branch
instructions (which is discussed in chapter 19). All of the machine
instructions that are capable of affecting the flags in SREG are listed in
the AVR instruction manual 1. The status register contains eight bits 1 Atmel, "AVR Instruction Set Manual,"

November 2016.(known as flags) as shown in Table 6.1.

bit: 7 6 5 4 3 2 1 0

flag: I T H S V N Z C

Table 6.1: Contents of the status register
(SREG).

6.1 I – Global Interrupt Enable Flag

This bit, as was discussed in chapter 13, the global interrupt en-
able flag is used to enable and disable interrupts. It must be set to
1 to globally enable interrupts, and it must be cleared to disable
interrupts. This bit is automatically cleared by hardware on the AT-
mega328P when an interrupt service routine is invoked, and is subse-
quently set again when the execution of the ISR has been completed.

6.2 T – Bit Copy Storage Flag

There are instructions available in the AVR instruction set that use
this bit as a source or destination for the operated bit. These two
operations are BST (bit store from bit in register to T flag in SREG), and
BLD (bit load from the T flag in SREG to a bit in register).

48 microcontrollers

6.3 H – Half Carry Flag

The half carry flag is useful when dealing with binary coded decimal
(BCD) numbers. The half carry flag is set if a carry was generated by
the least significant 4 bits of the byte in the most recently executed
instruction. In BCD arithmetic, this carry has a value of 16. The most
significant bit (MSB) of 16 (the number 1) belongs in the 10’s place of
the BCD number. The remaining value of 6 needs to be added back
in to the least significant nibble. An example of BCD addition with
the half carry flag is shown in Table 6.2.

1 1 1 1
0 0 1 1 1 0 0 1 = 3910

+ 0 1 0 0 1 0 0 0 = 4810

1 0 0 0 0 0 0 1 = 8110 WRONG!
+ 0 0 0 0 0 1 1 0 = 610

1 0 0 0 0 1 1 1 = 8710 Correct!

Table 6.2: BCD arithmetic, adding 39

and 48 yields an incorrect sum unless 6

is added again into the least significant
nibble of the result.

An algorithm for “packed BCD addition” (when two BCD digits
are represented in an 8-bit binary number) is provided in an applica-
tion note by Microchip.2 2 Atmel, "AVR204: BCD Arithmetics,"

January 2003.

6.4 N – Negative Flag

This bit is only generated with signed numbers. The negative flag
is the MSB of the result of the most recently executed operation. A
value of 0 indicates a positive number, and a value of 1 indicates a
negative number.

6.5 V – 2’s Complement Overflow Flag

This bit is only generated with signed numbers. When set, the most
recently executed operation resulted in an overflow condition. When
cleared, the most recently executed operation did not result in an
overflow. There are different equations for its generation based on the
particular instruction that is in use.

In signed addition, an overflow occurs if the addition of two neg-
ative numbers results in a positive number, or when the addition of
two positive numbers results in a negative number. Overflow is not
possible when adding a positive to a negative number.

In signed subtraction, an overflow occurs if a positive number
minus a negative number results in a negative number, or when a
negative number minus a positive number results in a positive num-
ber. Overflow is not possible when subtracting a positive number

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

status register (sreg) 49

from a positive number, or when subtracting a negative number from
a negative number.

In signed multiplication, an overflow occurs if not all of the over-
flow bits are equal.

6.6 S – Sign Flag

The sign flag is always an exclusive OR operation between the N and
V flags,

S = N ⊕ V.

It gives the true sign of the result of the most recent operation, as
indicated in Table 6.3.

N V S

0 0 0 sign is positive
0 1 1 sign is negative (overflow with false positive answer)
1 0 1 sign is negative
1 1 0 sign is positive (overflow with false negative answer)

Table 6.3: Information about the sign
flag (S) flag based on the negative flag
(N) and the 2’s complement overflow
flag (V).

6.7 Z – Zero Flag

This bit is set if the result of the most recently executed operation is
zero.

6.8 C – Carry Flag

This bit is set if the most recently executed operation resulted in a
carry or a borrow. This flag is particularly useful when adding num-
bers that require more than 8-bits to store. For example, when adding
16-bit numbers, the microcontroller must work 8-bits at a time due
to the size limitation of the CPU registers. A carry on the least sig-
nificant byte (carry flag of 1) indicates that one must be added to the
most significant byte.

In unsigned addition and subtraction, the presence of a carry or
borrow indicates overflow.

6.9 Practice Problems

1. Determine the values of the C, Z, N, V and S flags for the following.

(a) 1010 1101 + 0101 0011 C=1, Z=1, N=0, V=0, S=0

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

50 microcontrollers

(b) 0000 1010 − 0000 1111 C=1, Z=0, N=1, V=0, S=1

(c) 0101 0101 + 0101 0010 C=0, Z=0, N=1, V=1, S=0

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

7
Memory Addressing Modes

Memory maps of microcontrollers indicate what addresses
are used for what type of memory. They are important to understand
the functionality of the microcontroller memory space, and how the
memory can be accessed by hardware.

7.1 Flash Program Memory

The ATmega328P contains 32 kBytes of non-volatile program flash
memory. Because all of the instructions are 16-bits or 32-bits wide,
data memory is formatted as 16 kBytes of 16-bit words. This means
that 14 bits (log2 16384) are required to address the full program
memory space on the ATmega328P. Indeed, the program counter on
the ATmega328P is a 14-bit counter.

Program memory space is divided into two sections: an appli-
cation section and a bootloader section. The size of the bootloader
section is configured with the high fuse byte, as discussed in chap-
ter 9. A map of the program memory on the ATmega328P is shown
in Figure 7.1.

7.2 SRAM Data Memory

The volatile data memory on the ATmega328P is composed of
2 kBytes of SRAM. This data memory space, the memory map of
which is given in Figure 7.1, is split into several sections.

32 General Purpose Registers

These 32 general purpose registers contain information to be entered
into the ALU on the microcontroller. They are used to execute in-
structions. Registers R26 to R31 (known as X, Y, and Z) are indirect

52 microcontrollers

Program Memory
0x0000

0x3FFF

Boot Flash

Application Flash

Data Memory
0x0000

32 GP Registers
0x001F

64 I/O Registers

0x005F

160 Ext. I/O

0x00FF

Internal SRAM

0x08FF

Figure 7.1: Memory map of the flash
program memory and SRAM data
memory on the ATmega328P.

addressing pointer registers. They are used in pairs to indirectly
address program memory.

64 I/O Registers

In addition to the general purpose registers, data memory contains
64 I/O registers. This memory space contains the PINx, PORTx, and
DDRx registers, as well as SREG and registers that control the operation
of timer / counter 0, SPI communication, external interrupts, among
others. These registers can be directly addressed using assembly
instructions. Using assembly commands such as LOAD, data from the
64 I/O registers can be loaded into the general purpose registers to
allow further operations to take place.

160 Extended I/O Registers

There are a lot more peripheral units than can be supported with 64

memory locations, therefore there are an additional 160 extended I/O
registers that control all of the other peripheral features of the AT-
mega328P, including serial communication, interrupts, timer / coun-
ters, ADC, and more. These memory locations can only be accessed
indirectly using load and store instructions in assembly (which takes
more clock cycles than the direct addressing that can be used on the
64 I/O registers).

Internal SRAM

The remaining data space is used to store variable data in memory, as
well as to house the stack.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 53

7.3 EEPROM Data Memory

In addition to the above mentioned memory spaces, 1 kByte of EEP-
ROM non-volatile data memory is available as a separate data space
from SRAM. EEPROM is used to save data that can be changed but
should remain stored in memory even in the absence of power to the
device.

7.4 Memory Addressing

Memory addressing refers to the ways in which a microcontroller
accesses data to carry out an instruction. The instruction contains
operands that specify the data to be operated on, while the program
counter provides the address for the next instruction in program
memory. Memory addressing modes are determined when a micro-
controller is designed, and cannot be changed by a programmer.

In a simple device such as an EPROM chip, memory addressing
occurs directly by means of an internal decoder. A memory address
is asserted on the address pins, and the internal circuitry asserts the
contents of that address onto the output pins of the device. This is
depicted for a 65 kB memory in Figure 7.2.

...

16 to 216 decoder

65,536 bytes of data

8-bit words

16-bits for

addressing

F7 F6 F5 F4 F3 F2 F1 F0

Figure 7.2: Memory addressing occurs
in a simple system with a decoder. A 16

to 2
16 decoder is capable of addressing

65,536 words of data.

In general, memory can be addressed directly or indirectly. Direct
addressing occurs when the memory address is stored as part of the
instruction itself. Direct addressing is typically fast (the data to be
operated on in memory is pointed to directly), and has the flexibil-
ity of allowing variable data to be manipulated, rather than constant
data (which is used in immediate addressing). Indirect addressing
occurs when a pointer is used instead of the memory address. Indi-
rect addressing enables a microcontroller to access memory contents
even if the number of addresses available exceeds the size of the in-
struction itself, but suffers the drawback of being slower than direct
addressing (first the pointer must be loaded, then the contents of the
memory address that the pointer points to is operated on).

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

54 microcontrollers

General Purpose Register Addressing

General purpose register addressing occurs when an assembly in-
struction contains the address of one or more general purpose regis-
ter to be operated upon. Instructions with only a single register (Rd)
operand address memory in a way known as direct, single register
addressing, which is shown schematically in Figure 7.3.

GP REGISTERS
0

d

31

015 4
OP Rd

Figure 7.3: Direct, single register ad-
dressing occurs when an instruction
contains a single general purpose
register as an operand.

An instruction that directly addresses a single GP register is NEG,
which takes the two’s complement value of a register and saves the
result back into that same register. It is capable of addressing all of
the 32 GP registers using 5 bits in the instruction. The remaining 11

bits are used for the opcode.
Instructions with two general purpose register operands (Rd and

Rr) address memory in a way known as direct, two register address-
ing, which is shown schematically in Figure 7.4. The result of these
instructions is always stored in Rd, the destination register.

GP REGISTERS
0

d

r

31

015 5 4

OP

9

RdRr

Figure 7.4: Direct, two register ad-
dressing occurs when an instruction
contains two general purpose registers
as operands.

An instruction that directly addresses a single GP register is ADD,
which takes the value stored in a source register, adds it to the value
stored in a destination register, and saves the result back into the
destination register. It is capable of addressing all of the 32 GP regis-
ters, which means that 10 bits of the instruction are used for register

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 55

addressing. The remaining 6 bits are used for the opcode.

Immediate Addressing

In immediate addressing, the instruction contains data to be operated
on immediately. In other words, the data to be operated on is part of
the instruction. Because the data is part of the instruction, immediate
addressing can be fast. However, it is also less flexible when it comes
to changing or repurposing code.

Most of the instructions that contain immediate addressing in
the ATmega328P allow for the immediate data to take on values
between 0–255. This requires 8 bits of data, which means that only 8

bits remain in the instruction for the opcode and the other operand.
The number of GP registers that can be addressed is therefore limited
to registers 16–31, which means that 4 bits are used to address the
register and the remaining 4 bits are used as the opcode.

The AND and ANDI instructions demonstrate the difference between
two-register addressing and immediate addressing. AND is a logical
AND operation that occurs between two GP registers, Rd and Rr. The
data is fetched from each of the registers, routed to the ALU, and
then stored in the destination register. All of the GP registers can
be addressed in this instruction, leaving 6 bits for the opcode. The
machine instruction is:

0010 00rd dddd rrrr,

where 001000 is the opcode, rrrrr indicates the binary value of the
source register, and ddddd indicates the binary value of the destina-
tion register.

ANDI is a logical AND with an immediate. This means that the
microcontroller performs a logical AND between the contents of GP
register Rd and a constant (the immediate), with the result stored
in the destination register. 8 bits of the instruction are used for the
immediate, 4 bits are used for the GP register, leaving 4 bits for the
opcode. The machine instruction for ANDI is:

0111 KKKK dddd KKKK,

where 0111 is the opcode, dddd indicates the binary value of the des-
tination register (to be added to 16; the instruction uses GP registers
16–31), and KKKKKKKK indicates the binary value of the immediate
data.

Tying this together with GP register addressing, assembly code us-
ing AVR instructions can be written to load immediate data into GP
registers, add the data together, and store it in a destination register.
The assembly code with descriptions is given in Table 7.1.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

56 microcontrollers

LDI r20, 230 Load the number 230 into GP register 20

LDI r22, 15 Load the number 15 into GP register 22

ADD r20, r22
Add the contents of GP registers 20 and 22,
store the result in register 20

Table 7.1: Assembly code that loads
immediate data to GP registers, adds
the contents together, and stores the
result in a destination register.

I/O Register Addressing

I/O register addressing, shown schematically in Figure 7.5, is used
when the instruction contains the address of the I/O register to be
operated on. As there are 64 I/O registers, each instruction requires 6

bits to indicate the memory location. Therefore, this mode cannot be
used to access extended I/O memory.

I/O MEMORY
0

A

63

015 5

OP ARr/Rd

Figure 7.5: I/O register addressing
occurs when an instruction contains an
I/O registers as an operand.

In I/O direct addressing, instructions contain an I/O address (A)
as well as a destination general purpose register (Rd) and/or a source
general purpose register (Rr).

Notable instructions that use direct I/O addressing are IN and OUT,
which either loads data from an I/O register into a destination GP
register or stores the contents from a source register into one of the
I/O registers, respectively. 6 bits are used to address the I/O register,
5 bits are used to address the (source or destination) GP register, and
the remaining 5 bits are used for the opcode.

Assembly code can be written to load data from PIN registers
into GP registers, perform a subtraction, and store the result in a
destination register. The assembly code with descriptions is given in
Table 7.2.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 57

IN r5, PIND Load the data from port D into GP register 5

IN r6, PINB Load the data from port B into GP register 6

SUB r5, r6

Subtracts the contents of GP register 6 from
the contents of register 5 and stores the
result in register 5

Table 7.2: Assembly code that loads
PIN data to GP registers, subtracts the
contents, and stores the result in a
destination register.

Data Memory Addressing

Data memory addressing is used to access the data memory (SRAM).
These instructions contain two 16-bit words; the least significant
word contains the 16-bit data address. Data direct addressing, shown
schematically in Figure 7.6, contains destination and/or source gen-
eral purpose registers (Rd and/or Rr). Because there are two instruc-
tion words to decode, these instructions require at least 2 clock cycles
to execute.

DATA MEMORY
0x0000

0x08FF

31 20 19 16

15 0

OP Rr/Rd

Data Address

Figure 7.6: Data direct addressing
occurs when an instruction contains a
16-bit data address as an operand.

An instruction that uses direct data memory addressing is LDS,
which loads data from a given address in SRAM into a destination
GP register. 16 bits are available for the data memory address, which
means that it is limited to addressing the first 64 KB of data stored
in SRAM. This is not a problem on the ATmega328P which only has
2 KB of memory. The remaining part of the instruction contains 5 bits
to address the GP register, with the remaining 11 bits used for the
opcode. The machine instruction for LDS is:

1001 000d dddd 0000

kkkk kkkk kkkk kkkk,

where 10010000000 is the opcode, ddddd indicates the binary value of
the destination register, and kkkkkkkkkkkkkkkk indicates the address
in SRAM to be accessed.

Data indirect addressing occurs when the operand address is the
contents of the X, Y or Z pointer register. This mode, shown schemat-
ically in Figure 7.7, is used to access extended I/O registers or the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

58 microcontrollers

internal SRAM. This type of addressing is also used when the ad-
dress of a desired memory location is not known at the time that a
program is written. Just as there are pros and cons to using direct
and indirect addressing for the GP registers, there are pros and cons
to using direct and indirect addressing to access data memory.

DATA MEMORY
0x0000

0x08FF

15 0
X, Y or Z Register

Figure 7.7: Data indirect addressing
occurs when an operand address is
the contents of an indirect addressing
pointer register.

Indirect data memory addressing can also occur with any one of
the following modifications:

• displacement – add a constant value to the address in pointer
register Y or Z,

• post-increment – add one to the value in pointer register Y or Z
after the operation, and

• pre-decrement – subtract one from the value in pointer register Y
or Z before the operation.

Data indirect with displacement mode, shown in Figure 7.8 is
used when the operand address is the result of the contents of Y or Z
(indirect addressing pointer registers) added to the address contained
in 6-bits (q) of the instruction word. This mode is useful for writing
position independent code, since an address register can be used to
stored a base address, with data access using displacements relative
to the base.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 59

DATA MEMORY
0x0000

0x08FF

15 0
Y or Z Register

OP Rr/Rd q
15 10 6 5 0

+

Figure 7.8: Data indirect addressing
with displacement occurs when an
operand address is the result of the
contents of an indirect addressing
pointer register added to 6 bits (q)
contained in the instruction word.

As an example, say that the contents of an array are stored in
a known position in SRAM. The address of element 0 (150 in the
example in Table 7.3) can be stored in either pointer register Y or Z.
If element 15 needs to be accessed, the displacement offset would be
equal to 15. This assembly code is given in Table 7.3. Note that data
indirect with displacement is not available with pointer register X.

CLR r29 Clear the HIGH byte of pointer register Y

LDI r28, 150
Load the value 150 into the LOW byte of
pointer register Y

LDD r4, Y+15
Loads the value stored in address 165 (Y +
15) into GP register 4

Table 7.3: Assembly code that loads
indirect from pointer register Y with
displacement.

Data indirect with pre-decrement mode is used when the operand
address is the contents of the X, Y or Z register, which is automatically
decremented before the operation. This addressing mode is simi-
larly useful for accessing array contents, for example. It is depicted
schematically in Figure 7.9.

DATA MEMORY
0x0000

0x08FF

15 0
X, Y or Z Register

−1

+

Figure 7.9: Data indirect with pre-
decrement addressing occurs when an
operand address is the contents of an
indirect addressing pointer register,
which is decremented prior to the
instruction.

Data indirect with post-increment addressing is used when the
operand address is the contents of the X, Y or Z register, which is
automatically incremented after the operation. This addressing mode

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

60 microcontrollers

is also useful for accessing array contents. It is depicted schematically
in Figure 7.10.

DATA MEMORY
0x0000

0x08FF

15 0
X, Y or Z Register

1 +

Figure 7.10: Data indirect with post-
increment addressing occurs when
an operand address is the contents
of an indirect addressing pointer
register, which is incremented after the
instruction.

Program Memory Addressing

Program memory addressing is used to access the full program mem-
ory space. It requires at least 14 bits to address the total flash mem-
ory section. The Z pointer register is used to refer to the address in
program memory. Because program memory stores 16-bit words, and
the destination register can only store 8 bits of data, the Z register
additionally specifies if the LOW byte (accessed if ZLSB is 0) or HIGH
byte (accessed if ZLSB is 1) should be returned. Program memory
addressing can also be done with a post-increment or with a pre-
decrement. Program memory addressing is shown schematically in
Figure 7.11.

PROGRAM MEMORY
0x0000

0x3FFF

15 0
Z Register

1

LSB

Figure 7.11: Program memory address-
ing accesses the full memory space
given by the address in pointer register
Z. The LSB of Z indicates if the low
or high byte should be returned as a
result.

In direct program addressing, instructions can contain a pointer
(indirect) to be loaded to the program counter, or an 16-bit word (im-
mediate) following the instruction to load to the program counter.
The program counter can also be incremented by a constant k. Pro-
gram execution will then continue at that space in program memory.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 61

PROGRAM MEMORY
0x0000

0x3FFF

31 16

OP 6 MSB

15 0
16 LSB

021
PC

Figure 7.12: Direct program addressing
accesses the full memory space given
by a pointer loaded into the program
counter.

The types of instructions that use direct programming addressing
include JMP, which causes the program counter to load an immediate
value and continue executing instructions from that location in mem-
ory and EIJUMP, which has the program counter jump to the memory
location stored in pointer register Z.

7.5 Bit Addressing

Bit addressing is used to access specific bits in registers (especially
SREG). Because most registers are 8 bits, the instruction requires 3 bits
(b) to specify which bit (from 0–7) is to be read from/written to.

7 6 5 4 3 2 1 0

15 8 7 3 2 0

OP A b

Figure 7.13: Bit addressing is used to
access specific bits in registers.The instruction CLI, for example, is used to clear the global inter-

rupt flag bit in SREG, which prevents interrupts from executing on the
microcontroller. The global interrupt flag bit can be set again using
the SEI instruction. These instructions do not require any operands,
and thus use 16-bit opcodes.

7.6 The Stack & Stack Operations

The stack is a special area of RAM reserved for temporary data stor-
age. It cannot overlap with the general purpose, I/O, or extended
I/O memory registers. Therefore, the memory address at which it

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

62 microcontrollers

starts must be greater than or equal to 0x0100. Usually, the stack is
initialized at the highest available address in RAM. The current lo-
cation of the most recent data byte in the stack is known as the stack
pointer (SP). The stack pointer consists of two 8-bit registers that exist
in the I/O space.

The stack itself can be visualized as a stack of plates in a cafeteria;
new plates can be added to the stack, and when plates are accessed,
the last one in is always the first one out (last-in, first-out).

Data can be added to the stack using the PUSH instruction. When
this occurs, new information is placed into temporary storage, and
the value of SP is decremented. Removing data from the stack occurs
using the POP instruction. The value of SP is incremented during this
instruction. The contents of the stack, as well as the locatio of the
stack pointer, is depicted schematically in Figure 7.14 after both a
PUSH and POP operation.

(a) RAM

DATA

DATA

DATA

unused

unused

SP

(b) RAM

DATA

DATA

DATA

NEW

unused

SP

(c) RAM

DATA

DATA

DATA

unused

unused

low

address

high

address

SP

Figure 7.14: Stack operations. (a)
Memory in the stack, (b) after a PUSH in-
struction, and (c) after a POP instruction.Use of the stack is essential during a subroutine call (external

function or an ISR). In order to return to the exact spot in memory
where the program left to execute the subroutine, the return address
is PUSHed to the top of the stack before the location of the subroutine
is accessed. After the subroutine is complete, the program goes back
to the location and the return address is POPed out of the stack.

Stack Problems

Care must be taken when allocating data memory to be used in the
stack. Stack overflow is a situation in which too much data is pushed
onto the stack which causes the SP to point to an address outside
of the stack memory area. Stack underflow is a situation in which
too much data is popped from the stack so that the SP points to an
address below the stack bottom. A stack collision occurs when the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

memory addressing modes 63

stack is allocated to memory addresses which overlap with data
registers.

7.7 Practice Problems

1. How many bytes in memory can be accessed if 6 bits are used in
the instruction for the memory address? 64

2. In indirect addressing, a 16-bit pointer register is used to address
memory. How many bytes can be accessed in this scenario? 64 K

3. Use the table below and Y = 0x0103 to determine the value stored
in the destination register, as well as the value of pointer register Y,
after each of the following subsequent operations.

Address SRAM Contents

0x0100 0xC1

0x0101 0xFB

0x0102 0x3F

0x0103 0xE9

0x0104 0x95

0x0105 0x9A

0x0106 0x1C

0x0107 0xDC

(a) LD r4, Y r4 = 0xE9, Y = 0x0103

(b) LD r5, Y+ r5 = 0xE9, Y = 0x0104

(c) LD r6, Y r6 = 0x95, Y = 0x0104

(d) LD r7, Y+3 r7 = 0xDC, Y = 0x0107

(e) LD r8, Y- r8 = 0x1C, Y = 0x0106

(f) LDS r9, 0x0102 r9 = 0x3F, Y = 0x0106

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

8
Model Microcontroller

To better understand how a microcontroller works, a sim-
ple model microcontroller will be designed. It will have an ALU to
perform all required operations, two data registers, four input de-
vices, and four output devices. Each of the registers, input devices,
and output devices has its own numerical label to determine with
which component each instruction should interact. This model micro-
controller is shown in Figure 8.1.

ALU

register A

00

register B

01

keyboard

00

switches

01

num pad

10
dial

11

16-seg

11

LCD

10

7-seg

01
LEDs

00

DATA BUS

Figure 8.1: A block diagram of the
model microcontroller with input and
output devices, two registers, and an
ALU.

8.1 Microcontroller Instructions

Microcontrollers are capable of carrying out specific machine instruc-
tions. An instruction consists of an operation code (opcode), which
dictates what function to do (add, subtract, XOR, etc.). The ALU con-
tains specialized hardware to accomplish each of these functions.
Each source of data used to carry out the function is known as an

66 microcontrollers

operand. A full listing of the ATmega328P instructions is available in
the AVR instruction manual.

8.2 Microcontroller Operation Codes (Opcodes)

Recall that for every n opcodes, there must be a ⌈log2(n)⌉ bit number
to store it, assuming that expanding opcodes are not used. If there
are 40 operations, 6 bits of the instruction code are necessary to store
the opcode. The model microcontroller will have 7 operations. There-
fore, 3 bits are necessary for storing this information. However 4 bits
will be used to create 8-bit instructions.

It is now possible to come up with a list of instructions that the
model microcontroller can perform, and indicate the operands that
are required for each. These instructions are given in Table 8.1.

Instruction Opcode Description Operands

IN 0000 Load data from input I/O(A), Rd
OUT 0001 Store data to output I/O(A), Rr
MOV 0010 Copy data Rr, Rd
ADD 0011 Add data Rr, Rd
SUB 0100 Subtract data Rr, Rd
AND 0101 Logical AND Rr, Rd
OR 0110 Logical OR Rr, Rd

Table 8.1: Listing and description of
the instructions available from a model
microcontroller.

IN – Load data from input to register

The IN instruction loads data from an input device to one of the
registers. In order to carry out this instruction, the designation of the
input device (A) as well as the designation of the destination register
(Rd) need to be known.

OUT – Store data from register to output

The OUT instruction takes data from a source register and sends it to
one of the output devices. In order to carry out this instruction, the
designation of the output device (A) as well as the designation of the
source register (Rr) need to be known.

MOV – Copy data from one register to another

The MOV instruction takes data from a source register and copies it
into a destination register. In order to carry out this instruction, the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

model microcontroller 67

designations of both the source (Rr) and the destination (Rd) registers
need to be known.

ADD – Add data from register Rr to Rd and store in Rd

The ADD instruction takes data from two registers, adds the contents,
and stores the sum into a destination register. In order to carry out
this instruction, the designations of both the source (Rr) and the
destination (Rd) registers need to be known.

SUB – Subtract data in register Rr from Rd and store in Rd

The SUB instruction takes data from a source register, subtracts it
from the contents of the destination register, and then stores the
result into a destination register. In order to carry out this instruction,
the designations of both the source (Rr) and the destination (Rd)
registers need to be known.

AND – Logical AND data in register Rr with Rd and store in Rd

The AND instruction takes data from a source register, performs a
logical AND operation with the contents of the destination register,
and then stores the result into a destination register. In order to carry
out this instruction, the designations of both the source (Rr) and the
destination (Rd) registers need to be known.

OR – Logical OR data in register Rr with Rd and store in Rd

The OR instruction takes data from a source register, performs a log-
ical OR operation with the contents of the destination register, and
then stores the result into a destination register. In order to carry
out this instruction, the designations of both the source (Rr) and the
destination (Rd) registers need to be known.

Each of the model microcontroller instructions can be expressed
in machine code (binary), assembly (using an opcode and operands),
or using register-transfer language (depicting the movement of data
from one register to another). This is outlined in Table 8.2.

Machine Instruction Assembly Register Transfer

0000 AAdd IN Rd,A Rd← I/O (A)
0001 rrAA OUT A,Rr I/O (A)← Rr

0010 rrdd MOV Rd,Rr Rd← Rr

0011 rrdd ADD Rd,Rr Rd← Rd + Rr

0100 rrdd SUB Rd,Rr Rd← Rd − Rr

Table 8.2: Model microcontroller in-
structions in machine code, register
transfer language, and assembly.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

68 microcontrollers

8.3 Model Microcontroller Program

Now a set of instructions that the model microcontroller can un-
derstand can be created. A sample set of instructions is provided in
Table 8.3. The program will be written in machine code, assembly
language, and register transfer language.

Step Instruction

1 Input data from the switches into register A
2 Input data from the dial into register B
3 Output the contents of register A to the LCD screen
4 Output the contents of register B to the LEDs
5 Add the contents of both registers, and store the result

in register A
6 Output the contents of register A to the 16-seg. display

Table 8.3: Program instructions for the
model microcontroller.

Machine Code

The binary numbers in the machine code are what’s actually saved
to the microcontroller memory. Using hexadecimal makes the list of
instructions somewhat less unwieldy. Based on the sample program
defined in Table 8.3, the corresponding machine instructions are
given in Table 8.4.

Step Machine Code Hex

1 0000 0100 0x04

2 0000 1101 0x0D

3 0001 0010 0x12

4 0001 0100 0x14

5 0011 0100 0x34

6 0001 0011 0x13

Table 8.4: Program instructions for the
model microcontroller in machine code
given in both binary and hexadecimal.

Assembly Language & Register Transfer Language

Assembly language allows instructions to be invoked while having
a somewhat easier time reading, understanding, and debugging the
program contents. Register transfer language is another abstraction
that allows for the visualization of movement of data from one loca-
tion to another, along the location of the arrow. Based on the sample
program defined in Table 8.3, the corresponding machine instructions
are given in Table 8.5.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

model microcontroller 69

Step Assembly
Register Transfer
Language

1 IN A,switches A← I/O (switches)
2 IN B,dial B← I/O (dial)
3 OUT LCD,A I/O (LCD)← A
4 OUT LEDs,B I/O (LEDs)← B
5 ADD A,B A← A+B
6 OUT 16seg,A I/O (16seg)← A

Table 8.5: Program instructions for the
model microcontroller in assembly lan-
guage and register transfer language.

Model Microcontroller Arithmetic & Logic Unit (ALU)

The ALU of the model microcontroller is depicted schematically in
Figure 8.2. This schematic diagram shows all of the internal hard-
ware that is required to carry out each operation. The intricacies of
the instruction decoder have been omitted for simplicities sake.

adder

MUX3

comparator
MUX2

inverters

MUX1

A B

0

Cin

1

1

ci

Cout

result

opcode

01

1

y

0
sum

00

01

carry

x

10

11

Figure 8.2: Hardware schematic of a
simple arithmetic and logic unit (ALU).Table 8.6 describes the operation of the hardware of each of these

instructions.
Table 8.6: Listing and description of the
four opcodes available on the simple
arithmetic and logic unit.

Opcode 00: Add

Opcode 00 is sent to the comparator, which outputs a value of 0

MUX2 output: Cin, which enters the adder
MUX1 output: B, which enters the adder

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

70 microcontrollers

A also enters the adder
MUX3 output: sum
The carry is sent as Cout

Opcode 01: Subtract

Opcode 01 is sent to the comparator, which outputs a value of 1

MUX2 output: 1, which enters the adder
MUX1 output: B′, which enters the adder (this creates a 2’s
complement value of B)
A also enters the adder
MUX3 output: (A + (−B))
The carry is sent as Cout

Opcode 10: AND

Opcode 10 is sent to the comparator, which outputs a value of 0

A and B both go to the AND gate
MUX3 output: AB

Opcode 11: OR

Opcode 11 is sent to the comparator, which outputs a value of 0

A and B both go to the OR gate
MUX3 output: A+B

8.4 Practice Problems

Using the available instructions for the model microcontroller, write
assembly commands to execute the following tasks.

1. Load data from the keyboard into register A. IN A,keyboard

2. Load data from the number pad into register B. IN B,numpad

3. Subtract the contents of register A from register B and store the
result in register B. SUB B,A

4. Move the contents of register B to register A. MOV A,B

5. Display the contents of register A on the 7-segment display. OUT 7seg,A

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

9
The ATmega328P Microcontroller

The ATmega328P microcontroller is featured on the Arduino Uno
board and contains a number of peripheral functions that will be
described in detail in this book.

9.1 Pinout Diagrams

The ATmega328P is available in four different packages. The 28-pin
plastic dual in-line package (PDIP) is used in breadboarded designs.
The pinout diagram of the ATmega328P’s PDIP integrated circuit
package is shown in Figure 9.1.

14 15

13 16

12 17

11 18

10 19

9 20

8 21

7 22

6 23

5 24

4 25

3 26

2 27

1 28PC6

PD0

PD1

PD2

PD3

PD4

Vcc

GND

PB6

PB7

PD5

PD6

PD7

PB0

PC5

PC4

PC3

PC2

PC1

PC0

GND

AREF

AVcc

PB5

PB4

PB3

PB2

PB1

Figure 9.1: Pinout diagram for 28-pin
PDIP package.

The other three packages are surface mount designs. First, there
is a 32-lead thin quad flat package (TQFP). The close spacing of pins

72 microcontrollers

allows for more connections to be made (relative to the DIP archi-
tecture) in the same (or less) area of space. This chip has four more
pins than the PDIP. Two of the pins are extra ground connections.
The other two include connections to additional analog to digital
conversion channels. However, this type of pin configuration can be
much more complicated for use in hobbyist projects, especially with-
out knowledge of surface mount soldering techniques. The pinout
diagram for the TQFP integrated circuit chip is shown in Figure 9.2.

8

16

17

32

7

15

18

31

6

14

19

30

5

13

20

29

4

12

21

28

3

11

22

27

2

10

23

26

1

9

24

25

PD3

PD4

GND

Vcc

GND

Vcc

PB6

PB7

P
D

5

P
D

6

P
D

7

P
B

0

P
B

1

P
B

2

P
B

3

P
B

4

PB5

AVcc

ADC6

AREF

GND

ADC7

PC0

PC1
P

C
2

P
C

3

P
C

4

P
C

5

P
C

6

P
D

0

P
D

1

P
D

2 Figure 9.2: Pinout diagram for 32-lead
TQFP package.

The second surface mount package is a 28-pad quad flat no-leads
package (QFN) which, as the name implies, has no leads protruding
from the integrated circuit chip. As with the 28-pin PDIP format,
this lacks the two extra analog to digital conversion channels that are
available in the 32-pin chips. The pinout diagram for the 28-pad QFN
integrated circuit chip is shown in Figure 9.3.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

the atmega328p microcontroller 73

solder bottom pad

to GND

1PD3

2PD4

3Vcc

4GND

5PB6

6PB7

7PD5

8

P
D

6

9

P
D

7

10

P
B

0

11

P
B

1

12

P
B

2

13

P
B

3

14

P
B

4
15 PB5

16 AVcc

17 AREF

18 GND

19 PC0

20 PC1

21 PC2

22

P
C

3

23

P
C

4

24

P
C

5

25

P
C

6

26

P
D

0

27

P
D

1

28

P
D

2 Figure 9.3: Pinout diagram for 28-pad
QFN package.

The final surface mount format is a 32-pad QFN package. This
chip also contains no physical leads, and, as a 32-pad device, contains
the two extra analog to digital converter channels. This format’s
pinout diagram is given in Figure 9.4.

solder bottom pad

to GND

1PD3

2PD4

3GND

4Vcc

5GND

6Vcc

7PB6

8PB7

9

P
D

5

10

P
D

6

11

P
D

7

12

P
B

0

13

P
B

1

14

P
B

2

15

P
B

3

16

P
B

4

17 PB5

18 AVcc

19 ADC6

20 AREF

21 GND

22 ADC7

23 PC0

24 PC1

25

P
C

2

26

P
C

3

27

P
C

4

28

P
C

5

29

P
C

6

30

P
D

0

31

P
D

1

32

P
D

2 Figure 9.4: Pinout diagram for 32-pad
QFN package.

As mentioned in chapter 10, each of these pins serves multiple
purposes. This allows a pin to act either as an input/output interface
or to connect an external crystal oscillator, or to provide a pulsed
waveform, for example. Importantly, the Vcc pin must be connected
to a proper operating voltage, which is between 2.7 V and 5.5 V. Pin
PC6 can either be used as an active LOW reset pin or as a general
purpose I/O pin, depending on the fuse settings.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

74 microcontrollers

9.2 Writing Programs to Memory

By connecting the Arduino Uno to a computer with a USB cable and
using the Arduino IDE, programs and data can be written to the
ATmega328P memory using a serial communication protocol called
USART. A section of program memory known as the bootloader in-
structs the microcontroller to receive external information and write
it to program memory. The Arduino Uno can also be programmed
using another serial protocol known as SPI. Otherwise, a conven-
tional non-volatile memory programmer can be used to program the
microcontroller.

A non-volatile memory programmer can be used to program the
ATmega328P microcontroller chip external to the Arduino Uno.
While the Arduino package has many features and is convenient
to use, it is useful to be able to program individual microcontroller
chips for small-size, low-power, or low-cost situations.

9.3 Fuse Bytes

Although the microcontroller contains flash memory, EEPROM,
SRAM, and general purpose registers, it also contains non-volatile
fuse bytes to affect the functioning of the microcontroller external
to the program operations. There are three fuse bytes used to con-
trol the microcontroller: the extended fuse byte, the low fuse byte,
and the high fuse byte. Programmed fuses have a value of 0, while
unprogrammed fuses have a value of 1.

Extended Fuse Byte

This fuse configures the brown-out detection unit. If a power supply
fluctuates, it is possible for the microcontroller to malfunction if
the voltage supplied to the Vcc pin dips below a certain value. The
brown-out detection unit resets the microcontroller while the voltage
is underneath a given threshold as programmed by the extended fuse
byte.

High Fuse Byte

This fuse configures features that are relevant to programming and
debugging the ATmega328P microcontroller. Among other things,
the bits in the high fuse byte control the ability to use serial program-
ming, to use the watchdog timer (which is explained in chapter 14),
to preserve EEPROM memory when writing new program memory
to the device, and to configure the amount of memory set aside to act
as a bootloader.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

the atmega328p microcontroller 75

Low Fuse Byte

This fuse configures features that are relevant to the clock source
used to operate the microcontroller. There are two clock sources
internal to the ATmega328P, but the device may also be clocked from
an external source. The start-up time is also affected by changing the
low fuse byte. Clock sources require a sufficiently high value of Vcc
before it starts oscillating, and it must oscillate a sufficient number of
times before the clock can be considered stable. A time-out delay is
used after device reset to ensure a sufficient value of Vcc.

9.4 Practice Problems

1. The reset pin is active- . LOW

2. What is the operating voltage range of the ATmega328P? 2.7–5.5 V

3. How many fuse bytes are available on the ATmega328P? 3

4. What are the names of the fuse bytes? extended, high, low

5. True or false: Upon power-up, the CPU starts working immedi-
ately. FALSE

6. What is the purpose of brown-out detection? To protect the CPU from malfunction
if the power supply dips below a given
voltage level.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

10
I/O Port Registers

Computers are only interesting insofar as they can interact
with input and output devices. The gatekeeper between a micro-
controller and I/O devices are I/O pins. These I/O pins are bidi-
rectional. Through associated I/O registers, the pins can be config-
ured as input pins (which allows the microcontroller to read their
corresponding logic level) or output pins (which allows the microcon-
troller to send data to them). Figure 10.1 shows a schematic of how
this works.

The ATmega328P has three I/O ports which connect to pins and
other peripheral features. These ports are PORTB, PORTC, and PORTD.
These ports, and their associated Arduino pins, are outlined in Ta-
ble 10.1 Ports B and D are gateways to the digital pins on the AT-
mega328P microcontroller. Port C gives access to the analog pins
on the ATmega328P. The analog pins can be used digitally; they are
called analog pins because they connect to analog to digital convert-
ers, which is discussed in chapter 11.

PORTB

bit: 7 6 5 4 3 2 1 0

pin: – – D13 D12 D11 D10 D9 D8

PORTC

bit: 7 6 5 4 3 2 1 0

pin: – – A5 A4 A3 A2 A1 A0

PORTD

bit: 7 6 5 4 3 2 1 0

pin: D7 D6 D5 D4 D3 D2 D1 D0

Table 10.1: ATmega328P data ports and
their corresponding Arduino pins.

78 microcontrollers

CLR

D Q

PINxn

CLR

Q D

PORTxn

CLR

Q D

DDRxn

data

control

write DDRxn

write PORTxn

Pxn

read PINxn

reset

reset

CLKI/O

Figure 10.1: Hardware schematic of I/O
port registers: DDRxn controls the data
direction, PORTxn controls the data
sent to output pins, and PINxn contains
the data state of input pins.

10.1 Electrical Characteristics

It is important to understand the electrical characteristics of I/O
pins in order to interface external devices with the microcontroller
properly. The two characteristics of primary concern are voltage-
level compatibility and current-level compatibility.

Voltage-Level Compatibility

To ensure that the voltage levels of external devices are able to prop-
erly interface with the ATmega328P, the voltages required for a logic
HIGH and logic LOW must be known for both devices. (The values
for the ATmega328P can be found in the Common DC Characteris-
tics section of the datasheet.) The following four voltages must be
compared and checked for compatibility:

• Input HIGH voltage (VIH) – This is the voltage level that is treated
as a logic 1 when applied to the input of a device.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

i/o port registers 79

• Input LOW voltage (VIL) – This is the voltage level that is treated
as a logic 0 when applied to the input of a device.

• Output HIGH voltage (VOH) – This is the output voltage level
when a digital circuit outputs a logic 1. The output HIGH volt-
age of circuit X must be greater than or equal to the input HIGH
voltage of circuit Y, in order for circuit X to properly drive circuit
Y.

• Output LOW voltage (VOL) – This is the output voltage level when
a digital circuit outputs a logic 0. The output LOW voltage of
circuit X must be less than or equal to the input LOW voltage of
circuit Y, in order for circuit X to properly drive circuit Y.

Current-Level Compatibility

In order for the ATmega328P to properly drive external devices,
the current drive capability must be understood. The ATmega328P
is capable of supplying current when the output voltage is HIGH
(current flows from the microcontroller to the device), or sinking
current when the output level is LOW (current flows from the device
to the microcontroller).

Each I/O pin on the ATmega328P is capable of sourcing and sink-
ing 40 mA. The maximum current rating of the microcontroller is
200 mA. All logic devices have four current values that are involved
in determining how much current is necessary to properly derive the
device:

• Input HIGH current (IIH) – This is the input current that must
flow into the input pin to create a HIGH logic level.

• Input LOW current (IIL) – This is the input current that must flow
out of the input pin to create a LOW logic level.

• Output HIGH current (IOH) – This is the output current that flows
out of the output pin when the output logic level is HIGH.

• Output LOW current (IOL) – This is the output current that flows
into the output pin when the output logic level is LOW.

10.2 Internal Pull-Up Resistors

There are internal pull-up resistors built in to each digital I/O pin
on the ATmega328P. They have a value of approximately 36 kΩ. In
order to make use of the pull-up resistors, write a value of 1 to a pin
when it is configured as an input. The input pull-up resistors can
be globally turned off by setting bit 4 (PUD, pull-up disable) in the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

80 microcontrollers

Microcontroller Control Register (MCUCR), but by default this bit is
configured to enable the usage of the internal pull-ups. The I/O pin
hardware that controls the input pull-up is shown in Figure 10.2.

Pxn

Vcc

PUD
DDxn
PORTxn

Figure 10.2: Hardware schematic of I/O
port input pull-up resistors.

10.3 Alternate Pin Functions

All of the I/O pins on the ATmega328P microcontroller serve alterna-
tive purposes. This increases the functionality of the microcontroller
without requiring extra space for extra pins. Some of these alter-
native functions include acting as sources for external interrupts,
providing functionality for serial communication, converting analog
to digital signals, etc. Each pin has extra hardware that allows for
this extra functionality. Multiplexers route control signals to either
have the pins act as regular I/O pins, or to function with their alter-
nate purpose. The I/O pin multiplexers are shown schematically in
Figure 10.3.

PORTxn

PORT override value

PORT override enable

DDRxn

DDR override value

DDR override enable

Pxn

Figure 10.3: Hardware schematic of
alternate I/O port functionality.

10.4 Practice Problems

1. True or false: All bits of Port B are accessible on the ATmega328P. FALSE

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

i/o port registers 81

2. True or false: To change the data direction of pins on Port B, the
register DDRB is used. TRUE

3. What is the difference between PORTC=0x00 and DDRC=0x00? PORTC=0x00 sets the output value of
all pins on Port C to be equal to logic
LOW. DDRC=0x00 sets the directionality
of all pins on Port C to be input pins.

4. True or false: All of the ATmega328P ports have 8 bits.
TRUE

5. True or false: Upon power-up, the I/O pins are configured as
output ports. FALSE

6. True or false: The PORTx register is used to send data out to AT-
mega328P pins. TRUE

7. True or false: The PINx register is used to bring data into the CPU
from ATmega328P pins. TRUE

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

11
Analog to Digital Conversion

As discussed in chapter 12, many sensors output analog values.
Table 11.1 gives a list of various types of digital and analog sensors.

Digital Analog

Pushbutton Potentiometer
Toggle Switch Microphone
Keypad Temperature sensor
Encoder Photo-diode, -resistor

Table 11.1: Listing of digital and analog
sensors.

Analog values must be converted into digital values in order to
work with the digital functionality of the microcontroller. By nature,
analog signals are continuous, and they contain an infinite number
of points, as shown in Figure 11.1. The voltage values can take on
any real number between VMIN (usually ground) and VMAX (Vcc). To
convert these into digital signals, the analog signal must be sampled,
quantized, and encoded.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

t (ms)

V
(V

)

Figure 11.1: An analog signal takes
on continuous values and contains an
infinite number of points.

84 microcontrollers

11.1 Sampling

An infinite number of points can’t be digitized because it would re-
quire infinite processing power and infinite memory. Therefore, the
analog signal must be sampled periodically. This sample rate is very
important when doing signal processing (audio, video, etc.). It is in-
versely related to conversion accuracy. The fine details of sampling
rate are beyond the scope of this course; you will very likely study
the topic in a signals and systems electrical engineering course. Suf-
fice it to say, when the ADC on the ATmega328P is used, the sample
rate will be approximately 9,000× per second. Figure 11.2 shows
the same analog signal sampled every millisecond. At each point in
time, the sampled data is held in memory and then quantized and
encoded.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

t (ms)

V
(V

)

Figure 11.2: An analog signal sampled
every millisecond.

11.2 Quantization

Because digital data cannot take on a continuum of values, the sam-
pled analog data must be set equal to one of a number of discrete
values. Figure 11.3 shows an analog signal that has been quantized.
At every sampled point in the signal, that value is rounded down
to the nearest possible division of VMAX ÷ 2

n, where n refers to the
number of bits of system resolution.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

t (ms)

V
(V

)

Figure 11.3: An analog signal sampled
every 1 ms that has been quantized in a
3-bit system.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

analog to digital conversion 85

The number of possible discrete values available depends on the
resolution of the system. The resolution of an ADC is represented
in bits. In general, higher resolution is better, meaning that more
accuracy can be obtained in the final result. A 2-bit system has 22 = 4
possible discrete values; an 8-bit system has 28 = 256 possible values;
the ADC on the ATmega328P is 10 bits, meaning there are 210 = 1024
discrete values.

Other ADC metrics include the step size, which is the minimum
change in voltage required to change the output value. The step size

∆V =
VMAX −VMIN

2n .

Quantization Error

The quantization error refers to the difference between the actual
and quantized voltage: error = Vquantized − Vactual. Quantization
error can be reduced by increasing the sample rate, and by increasing
the resolution of the ADC, as shown in Figure 11.4.

0

1.25

2.5

3.75

5

si
gn

al
vo

lta
ge

(V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

t (ms)

qu
an

tiz
at

io
n

er
ro

r(
V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t (ms)

Figure 11.4: Quantized analog signals
and associated quantization error for
a 3-bit ADC (left) and an 8-bit ADC
(right). The sample rate is 4× per
millisecond.

11.3 Encoding

The encoding part of ADC comes when the sampled and quantized
signal is then converted into a binary number. In hardware, this can
be accomplished with a priority encoder.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

86 microcontrollers

11.4 ADC Architectures

There are many different hardware approaches to realizing an ADC.
Each architecture has tradeoffs between size, resolution, and data
processing time. While only three architectures are outlined here,
there are many other possibilities that exist to convert analog signals
to digital values.

Direct Conversion (Flash) ADC

A flash ADC, as shown in Figure 11.5 uses analog comparators to
quantize an analog input signal.

8–3

Priority

Encoder

A

B

C

V7

V6

V5

V4

V3

V2

V1

−

+

−

+

−

+

−

+

−

+

−

+

−

+

Vcc

Vin

Figure 11.5: A 3-bit flash analog to
digital converter.

Each comparator output (Vn) goes to Vcc if the applied voltage

is greater than
n

2m × Vcc, where n is the number of the comparator,
and m is the number of bits of system resolution. For example, the

output V6 becomes one when Vin >
6
23×Vcc. An encoder then takes

the quantized signal and converts it into a binary output.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

analog to digital conversion 87

Flash ADCs are quick; they only take a single clock cycle to com-
pute the output. However, they consume relatively high amounts of
power and also require 2m − 1 comparators, which means they re-
quire a form factor that is unreasonably large for high resolution data
converters. A 10-bit ADC would require 1023 analog comparators!

Successive Approximation Register (SAR) ADC

1000

1100 0100

1110 1010 0110 0010

1111 1101 1011 1001 0111 0101 0011 0001

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

L

L L

L L L L

L L L L L L L L

S

S S

S S S S

S S S S S S S S

Figure 11.6: Process flow for a 4-bit
successive approximation register
analog to digital converter.

The successive approximation register is the type used in the AT-
mega328P microcontroller. It works by comparing the analog input to
half of the value of VMAX, then depending on the result, comparing
in intervals of half the remaining difference until the final result is
determined. It requires a properly calibrated digital to analog con-
verter (DAC), but only requires a single analog comparator, so the
form factor is relatively small. It takes m clock cycles to compute a
final result, where m is the number of bits of system resolution. The
SAR ADC in the ATmega328P requires 13 clock cycles to execute. An
SAR ADC consumes much less power than a flash ADC.

A process flow of how a 4-bit SAR ADC calculates values is shown
in Figure 11.6. The analog input value is first compared with one half
of the maximum value. If the analog input is larger than this value
(indicated by the letter L), then it is compared to successively larger
approximations of the value. If the analog input is smaller than this
value (indicated by the letter S), then it is compared to successively
smaller approximations of the value until settling on the result.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

88 microcontrollers

Pipelined ADC

Vin

+

Stage 1

A
D

A1B1C1
D

A
Vout,1

Σ
−

×8

Stage 2

A
D

A2B2C2
D

A
Vout,2

Σ
−

×8

Stage 3

A
D

A3B3C3
D

A
Vout,3

Σ
−

×8

+

+

Stage 4

A
D

A4B4C4

Figure 11.7: A 12-bit pipelined ADC
with 3-bit flash ADC stage.A pipelined ADC has q stages, where q is equal to the total device

resolution divided by stage resolution. Each stage (which has m
bits of resolution) uses an m-bit flash ADC to calculate m bits of the
result at a time. For example, in Figure 11.7, a 12-bit pipelined ADC
uses four 3-bit flash stages. The first stage calculates the first 3 most
significant bits of the result. This is then subtracted from the input
value, and then the next 3 significant bits are calculated. This process

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

analog to digital conversion 89

iterates until the final result has been calculated, giving an output
of the form A1B1C1 A2B2C2 A3B3C3 A4B4C4. The pipelined ADC
requires only q clock cycles to compute the output.

11.5 The ADC on the ATmega328P

The ATmega328P contains a 10-bit successive approximation ADC.
It is connected to an 8-channel analog multiplexer that selects from
eight different input sources (including all of the pins in PORT C).
The minimum voltage level is 0 V (ground) and the maximum volt-
age level can be selected from different sources (either an externally
applied reference voltage AREF, the internal value of Vcc, or 1.1 V). A
block diagram of the ADC is shown in Figure 11.8.

sample &

hold

comparator

ADMUX

register
ADC status &

control register

ADC data

register

SAR conversion logic

10-bit DAC

re
fe

re
nc

e

vo
lta

ge
s

in
pu

t

so
ur

ce
s

−
+

DATA Figure 11.8: Analog to digital converter
block diagram.

The number of available input sources depends on the package of
the ATmega328P. The 28-pin chips do not contain pins for ADC6 and
ADC7. However, the 32-pin chips do.

11.6 Digital to Analog Conversion

While the ATmega328P does not contain a standalone digital to ana-
log converter (DAC) module to provide analog voltage levels, it is
important to understand the concept of digital to analog conversion.
A DAC performs the reverse function of an ADC, and as indicated
previously in this chapter, is a crucial component included in SAR
and pipelined ADC architectures. The analog voltage output of a
DAC is given by

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

90 microcontrollers

VOUT = Vcc ×value
2n ,

where n is equal to the the resolution of the converter.
A digital datastream is sampled and held, in which case the digital

value is then converted into an analog voltage level. An R-2R ladder
is one of many common architectures used to convert a binary value
into a voltage, and is depicted schematically in Figure 11.9.

R

2R

D7

R

2R

D6

R

2R

D5

R

2R

D4

R

2R

D3

R

2R

D2

R

2R

D1

Analog

Output

D0

2R

2R

Figure 11.9: Schematic of a 3-bit R-2R
digital to analog converter.

11.7 Practice Problems

1. Find the step size for an 8-bit ADC, if Vref = 1.28 V. ∆V = 5 mV

2. Given the situation in Question 1, calculate the output if the ana-
log input is 0.7 V. 1000 1100

3. Given the situation in Question 1, calculate the output if the ana-
log input is 1.0 V. 1100 1000

4. How many bits of resolution does the ATmega328P microcon-
troller have? 10 bits

5. True or false: The output of most sensors is analog. TRUE

6. Calculate the step size for the following ADCs, given Vref = 5 V.

(a) 8-bit ADC ∆V = 19.5 mV

(b) 10-bit ADC ∆V = 4.9 mV

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

analog to digital conversion 91

(c) 12-bit ADC ∆V = 1.2 mV

(d) 16-bit ADC ∆V = 15.3 µV

7. Given a Vref of 2.56 V, find the corresponding Vin for each of the
8-bit ADC outputs.

(a) 1111 1111 Vin = 2.55 V

(b) 1001 1001 Vin = 1.53 V

(c) 0110 1100 Vin = 1.08 V

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

12
Sensors & Sensor Calibration

In order to obtain information about the world around us,
sensors must be used. Sensors take information about the external
environment and convert (transduce) them into electrical signals.
These electrical signals are voltage, current, and resistance. Devices
with electrical properties dependent on a particular physical quan-
tity are chosen (photoresistors, temperature-sensitive transistors,
piezoelectric ceramics) to measure that property. Figure 12.1 shows
example block diagrams of this property in a temperature sensor
(such as the TMP36) and a photoresistor.

temp.

temp-

sensitive

transistor

(TMP36)

voltage

light

level

photo-

resistor
resistance

Figure 12.1: Diagram of how the TMP36

temperature sensor transduces tem-
perature to voltage, as well as how a
photoresistor transduces light level to
resistance.

Several types of sensors are listed in Table 12.1.
Table 12.1: Various types of sensors.

Light Level Sensors

Photoresistor
Photodiode
Phototransistor

Distance, Speed, Acceleration Sensors

94 microcontrollers

Ultrasonic detector
Accelerometer
Wheel encoder / tachometer

Sound Intensity

Microphone

Digital Sensors

Switches
Toggles
Pushbuttons

Environmental Conditions

Temperature sensor
Humidity sensor
Barometer

Some sensors provide digital data output. For example, a push-
button is capable of generating a digital logic value of HIGH or LOW
depending on whether or not the button is pressed. Simple digital
sensors such as this can be directly connected to any pin on the AT-
mega328P that has been configured as an input pin.

Of sensors that provide digital data output, some have been built
to send data using a serial communication protocol. Devices that
make use of USART, SPI, or TWI can interface with the ATmega328P
using serial I/O, as is discussed in chapter 15. Making sense of this
data will require consulting the sensor datasheet.

Most sensors, however, provide analog information, which may be
in the form of a voltage output or a changing resistance. Sensors that
output a voltage can interface directly with the ATmega328P using an
analog pin. Sensors that output a resistance must first be configured
with another resistor in series (RC) in order to convert the variable
resistance into an analog voltage value, as shown in Figure 12.2.

V VOUT

Vcc

R
VOUT

Vcc

RC

Figure 12.2: Schematics of how to
connect sensors that output (V) voltage
and (R) resistance to the ADC on the
ATmega328P.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

sensors & sensor calibration 95

12.1 Choosing Resistor Values

With sensors that output variable resistance values, it is important to
correctly chose the value of RC in order to obtain an appropriate out-
put value. Using the schematic in Figure 12.2, an equation between
the output voltage, Vcc, and both resistors is given by

VOUT = Vcc
RC

RC + R
.

The output voltage will be maximum (VMAX) when the sensor
resistance is lowest, and it will be minimum (VMIN) when the sen-
sor resistance is greatest. A value of RC must be chosen such that
VMAX−VMIN (the contrast) is maximum.

In the specific case of the photoresistor, the maximum resistance
in the device corresponds to when it is dark (RDARK = 1 MΩ), and
the minimum resistance in the device corresponds to when it is light
(RLIGHT = 10 kΩ). Using the above equation to determine VMAX and
VMIN as a function of RC, it is found that

VMAX = Vcc
RC

RC + 10kΩ
, and VMIN = Vcc

RC
RC + 1MΩ

.

0 25 50 75 100 125 150 175 200
0

1

2

3

4

5

RC (kΩ)

V
O

U
T

VMAX
VMIN
VMAX−VMIN

Figure 12.3: The maximum and mini-
mum voltages and contrast as a func-
tion of the value of RC.

Plotting the photoresistor equations for VMAX, VMIN and the dif-
ference between them, it can be shown in Figure 12.3 that the contrast
between these two signals occurs when RC = 100 kΩ. That is the
value of RC that should be chosen for that particular application. This
process must be carried out individually for every sensor used.

After determining the value of RC, it is next imperative to ensure
that the power rating of the resistor is sufficient. From the equation
P = IV, it can be shown that the power is maximum when the total
resistance is minimized. Referring to the photoresistor example,
the maximum power can be calculated as 0.2 mW, meaning that a
1/4 W resistor is sufficient to ensure that none of the components
will overheat and melt.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

96 microcontrollers

12.2 Sensor Calibration

In order to obtain meaningful information from sensors, they must
be characterized and calibrated. In other words, it is critical to know
how to convert the output voltage into the physical quantity that it is
meant to represent. This can be accomplished by checking the sensor
datasheet or by performing a manual calibration.

Datasheet Calibration

Some sensors have datasheets which explain how the output corre-
sponds to the physical quantity. For example, the TMP36 tempera-
ture sensor datasheet states that the output has a slope of 10 mV/◦C
and that an output voltage of 750 mV indicates a temperature of
25
◦C. From this, the equation between temperature (in ◦C) and volt-

age (in V) can be derived as

T = 100×V − 50.

As discussed in chapter 11, the ATmega328P has a 10-bit analog to
digital converter (ADC), which outputs a value of 0 when the input
voltage is 0 V, and a value of 1023 when the input voltage is 5 V.
Therefore an equation can be derived directly between the value of
the ADC and the temperature. This data, as shown in Figure 12.4,
yields a relationship between temperature and ADC value of

T = 0.489×AC – 50.

−200 0 200 400 600 800 1,000 1,200
−100

0

100

200

300

400

500

(0,−50)

(1023,450)

ADC Value

T
(◦

C
)

Figure 12.4: Linear relationship between
temperature and ADC value of the
TMP36 temperature sensor, given by
the TMP36 datasheet.

This can be programmed onto the ATmega328P, avoiding the use
of floating-point math, using the equation

T = 500L*ADC>>10 − 50.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

sensors & sensor calibration 97

One-Point Calibration

When put into practice, the sensor may not give the output that that
was expected. If there is a discrepancy between the output of the
sensor and that of a trustworthy reference, the data must be further
calibrated. One-point calibration used when slope is correct but
there’s an offset between measured and actual data (as measured
by a trustworthy reference). If the measured data is greater than the
actual data, the offset must be subtracted, and if the measured data
is less than the actual data, the offset must be added. This is shown
graphically in Figure 12.5.

−200 0 200 400 600 800 1,000 1,200
−100

0

100

200

300

400

500

600

Offset

ADC Value

T
(◦

C
)

Ideal Response
Measured Data

Figure 12.5: Example of one-point
calibration; finding an offset value
changes the measured response to the
ideal (expected) result.Multiple-Point Calibration

If the output response of a sensor is not known, it must be found
using a reference instrument to measure the physical quantity and
compare it to the ADC values output by the sensor. Use as many
known reference points as possible, and use plotting software such as
Excel to find a best fit line, keeping in mind that the best fit line may
not always be linear. This best fit line will then be used in software to
convert the ADC value into the corresponding physical quantity. A
hypothetical example is shown in Figure 12.6 with a linear relation-
ship found between sound intensity and ADC values.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

98 microcontrollers

−200 0 200 400 600 800 1,000 1,200
−10

0

10

20

30

40

50

60

70

80

ADC Value

S
ou

nd
In

te
ns

ity
(d

B
)

Measured Data
Best Fit Line

Figure 12.6: Example of multiple point
calibration to determine the ADC value
given at different sound intensity levels.12.3 Mitigating Fluctuating Data & Sensor Noise

Sensor data can fluctuate over time due to environmental conditions
or noise. It may be important to perform a rolling average to obtain
a steady, reliable readout. A rolling average uses n previous val-
ues (stored in an array) to calculate the current average value. Care
must be taken in choosing an appropriate value for n, which must be
specifically tailored to each different sensor and situation in which it
is to be used. Table 12.2 explains what happens if n is small or large.

Table 12.2: Issues that can result if n is
chosen to be either small or large..

If n is small...

Program uses less memory
Program takes less time to initialize
Sensor is more susceptible to noise

If n is large...

Program takes more memory
Program takes more time to initialize
Sensor is less susceptible to noise
If n is too large, the sensor is not sensitive to short-term or quick
changes

Sensor data from a temperature sensor that has been averaged out
using three different values of n (as well as the raw data, which has
an n value of 1) is shown in Figure 12.7.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

sensors & sensor calibration 99

0 5 10 15 20 25

28.40

28.45

28.50

t (ms)

T
(◦

C
)

n = 5
n = 20
n = 40
raw data

Figure 12.7: Temperature data subjected
to rolling average with different values
of n.

Circular Buffer

A circular buffer is a method of taking a rolling average to clean
up sensor noise and fluctuations. It is simply an array of n sensor
values, where the first value in is also the first value out. (This type
of situation is known as FIFO: First In First Out.) A flowchart and
sample array is shown in Figure 12.8 to explain this process.

array[5] = {}

x = 0

array[x%n] =

sensor value

x++

array index 0 1 2 3 4

step 1 17.2

step 2 17.2 16.5

step 3 17.2 16.5 17.8

step 4 17.2 16.5 17.8 16.9

step 5 17.2 16.5 17.8 16.9 17.0

step 6 18.0 16.5 17.8 16.9 17.0

step 7 18.0 18.2 17.8 16.9 17.0

Figure 12.8: Flow chart and example
array of values in a circular buffer.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

13
Interrupts

An interrupt is an important asynchronous event that
requires immediate attention. For example, in monitoring an oil
refinery, many sensors are checked in sequence and cycled through
(a system known as polling). If a fire breaks out, it would not be
prudent to wait until the fire sensor is checked to know about it.
It would also not be wise to only check the fire sensor, or to check
it excessively, because the program must do other things as well.
Instead: the fire sensor generates an interrupt request if a fire is
detected.

13.1 Program Flow

An example program flow that compares continuous polling to inter-
rupts is shown in Figure 13.1.

SETUP SETUP

POLLING INTERRUPTS

INTERRUPT

SERVICE

ROUTINE (ISR)

CHECK

SYSTEM A

CHECK

SYSTEM B

CHECK

SYSTEM C

PERFORM

TASKS

ADDRESS

SYSTEM A

ADDRESS

SYSTEM B

ADDRESS

SYSTEM C

PERFORM

TASKS

Figure 13.1: Program flow of software
that uses continuous polling to mon-
itor systems, vs. software that uses
interrupts to asynchronously handle
important events.

Today’s embedded systems have many features that require many

102 microcontrollers

systems to be monitored. For example, a smart phone contains at the
very least a power switch, home button, screen, keypad, app buttons,
and microphone. If all of these inputs were continuously polled to
check their status, the phone would never be able to accomplish other
tasks.

Interrupts are used for performance; asynchronously handling im-
portant events ensures that the system can carry out its regular func-
tionality. In addition, immediate action can occur upon a changing
input, rather than waiting for the software flow to poll that particular
input. Interrupts allow a system timer to be used to trigger updates
at regular intervals. Interrupts can also be used to wake a device up
from a low power mode, allowing the device to save power when not
in use. The drawbacks to interrupts deal with their asynchronous
nature. Because an interrupt can be invoked at any time (even in the
middle of another operation), code needs to be carefully written to
reflect that fact.

13.2 Interrupt Service Routine (ISR)

An interrupt service routine (ISR) is a subroutine that the microcon-
troller executes when an interrupt is invoked. It is at times referred
to as an interrupt handler. ISRs should be as short and fast as pos-
sible, so as to deal with the asynchronous event without detracting
from the functionality of the program in general. Because an ISR is
never formally invoked in software (it is only asynchronously in-
voked upon a specific event), the function must take no arguments,
must not return any values, and cannot use any other functions that
themselves use interrupts. Any variable that must be shared with an
ISR must be global, volatile, and protected.

When the interrupt is invoked, program goes to the memory loca-
tion of the associated interrupt vector. Each of these vectors can have
an associated subroutine written for it in the Arduino IDE. The group
of memory locations that holds the ISR addresses is called the inter-
rupt vector table. (An abridged version of the ATmega328P interrupt
vector table is given in Table 13.1.) The lower the address of the ISR
location, the higher its priority. If two interrupts are triggered si-
multaneously, the one with the highest priority will be serviced first,
followed by the second.

13.3 ISR Execution

When an ISR is invoked, the microcontroller...

1. Finishes executing the current instruction

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

interrupts 103

Vector Address Source Interrupt Definition

1 0x0000 RESET External pin, power-on reset
2 0x0002 INT0 External interrupt request 0

3 0x0004 INT1 External interrupt request 1

4 – 6 0x0006 – 0B PCINTx Pin change interrupt requests
7 0x000C WDT Watchdog time-out interrupt
8 – 17 0x000E – 21 TIMERx Timer / counter interrupts
18 – 21 0x0022 – 29 Serial communication interrupts
22 – 26 0x002A – 33 Other peripheral interrupts

(ADC, EEPROM, etc.)

Table 13.1: Abridged version of the
ATmega328P interrupt vector table.

2. Saves the address of the next instruction in the stack

3. Jumps to interrupt vector table

4. Loads memory address of the associated ISR into the program
counter

5. Clears global interrupt enable flag in SREG (I=0)

6. Runs the ISR subroutine until its end (RETI = return from inter-
rupt instruction)

7. Sets global interrupt enable flag in SREG (I=1)

8. Loads the memory address to return to from the stack into the
program counter

9. Executes the next instruction

10. Either

(a) Continues fetch/execute as normal

(b) Services the next interrupt (if there is one)

13.4 ISR Categories

Interrupt service routines can be categorized as external (coming
from an outside source) or internal (coming from a hardware periph-
eral). External interrupts include pin interrupts, which are associated
with certain pins on the ATmega328P. Pins D2 and D3 can invoke in-
terrupts, each with their own associated ISR. These are the interrupts
INT0 and INT1. Different invoking situations (rising edge, falling
edge, low level, toggle) means that the exact status of the input when
the ISR is invoked can be known. However, they are only available on
two pins. Pin-change interrupts are available on all pins on the AT-
mega328P, however they do not have unique ISRs, so extra software

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

104 microcontrollers

is required to determine exactly what pin was changed and what
condition it is in.

Internal peripheral interrupts use timers to create routine tasks,
create interrupts upon successful transmission or receipt of serial
communications, notify the program when an ADC conversion has
been completed, or upon successful write to EEPROM memory.

Reset

Reset is a special category of interrupt on the ATmega328P. It is the
highest priority ISR, and cannot be disabled. When the ATmega328P
is first powered on, initial values of the program counter, flip-flops,
I/O control registers, etc. are unknown. The reset ISR sets these crit-
ical registers to initial values upon reset. The program counter is set
to 0x0000 upon reset (shown in Figure 13.2), therefore it begins by
servicing the reset subroutine before carrying out the rest of the pro-
gram. There are several reset sources on the ATmega328P microcon-
troller. One of them occurs when the microcontroller is first powered
on. An external button on the Arduino is connected to the RESET pin
on the ATmega328P, which creates a reset condition when the pin
is held low for longer than a specified minimum amount of time. In
addition, brown-out resets and watchdog resets can be enabled to
trigger the reset condition.

reset

D Q

program

counter

System PowerCLK

To Program MemoryFrom PC
Figure 13.2: The program counter is
initialized to a value of 0x0000 when
system power is shut off.

13.5 Enabling / Disabling Interrupts

At times, it is useful to enable or disable interrupts. This can happen
globally, in that all interrupts are enabled/disabled, or locally, in
which only individual interrupts are enabled/disabled. When the
ATmega328P resets, all interrupts are disabled to allow the device
to reset without interrupt. Interrupts can be globally disabled by
clearing the interrupt flag in SREG (I=0). Interrupts can be globally
enabled by setting the interrupt flag in SREG (I=1). Interrupts are
globally disabled upon entering an ISR, and then globally enabled
once the ISR has been serviced. Nonmaskable interrupts cannot be
disabled, for example the reset interrupt.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

interrupts 105

13.6 Practice Problems

1. Which of the two techniques (interrupts or polling) requires more
system resource usage on the microcontroller? polling

2. What is the memory address of the watchdog timer interrupt? 0x000C

3. True or false: While servicing an interrupt service routine, inter-
rupts are globally enabled. FALSE

4. Is the reset interrupt maskable or nonmaskable? nonmaskable

5. When two interrupts are invoked simultaneously, the one with the
memory address will be serviced first. lower

6. If INT0 and INT1 are invoked simultaneously, which will be ser-
viced first? INT0

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

14
Clocks, Timers / Counters & Pulse-Width Modulation

A microcontroller needs a clock to keep time for all of its
hardware components and peripherals. A clock signal is a square
wave that oscillates between 0 V and Vcc at regular intervals. A clock
is also useful to create time delays in code (for example, to blink
an LED or to check sensors at regular intervals). A list of different
technologies that can be used to generate clock sources is provided in
Table 14.1.

Ceramic Resonators

– Piezoelectric ceramic material
– Internal vibrations create an oscillating voltage at a specific
frequency
– Not accurate enough to be used for a CPU clock (0.5%
tolerance)

Crystal Oscillators

– Piezoelectric crystal
– Internal vibrations create an oscillating voltage at a specific
frequency
– Highly accurate and can be used for system clocks (0.001%
tolerance)

RC Circuits

– Amplifiers
– 555 timers
– RLC circuits

Table 14.1: A list of various clock
sources.

Not all of these technologies directly generate a clock signal. Some
of them (such as an RLC circuit) generate a sinusoidal wave and
some (such as piezoelectric crystals) may not generate the proper
voltage levels necessary for a digital clock.

108 microcontrollers

All microcontrollers contain circuitry to condition an input oscil-
lation and turn it into a clock signal. They also have the capability to
change the clock frequency. Clock multipliers increase the frequency
by using a phase-locked loop. The advantage of this is to have faster
code execution. However, all microcontrollers have maximum fre-
quencies beyond which they will not work reliably, which must be
taken into consideration before multiplying the frequency of any
clock signal. Increasing the clock frequency also has the side effect of
increasing the power consumption of the microcontroller.

Clock dividers (prescalers) decrease the frequency. They use a
timer to count to a particular prescaler value (2, 8, 1024, etc) and
when the timer reaches that value, an overflow causes a pin to toggle.
That toggle becomes the new clock signal. Slower clocks indicate a
longer time to execute code but use less power.

14.1 ATmega328P Clock

The ATmega328P has two internal clocks: an 8 MHz RC oscillator
and a 128 kHz lower power oscillator. An external clock (connected
to the XTAL1 pin), or a crystal or ceramic oscillator (connected to the
XTAL1 and XTAL2 pins) may be used instead of one of the internal
oscillators. The clock source is selected by changing fuse bits in the
low fuse byte. The ATmega328P is rated for a fastest clock speed of
20 MHz. It has no clock multiplier, but is capable of using a global
prescaler to divide the clock frequency.

The clock control unit, as shown in Figure 14.1, routes the clock
signals to all device peripherals, as different peripherals require their
own clock signals. The CPU clock (CLKCPU) is routed to all parts
involved with core operations. The I/O clock (CLKI/O) is routed to
all parts involved with input and output operations, including timer
/ counters, serial communication peripherals and external interrupts.
The flash clock (CLKFLASH) is routed to the program memory. When
externally programming the chip, it is important to have access to
program memory without the CPU running. The asynchronous clock
(CLKASY) allows the asynchronous timer / counter to be clocked
directly from an external source. Finally, the ADC clock (CLKADC) is
used to power the ADC with the CPU clock off to reduce noise and
increase the precision of the analog to digital conversion process.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 109

AVR clock

control unit

system clock

prescaler

clock MUX watchdog

oscillator

watchdog

timer

timer/counter

oscillator

external

clock

crystal

oscillator

low-frequency

crystal
calibrated RC

oscillator

asynchronous

timer/counter
general I/O

modules
ADC

CPU

core
RAM

flash and

EEPROM

clkCPU

clkFLASH

clkASY

clkI/O

clkADC

Figure 14.1: Schematic of the AVR clock
distribution system.

14.2 Timer / Counters

Timer / counters are integral in the use of timed interrupts and
pulse-width modulation (PWM). A counter counts up values from
0→ 2

n − 1, where n is the resolution of the counter. A timer is sim-
ply a counter which is clocked with the CPU clock. Timer / counters
are used to generate waveforms (for example in PWM), measure time
intervals, generate interrupts at specific intervals, and capture or
count external events.

There are three timer / counters on the ATmega328P: Timer /
counter 0 (TCNT0) and timer / counter 2 (TCNT2) are 8-bit counters.
timer / counter 1 (TCNT1) is a 16-bit counter. Each counter can be
assigned its own prescaler value to allow them to overflow at differ-
ent frequencies.

There are different clock sources that can be used for each timer
/ counter to provide flexibility in timing. The first option, available
on all three timer / counters, is to use the CPU clock. It is possible to
prescale the clock to slow down the timing intervals, however there
are a finite number of prescalers available to use.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

110 microcontrollers

The second option, available on timer / counters 0 and 1, is to use
an external clock. The microcontroller then synchronizes the exter-
nal clock to the system clock. This limits the range of frequencies of
the external clock. Because it is sampled by the CPU clock, it must
be slower than half the frequency of the CPU clock. (In fact, the AT-
mega328P datasheet recommends that the maximum external clock
frequency be no greater than the CPU clock divided by 2.5.) The ex-
ternal clock frequency cannot be prescaled. While an external clock is
being used, due to the synchronization of the CPU clock, this is not a
truly asynchronous timing option.

The last option, available only on timer / counter 2, is to use a
truly asynchronous oscillator. That is, the oscillator will indepen-
dently clock the timer / counter without any synchronization to
the CPU clock. Timing events (such as interrupts) will by definition
occur outside of the timescale of the CPU clock, yet the CPU clock
drives all of the hardware that deals with those events. Therefore, it
is still necessary to limit the frequency of the asynchronous clock. It
is recommended that the frequency be at least four times less than
the CPU clock. In particular, the asynchronous timer / counter is
meant for 32,768 Hz oscillators which, when prescaled, can be used
to develop real time clocks.

Each of the timer / counter units can be simplified as a block
diagram as shown in Figure 14.2

TCNTn
Control

Logic

clkTn

count

clear

direction

bottom top

TOVn

(Interrupt Request)
DATA BUS

Figure 14.2: Block diagram of each
timer / counter unit on the AT-
mega328P.

The definitions given in Table 14.2 are important to understand the
operation of each timer / counter.

Each timer / counter has two units. The output compare unit
functionality allows the timer / counter to generate square waves
with differing frequencies and duty cycles. It is capable of generat-
ing PWM signals. The input capture unit (which is available with
TCNT1) captures input signals and can calculate their frequencies
and duty cycles.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 111

Name Definition

bottom 0x00 (or 0x0000)
max 0xFF (or 0xFFFF)
top highest value in the count sequence
direction select between increment and decrement
count signal to increment/decrement by 1

clkTn timer / counter clock

Table 14.2: Important definitions to
understand the operation of the timer /
counter system.

Output Compare Unit

The output compare unit block diagram is shown in Figure 14.3. The
value on the timer / counter register TCNTn is continuously com-
pared with the values in output compare registers OCRnA and OCRnB.
A match will set the corresponding output compare flag OCFnA or
OCFnB. If interrupts are enabled, this will generate an output compare
interrupt. Output signals on OCnA and OCnB can be generated based
on the vaues of WGMn and COMnx, which are initialized in the timer /
counter control registers.

8-bit comparator

waveform

generator
OCnx

OCRnx TCNTn

WGMn COMnx

top

bottom

FOCn

DATA

OCFnx (Interrupt Request)

Figure 14.3: Block diagram of the timer
/ counter output compare unit.

Input Capture Unit (Timer / Counter 1 Only)

The input capture unit, as shown in Figure 14.4, is capable of trigger-
ing a capture from input pin ICP1 based on the value of the ICES bit
as configured in the control register. When ICES = 0, an input cap-
ture is triggered on a falling edge of the signal. Otherwise, an input
capture is triggered on a rising edge. At that time, the value of TCNT1

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

112 microcontrollers

is written to the input capture register ICR1. At the same time, the
input capture flag ICF1 is set to trigger an interrupt.

edge

detector
ICP1

ICR1H ICR1L

TEMP

TCNT1H TCNT1L

DATA

TCNT1ICR1

ICF1 (Interrupt Request)

ICES

WRITE

Figure 14.4: Block diagram of the timer
/ counter 1 input capture unit.This unit can be used to measure the period and duty cycle of de-

vices that output a PWM signal. To calculate the waveform period,
the time at which the first falling edge occurs (T1) is saved. The next
falling edge, which occurs at time T2 is similarly saved. The differ-
ence between these two values, multiplied by the period of the timer
/ counter, is the period of the waveform, given by

TINPUT = (T2 − T1) × TTC,

where TTC is the period of the timer / counter clock. An example of
this is shown in Figure 14.5, where

TINPUT = (25 − 15) × TTC = 10 × TTC.

Input Signal

15 25 35TCNT1 Value Figure 14.5: Using the timer / counter
1 input capture unit to calculate the
period of an input signal.

To measure duty cycle, a rising edge, a falling edge, and the next
rising edge are necessary. The period is measured as the differ-
ence in time between subsequent rising edges. The duty cycle is
the amount of time the signal is HIGH (difference between rising
and falling edges) divided by the total period. An example, shown in
Figure 14.6, indicates that the input wave period is

TINPUT = (25 − 15) × TTC = 10 × TTC,

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 113

the amount of time that the input signal is HIGH is

TON = (18 − 15) × TTC = 3 × TTC,

and therefore the duty cycle can be calculated as

Duty Cycle = TON ÷ TINPUT =
3

10
= 30%

Input Signal

15 18 25 28 35 38TCNT1 Value Figure 14.6: Using the timer / counter
1 input capture unit to calculate the
period and duty cycle of an input
signal.

14.3 Timer / Counter Modes of Operation

Using these two units, the timer / counter can carry out one of its
many modes of operation. These are normal mode, clear timer on
compare match (CTC) mode, fast PWM mode, phase-correct PWM
mode, and phase- and frequency-correct PWM mode.

Normal Mode

Normal mode is capable of creating square waves with 50% duty
cycle with varying frequencies. The frequency of the output wave
depends on the value of the prescaler as well as the resolution of
the timer / counter used. The timer / counter counts up from 0 to
(2n−1). An overflow flag (TOVn) is set when TCNTn becomes 0 after
overflowing. The period of the output wave is

TNORMAL = N × 2
n × TI/O,

where N is the value of the prescaler being used, n is the resolution
of the timer / counter (either 8 or 16), and TI/O is the period of the
I/O clock.

Clear Timer on Compare Match (CTC) Mode

CTC mode can generate square waves with 50% duty cycle with
much more diversity in the possible output frequency. The timer/
counter counts up from 0 to the value stored in register OCRnA, with
an interrupt generated when TCNTn becomes 0 after overflowing. The
period of the output wave is

TCTC = N × (OCRnA + 1) × TI/O,

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

114 microcontrollers

where N is the value of the prescaler being used, OCRnA is the value
saved in the corresponding register, and TI/O is the period of the I/O
clock. An example waveform that can be created using CTC mode is
shown in Figure 14.7.

Interrupts Generated

TCNTn

OCnx

(Toggle)

Figure 14.7: Clear timer on compare
match (CTC) mode waveform.

14.4 Pulse-Width Modulation (PWM)

Pulse-width modulation (PWM) is used to generate digital signals
with varying average voltage levels. Instead of outputting an ana-
log value, which is not possible without a digital to analog converter
(DAC), a digital pulse with varying frequency and duty cycle is out-
put.

Duty Cycle & Average Voltage

As discussed, the duty cycle is the fraction of time that a signal is
HIGH. By changing the duty cycle (D), the effective intensity (average
voltage (V) of a signal can be varied from OFF (duty cycle = 0%) to
ON (duty cycle = 100%). The duty cycle can be calculated as

D = THIGH ÷ (THIGH + TLOW),

where THIGH is the amount of time that the signal has a logic HIGH
level, and TLOW is the amount of time that the signal has a logic
LOW level. The average voltage can be calculated as

V = D × VMAX + (1 − D) × VMIN,

where D is the duty cycle, VMAX is the maximum signal voltage
(usually Vcc), and VMIN is the minimum signal voltage (usually 0 V).

Figure 14.8 shows five PWM waveforms, all with a period of
20 ms. Waveform A has a duty cycle of 0% and average voltage of

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 115

0 V. Waveform B has a duty cycle of 25% and a corresponding av-
erage voltage of 0.25 × 5 V = 1.25 V. Waveform C has a duty cycle
of 50%, and average voltage of 0.5 × 5 V = 2.5 V. Waveform D has a
duty cycle of 75%, giving it an average voltage of 0.75 × 5 V = 3.75 V.
Waveform E has a duty cycle of 100% and average voltage of 5 V.

A

B

C

D

0 20 40 60 80 100
t (ms)

E

Figure 14.8: Pulse-width modulation
waveforms with various duty cycles.
The average voltage is indicated with a
dashed line.PWM Frequency

The PWM frequency is equal to the number of complete cycles that
occur per unit of time. It is independent of the waveform duty cycle.
Figure 14.9 shows waveforms, all with 25% duty cycles, with different
frequencies. Waveform A has a frequency of 200 Hz, waveform B has
a frequency of 100 Hz, waveform C has a frequency of 50 Hz, and
waveform D has a frequency of 20 Hz.

A

B

C

0 20 40 60 80 100
t (ms)

D

Figure 14.9: Pulse-width modulation
waveforms with various frequencies.
All have a duty cycle of 25%.

Fast PWM

In fast PWM mode, the timer / counter counts from BOTTOM to TOP,
and then restarts again from BOTTOM. The value of TOP is either MAX

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

116 microcontrollers

(0xFF or 0xFFFF) or the value given in register OCRnA. Timer / counter
1 allows 8-bit, 9-bit, 10-bit or 16-bit resolution in addition to using
OCR1A or ICR1 as values of TOP. If the timer / counter reaches MAX,
the overflow flag (TOVn) will be set. If OCRnA is used to determine the
value of TOP, then the output compare flag (OCFnA) will be set when
the contents of the timer/counter is equal to TOP. In these cases, the
overflow flag will not be set; overflow interrupts therefore cannot be
used when TOP is not equal to MAX.

The period of a fast PWM signal is

T = N × (TOP + 1) × TI/O,

where N is the value of the prescaler being used. Fast PWM has the
advantage of having up to double the frequency of phase-correct
PWM, but has the drawback of having only half the resolution.

An example fast PWM waveform is shown in Figure 14.10.

TCNTx Value

TOP

OCRnx

BOTTOM

OCnx Value

Figure 14.10: Example of a fast PWM
waveform.

The frequency of a fast PWM waveform is changed in a “normal
mode” fashion by using a prescaler and MAX, based on the equation

f = fI/O / (N × 2
n),

where n is the resolution of the timer/counter and N is the prescaler.
In this manner, PWM can be used on both pins OCnA and OCnB with
independent duty cycles, given by the equation

D = OCRnx / MAX.

Alternatively, more flexibility in the PWM waveform can be ob-
tained by altering the value of TOP along with the prescaler, based on
the equation

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 117

f = fI/O / (N × (TOP + 1)).

In this case, PWM can be used only on pin OCnB, with a duty cycle
given by the equation

D = OCRnB / OCRnA.

Phase-Correct PWM

In phase-correct PWM mode, the timer / counter increments from
BOTTOM to TOP, and then decrements back to BOTTOM. The value of TOP
is either MAX (0xFF or 0xFFFF) or the value given in register OCRnA.
Timer / counter 1 allows 8-bit, 9-bit, 10-bit or 16-bit resolution in
addition to using OCR1A or ICR1 as values of TOP. When the timer
/ counter is equal to BOTTOM, the overflow flag (TOVn) will be set. If
OCRnA is used to determine the value of TOP, then the output compare
flag (OCFnA) will be set when the contents of the timer/counter is
equal to the value stored in OCRnA.

The period of a phase-correct PWM signal is

T = 2 × N × TOP × TI/O,

where N is the value of the prescaler being used. Phase-correct PWM
has the advantage of having up to double the resolution of fast PWM,
but has the drawback of having only half the frequency. The symmet-
ric shape of the output waveform makes phase-correct PWM ideally
suited for motors. Fast PWM, having an asymmetric output response,
can possibly lead to glitches in the output if the frequency or duty
cycle are changed abruptly.

An example phase-correct PWM waveform is shown in Fig-
ure 14.11.

The frequency of a phase-correct PWM waveform is changed in a
“normal mode” fashion by using a prescaler and MAX, based on the
equation

f = fI/O / (2 × N × 2
n),

where n is the resolution of the timer/counter and N is the prescaler.
In this manner, PWM can be used on both pins OCnA and OCnB with
independent duty cycles, given by the equation

D = OCRnx / MAX.

Alternatively, more flexibility in the PWM waveform can be ob-
tained by altering the value of TOP along with the prescaler, based on
the equation

f = fI/O / (2 × N × TOP).

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

118 microcontrollers

TCNTx Value

OCRnx

TOP

BOTTOM

OCnx Value

Figure 14.11: Example of a phase-
correct PWM waveform.

In this case, PWM can be used only on pin OCnB, with a duty cycle
given by the equation

D = OCRnB / OCRnA.

Phase- and Frequency-Correct PWM

Phase- and frequency-correct PWM is much the same as phase-
correct PWM, except that the output periods are all symmetrical.
This modality is only available on timer / counter 1 on the AT-
mega328P. It is to be used when the PWM frequency needs to be
changed throughout the operation of the system. Two registers, OCR1A
and ICR1 may be used to set the value of TOP. The period of a phase-
and frequency-correct PWM signal is the same of that given for a
phase-correct PWM waveform.

14.5 Watchdog Timer (WDT)

The watchdog timer (WDT) is a separate timer on AVR microcon-
trollers that allow for system resets if the program is unresponsive
after a certain period of time. If the WDT isn’t refreshed within this
specified time period, the device will automatically reset. In system
reset mode, the device automatically resets if the WDT hasn’t been
refreshed. In interrupt mode, the WDT triggers an interrupt. This can
be used to wake up from a sleep mode, or can also be used as a gen-
eral system timer. In interrupt and system reset mode, an interrupt is
first triggered before device reset. This allows for a safe shutdown by
saving important parameters in the interrupt before reset.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

clocks, timers / counters & pulse-width modulation 119

14.6 Practice Problems

Assume a clock frequency of 16 MHz to answer all of the following
questions.

1. How many timer / counters are available on the ATmega328P? 3

2. True or false: Timer / counter 0 is a 16-bit counter. FALSE

3. On timer / counter 0 and timer / counter 2, in normal mode,
when the counter rolls over, it goes from to . 0xFF to 0x00

4. What is the period and duty cycle of the following waveform,
given TI/O = 1 µs? T = 25 µs, D = 24%

INPUT SIGNAL

4 10 29 35 54 60TCNT1 VALUE

5. In normal mode, what is the longest possible delay that can be
obtained using timer / counter 0 or timer / counter 2? With what
prescaler value is this achieved? TMAX = 16.38 ms, N = 1024

6. In normal mode, what is the longest possible delay that can be
obtained using timer / counter 1? With what prescaler value is
this achieved? TMAX = 4.19 s, N = 1024

7. In normal mode, what delay results with timer / counter 1 and a
prescaler N = 8? 32.768 ms

8. In normal mode, what prescaler must be used with timer /
counter 2 to achieve a delay of 0.512 ms? Is this possible with
timer / counter 0? Why or why not? 32, Not possible with TCNT0 because it

does not have a prescaler option of 32.

9. In CTC mode, what delay is obtained when OCR1A = 1499 and the
prescaler N = 64? 6 ms

10. In CTC mode using timer / counter 2 and a prescaler N = 32,
what value must be loaded into OCR2A to obtain a delay of 0.38 ms?

189

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

120 microcontrollers

11. In CTC mode, what prescaler value must be used if OCR0A = 140

to obtain a delay of ≈9 ms? 1024

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

15
Serial Communication

Serial communication protocols allow data to be sent with far
fewer wires than with parallel I/O. The schematic difference between
serial and parallel communication protocols is shown in Figure 15.1.

re
ce

iv
er

transm
itter re

ce
iv

er

transm
itter

Parallel communication Serial communication

D0D0
1 (LSB)

D1D1
1

D2D2
0

D3D3
1

D4D4
0

D5D5
0

D6D6
0

D7D7
1 (MSB)

(MSB) (LSB)

10001011

Figure 15.1: Schematic difference
between parallel I/O (which uses many
wires) and serial I/O (which can use as
few as one wire).While parallel data transmission allows many bits to be sent si-

multaneously, it requires as many wires as bits. This can be pro-
hibitive in a microcontroller as the number of I/O ports is quite lim-
ited. In addition, parallel I/O can suffer from noise (crosstalk) and
signal reflections if the source and destination are not close. Long
distance synchronization can be difficult to achieve if there is signifi-
cant delay in transmitting from one device to another.

Serial data is sent one bit at a time. Few wires are used, which
minimizes crosstalk, meaning that it can be used over long distances.
It is also cheaper to implement. There are many features of serial
communication that may change the configuration and number of
wires required to implement the communication protocol.

122 microcontrollers

15.1 Simplex & Duplex

Simplex communication is capable of sending data in only one di-
rection. Consider for example a radio. Information is broadcast to
the radio receiver, but no information is transmitted back. It is sim-
ply a unidirectional flow of data. A duplex communication system
consists of two devices that can communicate with each other in both
directions (i.e. as receivers and as transmitters).

In half-duplex communication, only one wire is present to send
and receive data, therefore information can be sent in both directions,
but only one direction at a time. Half-duplex communication can
be considered similar to speaking on a walkie-talkie; one individual
speaks at a time and indicates the end of their message by saying
"over."

In full-duplex communication, information can be sent in both
directions simultaneously, which requires the use of one more wire
than half-duplex communication. Full-duplex communication is pos-
sible using phones where two people can speak simultaneously (al-
though limitations of humans may make it difficult for both parties to
understand; this complication is not present in computing devices).

15.2 Architecture

Many serial protocols use a primary-secondary configuration. The
primary device has unidirectional control over other devices (secon-
daries). In some serial communication protocols, the primary selects
the active secondary device, and also supplies the clock signal. Some
serial protocols allow multiple primary devices. In addition, some
protocols allow the roles of primary and secondary to be changed
between message transmissions.

15.3 Data Transfer Protocol

In serial communication, data can be sent synchronously or asyn-
chronously. Synchronous communication requires a clock signal to
be provided by the primary (which requires the existence of another
wire to carry the clock signal). With synchronous communication,
once (8-bit) data transfer is initiated, the receiver has only to wait 8

clock cycles to obtain the information.
In asynchronous communication, START and STOP bits are required

to signal to the receiver that transfer has been initiated and com-
pleted. Certain serial protocols allow the user to specify whether
data should be sent LSB-first or MSB-first. In asynchronous com-
munication, START and STOP bits are required to specify when data

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

serial communication 123

communication has commenced or completed. In addition, data rate,
electrical signal definition for HIGH and LOW, and handshaking
protocols may also need to be defined in each serial protocol.

Serial communication protocols supported by the ATmega328P
include USART (universal synchronous / asynchronous receiver
/ transmitter), SPI (serial peripheral interface), and TWI (two-wire
interface).

UBRR

baud rate

generator

clock

direction
XCK

UDR (Tx)

transmit shift

register

parity

generator
TxD

receive shift

register

UDR (Rx)
parity

checker
RxD

clock generator

transmitter

receiver

D
AT

A

Figure 15.2: USART block diagram.

15.4 Universal Synchronous / Asynchronous Receiver / Trans-
mitter (USART)

USART is commonly included in microcontrollers. The ATmega328P
USART is capable of operating either asynchronously or synchronously.
In asynchronous mode, two I/O pins are used, one to transmit data
(TXD), and one to receive data (RXD). This indicates that USART is a
full-duplex system. In synchronous mode, an additional pin is re-

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

124 microcontrollers

quired for the clock signal (XCK). A block diagram of USART features
and functionality is given in Figure 15.2.

The USART on the ATmega328P is capable of sending data in
chunks of 5, 6, 7, 8, or 9 bits with one or two STOP bits. It is capa-
ble of odd and even parity generation and checking. In addition, it
is capable of detecting data overrun and framing errors. When en-
abled, interrupts can be generated upon completion of transmission
or receiving data, or when the transfer data register is empty. The
baud rate can be set using the USART baud rate register (UBRR), and
generates baud rates of

BAUD = fOSC ÷ [16 × (UBRR + 1)]

in asynchronous normal mode,

BAUD = fOSC ÷ [8 × (UBRR + 1)]

in asynchronous double-speed mode, and

BAUD = fOSC ÷ [2 × (UBRR + 1)]

in synchronous primary mode.

Receiving Data

The USART checks the received signal at every clock cycle. In asyn-
chronous communication (in which the USART acts similarly to a
shift register, which is capable of operating within multiple proto-
cols such as RS-232 and RS-485), a baud rate is agreed upon by both
devices beforehand. Otherwise, a clock signal is supplied. If the sig-
nal is LOW for a long enough time, it is registered as a START bit. (If,
however, the signal was LOW for less than half of the bit rate, it is
considered to be a spurious signal and ignored.) After receiving the
START bit, the remaining character is clocked in to the receive shift
register and into UDR to be sent to the data bus. A busy flag is set
during this process to signal that the device is busy receiving data.
The USART then signals that it has received new data, and may send
an interrupt to the processor to take further action.

Transmitting Data

An 8-bit character is deposited into the transmit shift register from
the data bus. At this point, the USART generates a START bit, which
is sent, followed by the character to be transmitted. If requested,
a parity bit is sent, followed by a STOP bit. During this process, a
"busy" flag is set, signaling that the device is busy transmitting data.
If enabled, an interrupt is generated once data has shifted out and no
new data exists in the transmit buffer.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

serial communication 125

15.5 Serial Peripheral Interface (SPI)

SPI communication on the ATmega328P is capable of full-duplex
synchronous communication using only four wires. The Arduino can
be configured as either a primary or a secondary, and can send bytes
either MSB first or LSB first.

The ATmega328P SPI bus uses four logic signals, given in Ta-
ble 15.1. Each of the signals is associated with a particular pin on
Port B. (Please note that there is an inconsistency between the pin
names and the descriptions, see the author note at the start of this
book for more information.)

Name Pin Description

SCK D13 Serial clock (output from primary)
MOSI D11 Primary output, secondary input
MISO D12 Primary input, secondary output

SS D10
Secondary select (active low, output from
primary)

Table 15.1: SPI defined logic signals.

The primary and secondary devices are connected as shown in
Figure 15.3. As can be seen, shift registers exist on both the primary
and secondary devices. As a data byte is transmitted from the pri-
mary to the secondary along the MOSI line, the data that was pre-
viously stored in the secondary’s shift register transmits from the
secondary to the primary along the MISO line.

shift register

clock

generator

shift register

Secondary

DATA

Primary

DATA

MOSI

SCK

MISO

SS

Figure 15.3: SPI primary-secondary
connection diagram.

SPI Primary-Secondary Configuration

Multiple secondary devices can be supported with SPI. This can
be accomplished independently as shown in Figure 15.4. Indepen-

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

126 microcontrollers

dent secondary devices all require their own secondary select signal.
Therefore using many independent secondary devices can require a a
large number of I/O pins.

Primary

Secondary Secondary Secondary Secondary

S
C
K

S
C
K

M
O
S
I

M
O
S
I

M
I
S
O

M
I
S
O

S
S
1

S
S

S
S
2

S
S

S
S
3

S
S

S
S
4

S
S

S
C
K

M
O
S
I

M
I
S
O

S
C
K

M
O
S
I

M
I
S
O

S
C
K

M
O
S
I

M
I
S
O

Figure 15.4: Independent secondary
configuration in SPI.

Multiple secondary devices can also be connected in a daisy-
chained configuration as shown in Figure 15.5. Daisy-chained sec-
ondary devices have the output of one secondary feeding into the
input of the next, sharing a common secondary select signal.

Primary

Secondary Secondary Secondary Secondary

S
C
K

S
C
K

M
O
S
I

M
O
S
I

S
S

S
S

S
C
K

S
S

M
I
S
O

M
O
S
I

S
C
K

S
S

M
I
S
O

M
O
S
I

S
C
K

S
S

M
I
S
O

M
O
S
I

M
I
S
O

M
I
S
O

Figure 15.5: Daisy-chained secondary
configuration in SPI.

SPI Clock Polarity & Phase

Whereas in USART communication, the receiver and transmitter
must agree upon a bit rate before commencing communication, in
SPI the primary and secondary must agree on a clock polarity and
phase. The clock polarity indicates the idle value of the clock signal.
When idle, the SCK will be kept LOW if the polarity bit (known as

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

serial communication 127

CPOL) in the SPI control register is 0. Otherwise, if CPOL is 1, the clock
signal will be kept HIGH when idle.

The clock phase, configured by the CPHA bit in the SPI control
register, indicates whether sampling will occur on leading edges
(when CPOL is 0, the leading edge is a rising edge, otherwise it is a
falling edge) or trailing edges (when CPOL is 0, the trailing edge is a
falling edge) of the clock signal. Together with CPOL, this determines
if data will be sampled on rising or falling clock ticks.

Advantages & Disadvantages of SPI

The SPI protocol has a number of advantages and disadvantages. It is
capable of full-duplex communication, is not limited in the number
of bits that can be transmitted in each message, uses lower power
than protocols like TWI, is not limited to the maximum clock speed,
has very simple hardware interfacing, and has simple software imple-
mentation.

However, the disadvantages is that SPI does require more pins
than other protocols (notably TWI), does not have hardware for re-
ceipt acknowledgement from secondary devices (i.e. the primary
could be transmitting to nowhere and not know it), does not have
any error checking, and can only work over short distances.

15.6 Two-Wire Interface (TWI)

Two-wire interface (TWI), also referred to as inter-integrated circuit
(I2C), is a serial protocol used to connect with one or more secondary
devices (connected as shown in Figure 15.6) using only two wires.
One wire is a bidirectional data line called SDA, which indicates that
TWI is capable of half-duplex communication. The other wire, SCL
(also bidirectional), carries the clock signal, indicating that TWI is a
synchronous communication system. Both of these pins reside in Port
C on the ATmega328P.

Device

1

Device

2

Device

3
Device

n
RPU

Vcc

RPU

Vcc

...

SDA

SCL

Figure 15.6: Device configuration using
the TWI protocol.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

128 microcontrollers

TWI Module

The TWI hardware consists of several modules that work together
to ensure efficient and accurate operation of the communication sys-
tem. This overview is depicted schematically in Figure 15.7. The two
pins SCL and SDA interface the microcontroller with external devices.
The bus interface unit contains four units. TWDR, the data and ad-
dress shift register, which contains the address or data bytes to be
transmitted, or the address or data bytes that have been received. The
START/STOP controller generates and detects START and STOP bits used
for framing the received and transmitted data. Spike suppression
filters out short bursts of data that may otherwise interfere with serial
communication. Finally, the arbitration detection unit monitors com-
munications to ensure that only one primary is communicating at a
time in a multi-primary system.

START/STOP

control

arbitration

detection

spike

suppression

TWDR

prescaler

TWBR

address

comparator

TWAR

TWSR

state machine

& status control

TWCR

SCL SDA

bus interface unit bit rate generator

address match unit control unit

Figure 15.7: Overview schematic of the
TWI module on the ATmega328P.

The bit rate generator controls the period of the clock signal on
SCL when the device is operating in primary mode. The bit rate is
stored in a register known as TWBR, and together with a prescaler bit
they control the period given by the equation

TSCL = T_CPU × [16 + (2 × TWBR × N)],

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

serial communication 129

where N is the value of the prescaler.
The address match unit checks to ensure that received address

bytes match the 7-bit address given in the address register TWAR.
Finally, the control unit monitors the TWI bus and generates sig-

nals in response to the settings that have been detected by all of the
other units. TWSR is the TWI status register, which contains data cor-
responding to the status of the most recently executed communica-
tion operation on the bus. The TWI control register, TWCR, contains
the bus specification and settings.

TWI Communication Process

While TWI has the advantage of using fewer wires than SPI commu-
nication, the drawback is in the complexity of using the TWI proto-
col. Communication begins when the primary transmits a START bit
followed by the 7-bit address of the secondary with which it intends
to communicate and a bit indicating a read or write operation. (To be
assigned a unique secondary address for a TWI-compatible device,
a fee must be paid to NXP Semiconductors.) The corresponding sec-
ondary device (if it is properly connected to the interface bus) then
sends an acknowledge bit, which the primary can use to ensure that
it is indeed communicating with the correct device. The primary then
continues to send a clock signal while either transmitting messages
to the secondary or receiving data from the secondary. A STOP bit is
transmitted when communication with the secondary is complete.

TWI Status Codes

Multiple status codes exist for all TWI communication modes (pri-
mary transmit, primary receive, secondary transmit, and secondary
receive). These codes give information about the status of the bus
and connected hardware. They can be used to generate error mes-
sages, or to stop program flow if proper handshaking and acknowl-
edgement between primary and secondary has not been successful.

15.7 Serial Communication Errors

There are several transmission errors that can occur in serial commu-
nication. In an overrun error, all of the receiving buffer registers and
shift registers are full but haven’t yet been read by the CPU, when a
new START bit is detected. In other words, data is being transmitted
faster than it can be received.

In a framing error, a received character is improperly framed by
START and STOP bits. This indicates a synchronization problem, faulty

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

130 microcontrollers

transmission, or a BREAK condition (BREAK = LOW for more than
the duration of an entire character).

A parity error indicates that an odd number of bits have changed
value during the transmission, indicating noise or other transmission
issues. It can be detected by a parity detector circuit.

Parity Error Detection

Parity refers to the number of 1’s in a variable or data stream. Par-
ity is ODD if there is an odd number of 1’s, and EVEN if there is an
even number of 1’s. In order to create a data stream with a particular
parity (which is decided upon by both the transmitter and receiver
beforehand), a parity bit must be generated. Parity checking is a sim-
ple way to check for transmission errors, although it is not foolproof
(it is capable of producing false positives, but not false negatives).
It is simple to implement, requiring only XOR or XNOR gates, and
only requires a single bit added to a signal. However it is only able to
detect an error if an odd number of bits are corrupted during trans-
mission.

Even Parity: Success

Person A wants to send 1011

Compute parity: P = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Send signal 10111 (the last bit is P, the parity bit)
Person B receives 10111

Compute parity: 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0 = even
Transmission assumed successful

Even Parity: Failure

Person A wants to send 1011

Compute parity: P = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Send signal 10111 (the last bit is P, the parity bit)
Person B receives 10011

Compute parity: 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1 = odd
Transmission was not successful

Table 15.2: Example of error detection
using parity-checking.

15.8 Practice Problems

1. Is the USART capable of full-duplex, half-duplex, or simplex com-
munication? full-duplex

2. Does the USART operate synchronously or asynchronously? it can operate either synchronously or
asynchronously

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

serial communication 131

3. True or false: the SPI bus requires an external clock to operate. FALSE

4. The secondary select line on the SPI bus is active . LOW

5. Using the SPI bus, data is received and transmitted in chunks of
how many bits? 8

6. How many specific secondary devices can be supported on the
TWI bus? 2

7 = 128

7. True or false: the TWI bus requires an external clock to operate. FALSE

8. Calculate the parity of the data byte 1101 1001. odd

9. Calculate the parity of the data byte 0101 0011. even

10. Generate an odd parity bit for the data byte 1101 0011. P = 0

11. Generate an even parity bit for the data byte 1101 0011. P = 1

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

16
Power Management & Sleep Modes

Embedded systems frequently run on batteries. In system
designs for applications when it is monetarily or physically difficult
to frequently change batteries, it is important to design the project
to consume as little power as possible. The ATmega328P is built
from CMOS technology; CMOS devices use no power when they are
not switching. There are sleep modes available that reduce power
consumption by turning off the clock signal to peripheral units. In
addition, a power reduction register (PRR) can also be used to disable
modules (by turning off the associated clock signal) that are not
needed.

16.1 Sleep Modes

There are six sleep modes available on the ATmega328P, as shown in
Table 16.1.

Name clkCPU clkFLASH clkI/O clkADC clkASY

Idle × × ×
ADC Noise Reduction × ×
Power-down
Power-save ×
Standby
Extended Standby × Table 16.1: Sleep modes on the AT-

mega328P, indicating the active periph-
eral clocks.The idle mode stops the CPU clock but allows the SPI, USART,

analog comparator, ADC, TWI, timer / counters, watchdog timer,
and system interrupts to continue operating.

ADC noise reduction mode stops the CPU clock, I/O clock, and
flash clock. The peripherals that can continue to run under this re-
striction are the ADC, external interrupts, TWI, timer / counter 2

(clocked asynchronously), and the watchdog timer. As is indicated

134 microcontrollers

from the name, shutting down superfluous clock signals leads to
lower noise in the ADC, which leads to more accurate results.

Power-down mode shuts off all generated clocks, allowing only
asynchronous modules to run. Power-save mode is virtually iden-
tical, except that timer / counter 2, if enabled and clocked asyn-
chronously, will continue running during sleep.

When clocked from an external source, standby mode can be used;
it is identical to power-down mode except that the external oscillator
is kept running. Similarly, extended standby mode is identical to
power-save except that an external source is used to clock the system
and the eternal clock will continue running during sleep.

16.2 Wake-Up Sources

It is important for the microcontroller to wake up from sleep modes
in order to continue with normal operations as needed. The wake-
up sources differ depending on the sleep mode that is used. These
sources are listed in Table 16.2.

Idle
external & pin-change interrupts, TWI Address Match,
timer / counter 2, SPM/EEPROM ready, ADC, WDT, other
I/O

ADC Noise Reduction
external & pin-change interrupts, TWI Address Match,
timer / counter 2, SPM/EEPROM ready, ADC, WDT

Power-down
external & pin-change interrupts, TWI Address Match,
WDT

Power-save
external & pin-change interrupts, TWI Address Match,
timer / counter 2, WDT

Standby
external & pin-change interrupts, TWI Address Match,
WDT

Extended Standby
external & pin-change interrupts, TWI Address Match,
timer / counter 2, WDT

Table 16.2: Wake-up sources for each of
the sleep modes on the ATmega328P.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

17
Control Systems & Feedback

When controlling a device, it is important to use some form of
feedback to monitor the current status and see if changes need to be
made.

Consider, for example, that you are sitting inside of a room with
only a window. The window can only be opened and closed com-
pletely. If it gets too warm in the room, you open the window. When
it gets too cold, you close the window. This leads to a temperature
response as shown in Figure 17.1.

actual temperature

desired temperature

open window open window

close window close window

Figure 17.1: The temperature response
in the room with a single window.This is known as a negative feedback system. When you start

to feel uncomfortable (negative feedback), you take an action that
changes the surroundings to better suit your needs. However, in this
situation, not only does the temperature fluctuate between extremes
without ever settling on an ideal temperature, it also requires you to
continue moving over to the window to open and close it. It would
be better to have an automated system to take care of this functional-
ity.

In a closed-loop negative feedback system, a setpoint is required.
This is the value at which the system will attempt to keep the value
of the output (temperature, in the case of the window example).
When the measured output value is greater than the setpoint, action

136 microcontrollers

will be taken to attempt to decrease the output value. When the mea-
sured output value is less than the setpoint, action will be taken to
attempt to increase the output value. Instead of turning a system on
and off completely (or opening a window fully or closing it fully),
which leads to oscillating behavior, it is necessary to use a propor-
tional feedback mechanism to more finely tune the desired changes
in output value.

For example, a home central air-conditioning unit, when initially
switched on in the middle of summer, may have a setpoint of 20

◦C,
but the surrounding temperature is 30

◦C. This signals to the AC
to turn on at great intensity. When turned on in the evening, the
surrounding temperature of 25

◦C signals to the AC to turn on but
without as much intensity as before. This is known as proportional
feedback because the amount of action requested at the output is
proportional to the difference (hence the term negative feedback)
between the setpoint value r(t) and the actual value y(t) (known as
the process variable). This difference is also known as the error e(t).

e(t) = r(t) − y(t)

17.1 Proportional Feedback Control

In proportional feedback control, the error is multiplied by a constant
known as KP. The new value of our output u(t) becomes

u(t) = y(t) + KP e(t),

where y(t) is the value of the process variable (i.e. what the value is
right now). This is depicted schematically in Figure 17.2.

processKP e(t)Σr(t)
+ u(t)

y(t)

−

Figure 17.2: Block diagram of propor-
tional control.

The constant KP is chosen with careful consideration. Values that
are too low lead to sluggish, unresponsive feedback (this is known
as an overdamped system). Values that are too high become unstable
and can oscillate rapidly between values (this is known as an under-
damped system). In the worst case, an underdamped system won’t
ever settle down to a proper value. Overdamped (red curve corre-
sponding to KP = 0.1) and underdamped (blue curve corresponding
to KP = 1.8) conditions are shown in Figure 17.3. When KP is just
right, the output is stable and has no oscillations. This is known as a
critically damped system and is the desired outcome of most control
systems.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

control systems & feedback 137

0 10 20 30 40 50
0

1

2

3

4

t (s)

ou
tp

ut
KP = 0.1
KP = 1.8
setpoint

Figure 17.3: Proportional control
output. The setpoint value is the thick
black curve. The outputs are shown
for a small value of KP (dashed line,
overdamped system) and a large value
of KP (gray solid line, underdamped
system).

17.2 Proportional-Integral (PI) Control

In addition to the proportionality constant KP that considers the
current amount of error in the system, an integral term KI is included
that takes into account past values of the error.

past error =
∫ t

0 e(τ)dτ

u(t) = y(t) + KP e(t) + KI
∫ t

0 e(τ)dτ

This is depicted schematically in Figure 17.4.

processKP e(t)

KI
∫ t

0 e(τ)dτ

Σ Σr(t)
+

+
+ u(t)

y(t)

−

Figure 17.4: Block diagram of
proportional-integral control.This integral constant (which must be less than KP) helps the

feedback system achieve a steady-state value much quicker, based
on the fact that it helps compensate for errors that have not yet been
cleaned up by the linear proportionality constant KP. However, a
careful value of KI still needs to be chosen, due to the fact that a
poorly chosen value can still lead to an overdamped (KI too low) or
underdamped (KI too high) output.

Figure 17.5 shows a PI control system with KP = 0.1 that would
ordinarily lead to a highly overdamped system which responds very
slowly to change (indicated by the red curve). By adding integral
control to the system, it is able to respond much quicker to change,
with the drawback that it introduces overshoot.

An integral constant can be necessary to eliminate steady-state
error, which refers to error in a system that persists even when the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

138 microcontrollers

system has reached a stable state.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

t (s)

ou
tp

ut

KI = 0.00
KI = 0.05
KI = 0.10
setpoint

Figure 17.5: Proportional-integral
control output. The setpoint value is the
thick black curve. All outputs have KP
= 0.1 The dashed curve has no integral
constant, the dark gray curve has KI =
0.05, and the light gray curve has KI =
0.10.

17.3 Proportional-Integral-Derivative (PID) Control

A full proportional-integral-derivative (PID) feedback system takes
into account also anticipated future values of the error based on
taking a derivative of the current error.

future error =
de(t)

dt

u(t) = y(t) + KP e(t) + KI
∫ t

0 e(τ)dτ + KD
de(t)

dt

This is depicted schematically in Figure 17.6.

processKP e(t)

KI
∫ t

0 e(τ)dτ

KD
de(t)

dt

Σ Σr(t)
+

+

+

+ u(t)
y(t)

−

Figure 17.6: Block diagram of
proportional-integral-derivative control.Adding a derivative proportionality constant KD may make the

feedback mechanism much more sensitive to noise, and is only rec-
ommended in cases where noise will be minimum.

Example data with proportional control only, PI control, and PID
control is shown in Figure 17.7.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

control systems & feedback 139

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

t (s)

ou
tp

ut
KP = 0.1

+ KI = 0.05
+ KD = 0.1

setpoint

Figure 17.7: Proportional-integral-
derivative control output. The setpoint
value is the thick black curve. The
dashed curve corresponds to only a
proportional term with KP = 0.1. The
dark gray curve adds an integral term
of KI = 0.05. The light gray curve adds
a derivative term of KD = 0.10.

Values for each of the constants must be chosen specifically for
each application in which they are to be used. Changing any other
part of the process may also require a change in the constants.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

18
C Concepts for Microcontrollers

The C programming language is an invaluable tool for program-
ming microcontrollers using a high-level language. As discussed in
chapter 4, writing C programs for embedded systems is quite differ-
ent from writing programs for general computing applications. This
chapter is not intended to serve as an exhaustive reference for C; it
will merely outline the most important concepts in programming C
for microcontroller applications.

18.1 Standard Datatypes

All variables in C must be declared before usage. This declaration
includes the datatype that the variable takes on, which indicates how
much memory the microcontroller must use to store the variable
and the minimum and maximum values it can take on. The list of
datatypes given in Table 18.1 is valid for the Arduino Uno, and may
differ somewhat from other Arduino microcontrollers or compilers
other than that of the Arduino IDE.

142 microcontrollers

Datatype Memory Data Range

Integer Datatypes

char 8-bits −128 to 127

unsigned char 8-bits 0 to 255

int 16-bits −32,768 to 32,767

unsigned int 16-bits 0 to 65,535

long 32-bits
−2,147,483,648 to
2,147,483,647

unsigned long 32-bits 0 to 4,294,967,295

Floating-Point Datatypes

float 32-bits −3.4× 1038 to 3.4× 1038

double 32-bits −3.4× 1038 to 3.4× 1038

Table 18.1: C datatypes used on the
Arduino Uno using the Arduino IDE.

Integer datatypes are used to represent whole numbers. Floating-
point datatypes are capable of representing fractional numbers
as well as numbers which are too large or too small to fit into the
constraints of the integer datatypes. The two types used on the Ar-
duino Uno with the Arduino IDE, float and double, are both single-
precision type floating-point numbers. These numbers have a single
sign bit, 8 exponent bits, and 23 fractional bits. The number they
represent is

(−1
s) × (1.f) × 2

(e−127),

where s is the sign bit, f is the fractional number, and e is the expo-
nent component. There are a couple of downsides to working with
floating-point numbers (apart from requiring 4 bytes of memory for
each variable). First, floating-point arithmetic is very slow. In addi-
tion, floats only have 6–7 decimal digits of precision. That means the
total number of digits, not the number to the right of the decimal
point. Finally, floating-point numbers are not exact, and may yield
strange results when compared. For example 6.0 / 3.0 may not equal
2.0.

Practice Problems

1. Indicate the datatype you would use for the following variables...

(a) ...temperature (in either degrees C or F). int

(b) ...the number of days in a week. unsigned char

(c) ...the number of days in a year. unsigned int

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 143

(d) ...the number of months in a year. unsigned char

(e) ...an address of 64K RAM space. unsigned int

(f) ...the age of a person in years. unsigned char

18.2 Variable Scope & Keywords

The scope of a variable refers to what functions can access the vari-
able. A variable defined within a function can only be accessed by
that function. The following code

void setup() {

unsigned char j = 15;

}

void loop() {

// this function cannot access j

}

shows an example of variable scope. The variable j can only be ac-
cessed within the setup() function in which it is defined.

A variable that is defined outside of all functions can be accessed
by every function in the code, and is referred to as a global variable.
Global variables should only be used in situations where it is nec-
essary; otherwise, it is recommended that the scope of variables be
limited by keeping them within the function in which they are to be
used.

volatile Variables

When a compiler takes C code and translates it into assembly lan-
guage, it attempts to optimize that code by leaving out any unused
variables and converting unchanging variables to constants, among
other optimizations. At times, it may appear that a global variable
is unused by functions, especially in the case of an interrupt service
routine (ISR). An ISR is never formally invoked (or called) by the
void loop() function in the Arduino IDE, and it may appear to the
compiler as if any variables that are used within the ISR are unused
(in which case it does not save them in memory) or unchanging (in
which case it saves it in program memory as a constant value). By
creating a volatile variable, the compiler knows not to discard the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

144 microcontrollers

variable or to treat it as a constant. All datatypes can be saved as
volatile variables.

static Variables

The keyword static in front of a variable refers to how long the
variable is active in memory. Variables without this keyword are
known as automatic, meaning that they come into existence when
they are declared, and then expire whenever the function or loop in
which they reside has finished running. A static variable exists in
memory for as long as the program is running. This means that, even
if they are declared with a certain value inside of a function or a loop,
they can be changed for as long as the program runs. This allows
for non-global variables that can change within a function or a loop.
Consider the following examples, which show the difference between
automatic and static variables. Figure 18.1 depicts the difference
between static and automatic variables.

Automatic Variable

static Variable

while (j=0; j<5; j++) {

char a = -32;

a++;

}

while (j=0; j<5; j++) {

static char a = -32;

a++;

}

enter loop

declare a

a = –32

increment a

a = –31

delete a

re-enter loop

declare a

a = –32

increment a

a = –31

delete a

re-enter loop

declare a

a = –32

increment a

a = –31

delete a

enter loop

declare a

a = –32

increment a

a = –31

re-enter loop

a already declared

a = –31

increment a

a = –30

re-enter loop

a already declared

a = –30

increment a

a = –29

Figure 18.1: A flowchart representation
of the difference between automatic and
static variables.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 145

const Variables

The keyword const is used to denote a variable whose value will not
change. The keyword can be used with all datatypes. This keyword
is convenient to use with data arrays to define the number of ele-
ments to be stored into the array. Using a variable allows the number
to be stored in a single location which can easily be changed while
debugging the software code. Additionally, if an array is defined us-
ing a variable to denote the number of elements, that variable must
be a const variable. Most compilers will give a warning if attempting
to assign a new value to a const variable inside of C code.

18.3 Arrays

When variables are related to each other, it may be prudent to store
the data in an array. An array, which must be initialized with the
number of values to be given in the array, can store any type of vari-
able (char, int, long, float). Each element in the array is defined by
its index. Index numbers always go from 0 to (n−1), where n is the
number of values in the array. The syntax for defining an array is

datatype arrayName[sizeofArray];

Consider the array myArray[6] consisting of six unsigned char

variables shown in Table 18.2.

unsigned char myArray[6] = {0xFC, 0x60, 0xDA, 0xF2, 0x66, 0xB6}

index: 0 1 2 3 4 5

value: 0xFC 0x60 0xDA 0xF2 0x66 0xB6 Table 18.2: An array of six unsigned

char variables.
To access an element of this array, a new variable can be assigned

the value of one of the elements. For example, unsigned char a =

myArray[5] will save the 6th element of the array into variable a.
Note that a and myArray[] are of the same datatype. To save a new
value into the array, an element inside of the array can be assigned a
new value. For example, myArray[1] = 13 saves the value of 13 into
the 2nd element of the array myArray[].

While arrays can be populated with any type of variable, character
arrays using ASCII formatting (not to be confused with char arrays!)
require a special precaution in that they must contain a null character
(\0) at the end. Therefore, if they are assigned with the number of el-
ements, that number must be n+1. Optionally, the number in square
brackets can be left out.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

146 microcontrollers

Multi-Dimensional Arrays

Data can be stored into a multi-dimensional array. An array of inte-
gers, for example, int a[n][m] has n rows and m columns of data.
This means that n×m elements can be stored into the array. Mem-
ory considerations must be taken into account before defining large
arrays, which is especially true in multi-dimensional arrays, as mem-
ory can expand non-linearly with the addition of new elements. An
example two-dimensional array is given in Table 18.3.

unsigned char wholeNums[2][5] = {

{1, 2, 3, 4, 5},

{6, 7, 8, 9, 10} };

n: 0 1 2 3 4

m = 0: 1 2 3 4 5

m = 1: 6 7 8 9 10

Table 18.3: An two-dimensional ar-
ray consisting of ten unsigned char

variables.

18.4 Bitwise Operations

While there are many types of operators used in programming (the
assignment operator, arithmetic operators, logical operators, etc.), bit-
wise operations are used frequently in microcontroller programming.
Bitwise means each bit in one variable is compared individually with
the corresponding bit in the other variable. They are used to manip-
ulate binary values, especially when only some values in a data byte
need to be changed while leaving others alone. For this reason, they
are used frequently when changing or accessing the values stored in
I/O registers DDRxn, PORTxn and PINxn.

Bitwise AND: &

The bitwise AND operator, &, acts as a series of AND gates operating
between the two operands, as shown in Figure 18.2. Because taking
a logical AND with the number 0 results in a 0, the bitwise AND
operation is used to selectively clear bits while leaving others alone.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 147

B7 B6 B5 B4 B3 B2 B1 B0 A1 A0

C7 C6 C5 C4 C3 C2 C1 C0

A7 A6 A5 A4 A3 A2 A1 A0

Figure 18.2: A bitwise AND opera-
tion takes the logical AND of each
corresponding bit of the two operands.Bitwise OR: |

The bitwise OR operator, |, acts as a series of OR gates operating
between the two operands, as shown in Figure 18.3. Because taking a
logical OR with the number 1 results in a 1, the bitwise OR operation
is used to selectively set bits while leaving others alone.

B7 B6 B5 B4 B3 B2 B1 B0 A1 A0

C7 C6 C5 C4 C3 C2 C1 C0

A7 A6 A5 A4 A3 A2 A1 A0

Figure 18.3: A bitwise OR operation
takes the logical OR of each corre-
sponding bit of the two operands.

Bitwise XOR: ˆ

The bitwise XOR operator, ˆ, acts as a series of XOR gates operating
between the two operands, as shown in Figure 18.4. Because taking
a logical XOR with the number 1 results in a toggle, the bitwise XOR
operation is used to selectively toggle bits while leaving others alone.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

148 microcontrollers

B7 B6 B5 B4 B3 B2 B1 B0 A1 A0

C7 C6 C5 C4 C3 C2 C1 C0

A7 A6 A5 A4 A3 A2 A1 A0

Figure 18.4: A bitwise XOR operation
takes the logical OR of each corre-
sponding bit of the two operands.Bitwise NOT: ˜

The bitwise NOT operator, ˜, acts to invert each individual bit of the
operand, as shown in Figure 18.5. The bitwise NOT operation is used
to toggle all bits simultaneously.

A7

A7

A6

A6

A5

A5

A4

A4

A3

A3

A2

A2

A1

A1

A0

A0

Figure 18.5: A bitwise NOT operation
takes the logical NOT of each bit of the
operand.

Bitshift Right: »

The bitshift right operator, », shifts the operand to the right a specific
number of places. When being bitshifted to the right, the number
0 will be shifted in to the most significant bit. Figure 18.6 shows an
example bitshift right operation.

A

A » 3

A7

0

A6

0

A5

0

A4

A7

A3

A6

A2

A5

A1

A4

A0

A3

Figure 18.6: An example bitshift right
operation.

Bitshift Left: «

The bitshift left operator, «, shifts the operand to the left a specific
number of places. When being bitshifted to the left, the number 0

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 149

will be shifted in to the least significant bit. Figure 18.7 shows an
example bitshift left operation.

A

A « 5

A7

A2

A6

A1

A5

A0

A4

0

A3

0

A2

0

A1

0

A0

0

Figure 18.7: An example bitshift left
operation.

Practice Problems

1. Find the content of PORTB after the following operations:

(a) PORTB = 0x37 & 0xCA; PORTB = 0x02

(b) PORTB = 0x37 | 0xCA; PORTB = 0xFF

(c) PORTB = 0x37 ˆ 0xCA; PORTB = 0xFD

2. To selectively clear certain bits, which bitwise operator should be
used? bitwise AND

3. To selectively set certain bits, which bitwise operator should be
used? bitwise OR

4. Indicate the data on the ports for each of the following operations.
(Note: the operations are independent of each other.)

(a) PORTD = 0xF0 & 0x45; PORTD = 0x40

(b) PORTD = 0x0F & 0x56; PORTD = 0x06

(c) PORTB = 0xF0 ˆ 0x76; PORTB = 0x86

(d) PORTB = 0x0F ˆ 0x90; PORTB = 0x9F

(e) PORTC = 0xF0 | 0x91; PORTC = 0xF1

(f) PORTC = 0x0F | 0x99; PORTC = 0x9F

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

150 microcontrollers

(g) PORTD = 0x65 >> 2; PORTD = 0x19

(h) PORTD = 0x39 << 2; PORTD = 0xE4

(i) PORTB = 0xD4 >> 3; PORTB = 0x1A

(j) PORTB = 0xA7 << 3; PORTB = 0x38

18.5 Comparison & Boolean Operators

Comparison operators are used to compare two variables or values.
They are useful when decisions need to be made based on how one
variable compares to another. Comparison operators return Boolean
values (TRUE and FALSE) based on the result of the operation. The
comparison operators are shown in Table 18.4, with a = 50 and b =

-10 used to show examples.

Operator Description Example Result

== Equal To a == b FALSE

!= Not Equal To a != b TRUE

> Greater Than a > b TRUE

>= Greater Than or Equal To a >= b TRUE

< Less Than a < b FALSE

<= Less Than or Equal To a <= b FALSE

Table 18.4: Comparison operators with
examples.

Boolean operators are used to make logical decisions based on the
results of two or more comparison operations. Table 18.5 lists all of
the Boolean operators. It is important to note that Boolean operators
use TWO symbols (with the exception of NOT), whereas bitwise
operators only use one.

Operator Name Description

&& AND a && b = TRUE if both a and b are TRUE

a && b = FALSE if either a or b is FALSE

|| OR a || b = TRUE if either a or b is TRUE

a || b = FALSE if both a and b are FALSE

! NOT !a = TRUE if a is FALSE

!a = FALSE if a is TRUE

Table 18.5: Boolean operators.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 151

Practice Problems

1. Find result of the following operations:

(a) (-5 > 0) || (3 <= 8) TRUE

(b) (1 >= 2) && (5 >= 0) FALSE

(c) (14 != 38) && (20 >= -10) TRUE

(d) (0 == 3) || !(5 != 8) FALSE

18.6 Compound Operators

While not necessary to use in a microcontroller program, compound
operators provide a convenient shorthand for arithmetic and bitwise
operations. Using x = x + 1 as an example, the instructions are to
find the number stored in the variable x, add the number 1 to it, and
then store the result into the variable x. This code may have an inef-
ficiency in that the location of variable x has to be looked up twice if
the compiler does not recognize that two parts of the expression are
identical. It can be replaced with a compound operation instead: x
+= 1.

Operator Description Example Longhand Syntax

++ Increment a++ a = a + 1

-- Decrement a-- a = a - 1

+= Compound Addition a+=4 a = a + 4

-= Compound Subtraction a-=12 a = a - 12

*=
Compound
Multiplication

a*=10 a = a * 10

/= Compound Division a/=5 a = a / 5

%= Compound Modulo a%=3 a = a % 3

&= Compound Bitwise AND a&=0xFC a = a & 0xFC

|= Compound Bitwise OR a|=0xFC a = a | 0xFC
ˆ= Compound Bitwise XOR aˆ=0xFC a = a ˆ 0xFC

»= Compound Bitshift Right a»=3 a = a » 3

«= Compound Bitshift Left a«=6 a = a « 6 Table 18.6: Compound operators with
examples.

Practice Problems

1. Find the final value of each variable after the compound operation
has been executed.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

152 microcontrollers

(a) unsigned char a = 38;

a/=9; a = 4

(b) char n = -9;

n++; n = -8

(c) unsigned char j = 12;

j%=7; j = 5

(d) unsigned char x = 0xAC;

xˆ=0xE9; x = 0x45

(e) unsigned char num = 22;

num&=199; num = 6

18.7 Control Flow: Conditional

A microcontroller can execute instructions using three different
paradigms: sequential, conditional, and iterative. The sequential
flow of code is what normally occurs in C programs. The program
execution starts at the first line of code and carries out every subse-
quent line in order.

At times, however, it is necessary to execute code in a different
fashion depending on the value of one or more variables (for exam-
ple, in chapter 17 the need for turning up the heat based on the tem-
perature of the room is discussed). This type of control flow is known
as conditional flow. The two types of conditional flow functions are
If & If/Else and Switch Case.

If & If/Else Statements

The if statement is a conditional statement that executes a different
set of code based on the result of a Boolean and/or comparison op-
eration. For example, when continuously polling a pushbutton to
determine its state, the code may need to turn on an LED if the but-
ton was pushed. A flowchart showing how an if statement works is
given in Figure 18.8.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 153

START
normal

operation

condition
do something

else
TRUEFALSE

Figure 18.8: A flowchart depicting the
operation of microcontroller during an
if statement.

The syntax of this example is:

if (condition) {

//do something else

}

// normal operation

It is possible that different blocks of code should be implemented
based on the result of a condition. For example, to take the absolute
value of a number, the magnitude of the input variable is compared
with 0. If the variable is greater than zero, then the output will be the
variable itself. Otherwise (which is where the else comes into action)
the output should be the negative value of that variable. A flowchart
showing the operation an if/else flow is given in Figure 18.9.

START
normal

operation

condition
do something

else

do something

different
TRUEFALSE

Figure 18.9: A flowchart depicting the
operation of microcontroller during an
if/else statement.

The syntax of this example is:

if (condition) {

//do something else

}

else {

//do something different

}

// normal operation

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

154 microcontrollers

If more than two results are possible based on the conditional
statement, one or more else if block can be included in the condi-
tional flow. For example, a machine counting the number of widgets
sorted per second may instruct a conveyor belt to speed up or slow
down to varying degrees based on comparing the input variable
(widgets sorted per second) to a series of setpoints. A flowchart
showing the operation an if/else if/else flow is given in Fig-
ure 18.10.

START

normal

operation

condition1 do thing 1condition2

do thing 2

do thing 3
TRUEFALSE

TRUE

FALSE

Figure 18.10: A flowchart depicting the
operation of microcontroller during an
if/else if/else statement.The syntax of this example is:

if (condition1) {

//do thing 1

}

else if (condition2) {

//do thing 2

}

else {

//do thing 3

}

// normal operation

Switch Case

If there are many repeated else if blocks, it can be more efficient to
replace the if statement with a switch case statement instead. The
flowchart and associated code syntax is given in Figure 18.11.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 155

START

j = ?

do thing 1

do thing 2

do thing 3

do thing 4

1

2

3

4

Figure 18.11: Flowchart and associated
code for a switch case statement.

The syntax for the switch case shown in the flowchart in Fig-
ure 18.11 is:

switch(j) {

case 1:

// do thing 1

break;

case 2:

// do thing 2

break;

case 3:

// do thing 3

break;

case 4:

// do thing 4

break;

}

18.8 Control Flow: Iterative

Iterative flow of code is used to repeat identical (or nearly identical)
functions a certain number of times (or infinitely). In chapter 12, the
concept of a circular buffer was discussed for taking rolling averages.
An average requires all of the elements of an array to be summed
together before being divided by the number of array entries. Rather
than having one line of code for each array element (which would

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

156 microcontrollers

be inefficient on many levels), a loop can be used to repeat code a
certain number of times before returning to sequential flow. Three
types of iterative flow are the for loop, while loop, and do/while
loop.

for Loop

for loops are best used when a given segment of code needs to be
iterated a given number of times (such as the example of summing
up the circular buffer, which must be iterated a number of times
equal to the number of elements in the array). The flowchart of a for

loop is shown in Figure 18.12.

START

initialization

condition

do something

afterthought

normal

operation

TRUE

FALSE

Figure 18.12: Flowchart indicating the
usage of a for loop.

The syntax of a for loop,

for (initialization; condition; afterthought) {

// code goes here

}

indicates that after an optional initialization, in which any variables
required within the loop that aren’t already declared are declared,
a conditional statement is checked. If the conditional is TRUE, the
contents of the loop will be executed. If the conditional is FALSE,
the software will exit the loop. An optional afterthought is executed
exactly once every time the loop ends.

The initialization, condition, and afterthought generally relate to
iteration of the loop. Continuing with the circular buffer example, the

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 157

following code could be used.

const unsigned char n = 5;

unsigned char arrayValues[n] = {20, 30, 50, 100, 10};

unsigned char arrayAverage = 0;

for (unsigned char j = 0; j < n; j++) {

static unsigned char arraySum = 0;

arraySum += arrayValues[j];

arrayAverage = arraySum / n;

}

An infinite for loop is used when code needs to be repeated indef-
initely, and can be written by leaving the initialization, condition, and
afterthought blank as follows.

for (; ;) {

// this code will be repeated an infinite number of times

}

while Loop

A second type of loop is the while loop. It is recommended to use a
while loop when code needs to be repeated until a given condition
is true. This effectively allows the normal execution of code to be
delayed until a particular condition is met.

The syntax of a while loop is:

// optional initialization

while (condition) {

// code goes here

// optional afterthought

}

An example flowchart of a while loop is given in Figure 18.13.

START

condition

do something

normal

operation

TRUE

FALSE

Figure 18.13: Flowchart indicating the
usage of a while loop.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

158 microcontrollers

Using SPI communication, data must be transmitted completely
from the SPDR register before the rest of the code can continue to
execute. It is possible to determine when the code has been success-
fully completed when bit 7 in the SPSR register has been set. This is a
perfect situation in which to use a while loop, as follows.

while (!(SPSR & (1 « 7))); // nothing occurs until bit 7 is

set

An infinite while loop can be written by making the condition
equal to 1 as follows

while (1) {

// this code will be repeated an infinite number of times

}

do/while Loop

A third type of loop is the do/while, which is very similar to a while

loop, except that the body of the code is executed once before the
condition is checked, as shown in the flowchart in Figure 18.14.

START

do something

condition

normal

operation

FALSE

TRUE

Figure 18.14: Flowchart indicating the
usage of a do/while loop.

The syntax of a do/while loop follows.

// optional initialization

do {

// code goes here

// optional afterthought

} while (condition);

As with the while loop, to create an infinite do/while loop, the
condition should be set to 1 as follows

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

c concepts for microcontrollers 159

do {

// this code will be repeated an infinite number of times

} while (1);

Practice Problems

1. Find the final value of the variable x after the loop has been exe-
cuted.

(a) for (unsigned char x = 0; x > 6; x++) { } x = 0

(b) unsigned int x = 1;

while (x <= 5) { x*=2; } x = 8

(c) unsigned int x = 0;

do { x++; } while(x <= 20); x = 21

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

19
Assembly

Assembly can be used to program the ATmega328P; it re-
quires a detailed understanding of the AVR instruction set.1 In order 1 Atmel, "AVR Instruction Set Manual,"

November 2016.to access all of the information stored in general purpose (GP) reg-
isters, data memory, and program memory, an understanding of
memory addressing (discussed in chapter 7) is fundamental. The in-
structions allowed on the microcontroller can be divided into several
categories.

19.1 Data Transfer Instructions

Before any meaningful instructions can take place, data must be
loaded into the GP registers. This data can come from program mem-
ory, data memory (including the I/O registers), another GP register,
or it can be an immediate data value. Instructions that load data into
GP registers can:

• move – copy a register or pair of registers into a GP register,

• load – load immediate data into a GP register; load data directly
or indirectly (with or without displacement, post-increment, or
pre-decrement) from data memory into a GP register; load data
indirectly from program memory into a GP register,

• in – input data from an I/O register into a GP register, and

• pop – take data from the stack and save it into a GP register.

Data can also be stored from a GP register into memory. These
instructions can:

• store – store data directly or indirectly (with or without displace-
ment, post-increment, or pre-decrement) from a GP register into
data memory; store data indirectly from a GP register into pro-
gram memory,

162 microcontrollers

• out – output data from a GP register into an I/O register, and

• push – take data from a GP register and save it in the stack.

Practice Problems

1. Which general purpose registers can be used with instruction LD? r0 – r31

2. Which general purpose registers can be used with instruction LDI?
r16 – r31

19.2 Arithmetic & Logic Instructions

Arithmetic and logic instructions allow the microcontroller to add,
subtract, and multiply. Data can be complemented using either one’s
or two’s complement. Logical operations include AND, OR, and
XOR. Some of these instructions have the option to be used with or
without a carry and using signed, unsigned, or fractional values. All
of these instructions are carried out within one or two clock cycles.
Most all of these instructions affect flags in SREG.

Of the arithmetic and logic instructions, many of them either use
direct, two register addressing or immediate addressing with direct,
one register addressing. For example, the AND instruction is used to
perform the logical AND operation on the contents of two GP regis-
ters (a source and destination) and save the results in the destination
register. The ANDI instruction is used to perform the logical AND
operation on the contents of one GP register with an immediate and
save the results back into the GP register.

The logic instructions are essentially equivalent to bitwise oper-
ators. Table 19.1 shows the logical assembly instructions and their
equivalent C counterparts.

Operation Instruction(s)

AND AND, ANDI, CBR
OR OR, ORI, SBR
XOR EOR

NOT COM

Table 19.1: Logical instructions can be
used to emulate bitwise operators.

Notice that not all assembly instructions allow for immediate
addressing. Shifting bits (as accomplished using bitshift operators
in C) is discussed below, as bitshifting is accomplished using bit
manipulation instructions. It is also possible to set an individual bit

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 163

in a GP register using SBR, which is similar to using a bitwise OR
with a single high bit. Similarly, an individual bit in a GP register can
be cleared using CBR, which is similar to using a bitwise AND with a
single low bit.

Addition and subtraction operations can take place with or with-
out a carry. For example, ADD simply adds the contents of two GP
registers (a source and a destination) and saves the result into the
destination register. ADC adds the contents of two GP registers (a
source and a destination) and the contents of the C flag in SREG, and
then saves the result in the destination register.

The arithmetic and logic instructions also contain instructions that
can:

• increment a register – Rd← Rd + 1,

• decrement a register – Rd← Rd − 1,

• clear a register – Rd← 0x00, and

• set a register – Rd← 0xFF.

Practice Problems

1. Determine the contents of the destination register (in decimal)
after each subsequent operation.

(a) LDI r17, 0x80 r17 = 128

(b) LDI r18, 0x15 r18 = 21

(c) COM r18 r18 = 234

(d) AND r18, r17 r18 = 128

(e) ORI r17, 0x03 r17 = 131

(f) EOR r17, r18 r17 = 3

(g) SER r18 r18 = 255

(h) SUB r18, r17 r18 = 252

(i) NEG r18 r18 = 4

(j) MUL r17, r18 r17 = 12

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

164 microcontrollers

19.3 Branch (Control Flow) Instructions

Just as there are conditional and iterative control flow operations in
C, there are instructions that allow for these same processes in AVR
assembly. It is important to have a solid understanding of branch
instructions and memory addressing, as these are fundamental to
carrying out conditional logic in assembly.

One subset of branch instructions are jump instructions, which tell
the microcontroller to move to a different part of memory. Essentially,
these instructions change the value of the program counter so that
a different part of the program memory will be addressed on the
next clock cycle. The two most important jump instructions in AVR
assembly are

• JMP – (absolute jump) jumps to a location in program memory,
this instruction can address up to 4 M of memory using a 22-bit
operand; and

• RJMP – (relative jump) jumps to a relative location in program
memory, this instruction moves forward or backward in memory
space using a relative change in the program counter (note that
RJMP is not always capable of addressing the entire memory space).

There are also call instructions, which are used for executing sub-
routines. Locations in program memory are saved into the stack to
ensure that the code is able to return to the same point once it has
finished executing the subroutine.

Whereas in C a conditional statement is made in syntax and curly
brackets are used to denote the start and end of the conditionally or
iteratively executed subroutine, in assembly this is done using logical
instructions, compare instructions, and branch instructions.

Two important compare instructions are

• CP – compare, which compares the contents of two GP registers Rd

and Rr, and

• CPI – compare with immediate, which compares the contents of a
GP register Rd with a constant.

Branch instructions cause the code to jump to a different address
in memory if a certain condition is met. There many possible branch
conditions, including

• branch if a flag is set or clear – these instructions will jump to a
different address in memory if a flag in SREG is either 0 or 1,

• branch if two numbers are equal (BREQ) – this instruction will jump
to a different address in memory if two numbers are the same,

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 165

• branch if two numbers are not equal (BRNE) – this instruction will
jump to a different address in memory if two numbers are not the
same,

• branch if one number is greater than or equal to another – there
are different instructions to use for signed (BRGE) and unsigned
(BRSH) values, and

• branch if one number is less than another – there are different
instructions to use for signed (BRLT) and unsigned (BRLO) values.

The argument of a branch instruction is the name of a subroutine
in the code, which is defined using a colon, as follows:

;define a subroutine known as function1

function1:

;compare two registers, repeat function1 if they are equal

CP r1, r2

BREQ function1

Conditional Control Flow

As seen in chapter 18, conditional control flow in C took on the form
of if statements and switch cases. There isn’t really a switch case
equivalent in assembly; a series of mutually exclusive if statements
can be used instead.

A simple if statement can be executed by using a compare instruc-
tion and a branch instruction. This works for checking to see if two
values are equal, unequal, greater than, or less than, and making a
decision based on the result.

The following example branches to the conditiontrue memory
address if the value of register r1 ≥ r2, as shown in the flowchart in
Figure 19.1.

START
r1 = PIND

r2 = PINB

r1 ≥ r2

turn on an LED

TRUE

Figure 19.1: An example of conditional
control flow (equivalent to a simple if

statement) in assembly.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

166 microcontrollers

The values stored in the two GP registers come from the data
stored in the PINB and PIND registers. If the condition is satisfied,
an LED connected to pin 5 in port C is turned on. The associated
assembly code is as follows:

;configure PORTC pin 5 as output

SBI DDRC, 5

;read contents of PINB and PIND

IN r1, PINB

IN r2, PIND

;compare r1 and r2

CP r1, r2

BRSH conditiontrue

;condition false

JMP end

;condition true subroutine

conditiontrue:

SBI PORTC, 5

end:

This code is using unsigned values in registers r1 and r2, which is
why the BRSH instruction is used. Had signed values been necessary,
the BRGE instruction would have been used instead.

This code can easily be tailored to act as an if / else statement us-
ing the lines of code between the BRSH instruction and the conditiontrue

subroutine. Series of nested if / else statements can be used to gener-
ate an if / elseif / else situation.

More complicated if statements can be written by cleverly config-
uring compares and jumps. The following example uses GP registers
r16 and r17 (which both obtain their data from I/O registers). In
C, the conditional statement inside of the if would have looked like
((r16 < 100) && (r17 >= 50)). If the condition is satisfied, an LED
connected to pin 5 in port C is turned on. Otherwise, the LED is
turned off. The flowchart is shown in Figure 19.2.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 167

START

r1 = PIND, r2 = PINB

(r1 < 100)

&&

(r2 ≥ 50)

turn on an LED

turn off an LED

TRUE

FALSE

Figure 19.2: An example of conditional
control flow (equivalent to a more
complicated if/else statement) in
assembly.

The associated assembly code is as follows:

;configure PORTC pin 5 as output

SBI DDRC, 5

;read contents of PINB and PIND

IN r16, PINB

IN r17, PIND

;compare r16 with 100

CPI r16, 100

;if r16 >=100, condition is false

BRSH conditionfalse

;compare r17 with 50

CPI r17, 50

;if r17 < 50, condition is false

BRLO conditionfalse

conditiontrue:

SBI PORTC, 5

JMP end

conditionfalse:

CBI PORTC, 5

end:

Note that GP registers must be at least 16 due to the use of instruc-
tions using immediate addressing. Note also that unsigned values
were used in both GP registers.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

168 microcontrollers

Iterative Control Flow

The equivalent of a for loop can be accomplished in assembly by
initializing a GP register to take on a particular value, executing the
iterative code, executing the afterthought to the GP register, and then
comparing the value of the GP register to the conditional statement.

The following example demonstrates how to increment the PORTB

register from 0–10; perhaps it is connected to a 7-segment display via
a BCD to 7-segment decoder. This code will enable the decoder to
increment from 0–10. The flowchart is shown in Figure 19.3

START

r22 = 0

r22 < 10

PORTB = r22

increment r22

TRUE

Figure 19.3: An example of iterative
control flow (equivalent to a for loop)
in assembly.

The associated assembly code is as follows:

;configure PORTB pins as outputs

LDI r23, 0x0F

OUT DDRB, r23

;initialization: clear register r22

CLR r22

loop1:

OUT PORTB, r22

;afterthought: increment r22

INC r22

;conditional: compare r22 with 10, repeat if it’s lower

CPI r22, 10

BRLO loop1

Note the use of GP registers greater than 16 for the instructions
using immediate addressing (LDI and CPI).

As with C code, the for configuration is used when a segment
code should be iterated a given number of times before returning

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 169

to normal operation. When a condition needs to be met before exe-
cuting a segment of code, a while or do/while configuration should
be used. The assembly code will still use compare and branch in-
structions, the only difference from the for configuration will be the
ordering of each exact instruction.

The following example turns on an LED (connected to port C
pin 0) if a toggle switch (connected to port B pin 0) is turned on.
Otherwise, if the toggle switch is turned off, the LED turns off. The
flowchart is shown in Figure 19.4.

START

r18 = PINB

toggle switch

on?

turn LED on

turn LED off

TRUE

FALSE

Figure 19.4: Flowchart indicating the
usage of a while loop.

The assembly code follows

SBI DDRC, 0

main:

JMP checktrue

conditiontrue:

SBI PORTC, 0

checktrue:

IN r18, PINB

ANDI r18, 0x01

CPI r18, 0x01

BREQ conditiontrue

CBI PORTC, 0

JMP main

A do/while loop executes the contents of the loop first before
checking the conditional statement. In this case, the JMP checktrue

instruction can be removed to simulate a do/while loop.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

170 microcontrollers

Control Flow & SREG

Compare and branch instructions operate by determining whether
or not a particular flag was set in SREG. For example, conditional
logic that would have been represented as if (a == b) in C code
is carried out using a compare instruction on two GP registers, and
then a branch instruction if the two registers are equal (BREQ), as
follows:

CP r1, r2

BREQ subroutine1

The compare instruction executes the operation r1 − r2. If the
result is zero (indicating that the two values are equal), the Z flag
in SREG will be set. Therefore, the BREQ instruction checks to see if
the Z flag in SREG had been set as a result of the previous instruc-
tion and uses that to decide whether or not to change the value of
the program counter. The flags that are checked for several logical
comparisons are shown in Table 19.2.

Comparison Instruction Flag

a == b BREQ Z = 1

a != b BRNE Z = 0

a >= b BRSH (unsigned) C = 0

a >= b BRGE (signed) N ⊕ V = 0

a < b BRLO (unsigned) C = 1

a < b BRLT (signed) N ⊕ V = 1

Table 19.2: Branch instructions check
the status of flags in SREG.

Because flag checks are how the branch instructions know whether
or not to change the value of the program counter, it can be seen why
there are no "greater than" or "less than or equal to" instructions.
With unsigned values, a greater than situation would occur if Z = 0

AND C = 0, so both flags would need to be logically compared. It
is possible to do this in assembly manually, but it is much easier to
change the value to compare with. Similarly, with unsigned values, a
less than or equal to situation would occur if C XOR Z is TRUE.

Practice Problems

1. Determine the contents of SREG after each subsequent operation.

(a) LDI r18, 20 0x00

(b) LDI r19, 13 0x00

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 171

(c) CP r18, r19 0x20

(d) CPI r19, 200 0x01

(e) NEG r18 0x35

(f) LDI r18, 220 0x00

(g) LDI r19, 57 0x00

(h) ADD r18, r19 0x21

2. Which instruction(s) will branch if Z = 1? BREQ

3. Which instruction(s) will branch if Z = 0? BRNE

4. Which instruction(s) will branch if C = 1? BRCS, BRLO

5. Which instruction(s) will branch if C = 0? BRCC, BRSH

19.4 Bit Manipulation Instructions

Bit manipulation instructions consist of instructions that allow reg-
isters to be manipulated on the bit level. This consists of shifting,
swapping, setting, and clearing instructions.

Shift instructions come in a few flavors: logical shift, arithmetic
shift, and rotate through carry. A logical shift is equivalent to bitshift
operations in C. When a register is logically shifted right (using the
LSR instruction), the MSB is replaced with a 0. Assuming that the
result does not overflow, this operation is equivalent to multiplying
a binary value (signed or unsigned) by two. When a register is logi-
cally shifted left (using the LSL instruction), the LSB is replaced by a
0. A logical shift right is equivalent to dividing an unsigned binary
value by two. While C code is able to perform multiple bitshifts at a
time (for example, to bitshift a value 3 times to the right, »3 is used),
each shift instruction in assembly executes a single time. Iterative
control flow can be used to execute multiple bit shifts.

In an arithmetic shift right (which is the ASR instruction, no such
arithmetic shift left exists as it would be equivalent to logical shift

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

172 microcontrollers

left), the sign bit is shifted in to the MSB of the register. This is equiv-
alent to dividing a signed or unsigned binary value by two by pre-
serving the sign bit.

Rotate through carry instructions can occur to the left (using the
ROL instruction) or right (using the ROR instruction), and execute a
rotation (where the register wraps around so the MSB is moved to
the LSB, or vice versa) through the previous value of the carry bit. A
rotate left through carry is depicted graphically in Figure 19.5.

7

0

1

6

1

1

5

1

0

4

0

1

3

1

0

2

0

0

1

0

1

0

1

1

C

1

0

Figure 19.5: Rotate left through carry.

A rotate right through carry is depicted graphically in Figure 19.6.
These instructions are particularly useful when dealing with values
that are stored in two registers (i.e., the numbers are greater than 8

bits). When rotating, the value that is rotated out is saved into the
carry flag of SREG and is therefore ready to be rotated in to the next
byte without the need for additional processing.

7

0

1

6

1

0

5

1

1

4

0

1

3

1

0

2

0

1

1

0

0

0

1

0

C

1

1

Figure 19.6: Rotate right through carry.

The SWAP instruction swaps the high and low nibbles on the
operand register.

The T flag in SREG is a bit used to store a single bit of data. Storing
data to this flag is accomplished using the BST instruction, while re-
trieving data from this flag is accomplished using the BLD instruction.

The last set of bit manipulation pertain to setting and clearing bits.
Bits can be set and cleared individually in an I/O register using SBI

and CBI, individual bits in SREG can be set and cleared using BSET

and BCLR, and each individual flag in SREG can be set or cleared using
one of the many instructions that accomplish those tasks. Individual
bits can be cleared or set in a GP register by using ANDI or ORI similar
to bitwise AND and bitwise OR operations in C.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

assembly 173

19.5 Miscellaneous Instructions

The miscellaneous instructions on the ATmega328P are BREAK (break),
which is used by the on-chip debug system; NOP (no operation),
which spends one clock cycle doing nothing; SLEEP (sleep), which
sets the device into sleep mode; and WDR (watchdog reset), which
resets the watchdog timer.

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

174 microcontrollers

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

20
Index

alternate pin functions, 80

analog to digital conversion, 83

analog-to-digital converter, 86

flash, 86

pipelined, 88

successive approximation register,
87

Arduino Uno, 25

arithmetic and logic unit, 22, 37, 65

array, 145

assembly language, 27, 68, 161

arithmetic and logic instructions,
162

bit manipulation instructions, 171

branch instructions, 164

call instructions, 164

data transfer intructions, 161

jump instructions, 164

miscellaneous instructions, 173

ATmega328P, 25, 71

analog-to-digital converter, 89

clock, 108

serial communication, 123

sleep mode, 133

status register, 47

timer/counter 0, 109

timer/counter 1, 109

timer/counter 2, 109

automatic variable, 144

bit addressing, 61

bitwise operator, 146, 162

Boolean operator, 150

bus, 22

C programming language, 141

array, 145

automatic variable, 144

bitwise operator, 146

Boolean operator, 150

comparison operator, 150

compound operator, 151

const variable, 145

datatype, 141

do/while loop, 158

for loop, 156

if/else statement, 152

operator
bitwise, 146

Boolean, 150

comparison, 150

compound, 151

static variable, 144

switch case, 154

variable
automatic, 144

const, 145

scope, 143

static, 144

volatile, 143

variable scope, 143

volatile variable, 143

while loop, 157

calibration
datasheet, 96

multiple-point, 97

one-point, 97

sensor, 96

central processing unit, 22, 33

circular buffer, 99

clock, 107

ceramic, 107

crystal, 107

multiplier, 108

prescaler, 108

RC circuit, 107

closed-loop negative feedback con-
trol, 135

comparison operator, 150

compiler, 28

compound operator, 151

computer, 21

conditional control flow, 152, 165

const variable, 145

control flow, 164

conditional, 152, 165

iterative, 155, 168

control systems, 135

control unit, 22

data memory, 40, 51, 161

data memory addressing, 57

datasheet calibration, 96

datatype, 141

debugging, 32

design tools, 31

digital to analog conversion, 89

do/while loop, 158

duty cycle, 114

embedded system, 24

encoding, 85

expanding opcodes, 36

extended fuse byte, 74

fast pulse-width modulation, 115

feedback control, 135

closed-loop, 135

176 microcontrollers

proportional, 136

proportional-integral, 137

proportional-integral-derivative,
138

firmware, 22

flash analog-to-digital converter, 86

flash memory, 29, 51

for loop, 156

fuse byte, 74

extended, 74

high, 74

low, 75

general purpose register, 37, 51, 161

addressing, 54

Harvard architecture, 33

high fuse byte, 74

high-level language, 27, 141

I/O pin, 77

I/O register, 37, 52, 77

addressing, 56

if/else statement, 152

immediate addressing, 55, 161

input capture unit, 111

input device, 22, 65, 93

instruction decoder, 37

integrated circuit, 23

interrupt, 101

timed, 109

interrupt service routine, 102

iterative control flow, 155, 168

low fuse byte, 75

machine instructions, 34, 65, 161

machine language, 27, 68

memory, 21, 40, 51

addressing, 53

bit, 61

data memory, 57

general purpose register, 54

I/O register, 56

immediate, 55

program memory, 60

flash, 29, 51

non-volatile, 42, 51

random-access, 29, 40

read-only, 29, 42

volatile, 40, 51

memory address register, 37

memory addressing, 53

microcomputer, 23

microcontroller, 21, 33, 65, 71

microprocessor, 23

multiple-point calibration, 97

non-volatile memory, 42, 51

one-point calibration, 97

opcode, 35, 65

output compare unit, 111

output device, 22, 65

parallel in / parallel out register, 38

parallel in / serial out register, 39

parity detection, 130

phase- and frequency-correct pulse-
width modulation, 118

phase-correct pulse-width modula-
tion, 117

pipelined analog-to-digital converter,
88

polling, 101

PORT register, 77

power management, 133

prescaler, 108

program counter, 22, 39

program memory, 42, 51, 161

program memory addressing, 60

programming, 26, 141

proportional feedback control, 136

proportional-integral feedback con-
trol, 137

proportional-integral-derivative feed-
back control, 138

pull-up resistor
internal, 79

pulse-width modulation, 114

average voltage, 114

duty cycle, 114

fast, 115

frequency, 115

phase- and frequency-correct, 118

phase-correct, 117

quantization, 84

error, 85

random-access memory, 29, 40

read-only memory, 29, 42

reduced instruction set computing, 34

register, 37

general purpose, 37, 51

I/O, 37, 52, 77

memory address, 37

parallel in / parallel out, 38

parallel in / serial out, 39

PORT, 77

serial in / parallel out, 38

serial in / serial out, 38

status, 37, 47

register transfer language, 68

registers, 65

resolution
analog-to-digital converter, 85

sampling, 84

sensor, 83, 93

calibration, 96

noise, 98

serial communication, 121

asynchronous, 122

full-duplex, 122

half-duplex, 122

parity detection, 130

serial communication errors, 129

serial peripheral interface, 125

simplex, 122

synchronous, 122

two-wire interface, 127

universal synchronous / asyn-
chronous receiver /transmitter,
123

serial communication errors, 129

serial in / parallel out register, 38

serial in / serial out register, 38

serial peripheral interface, 125

sleep mode, 133

software, 22

stack, 61, 161

collision, 62

overflow, 62

underflow, 62

static variable, 144

status register, 37, 47, 170

successive approximation register
analog-to-digital converter, 87

switch case, 154

timer/counter, 109

clear timer on compare match

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

index 177

mode, 113

input capture unit, 111

normal mode, 113

output compare unit, 111

two-wire interface, 127

universal synchronous / asyn-
chronous receiver / transmitter,
123

variable scope, 143

volatile memory, 40, 51

volatile variable, 143

von Neumann architecture, 33

watchdog timer, 118

while loop, 157

cbna Alyssa J. Pasquale, Ph.D. Last updated: 2022/04/27

	Changelog
	Introduction
	Author Note
	License & Attribution Information

	Course Prerequisites
	Introduction to Microcontrollers & Embedded System Design
	Computer Components
	Microprocessor
	Microcontroller
	Embedded Systems
	Choosing a Microcontroller
	Atmel AVR Microcontroller & Arduino
	Embedded System Programming
	Compilers
	Embedded System vs. Computer Program Design
	Top-Down Design / Bottom-Up Implementation
	Design Tools
	Debugging

	General Principles of Microcontrollers
	CPU Architectures
	Reduced Instruction Set Computing (RISC)
	Machine Instructions
	Instruction Decoder
	Arithmetic and Logic Unit (ALU)
	Registers
	Program Counter (PC)
	Memory
	Instruction Execution Process & Timing

	Status Register (SREG)
	I – Global Interrupt Enable Flag
	T – Bit Copy Storage Flag
	H – Half Carry Flag
	N – Negative Flag
	V – 2's Complement Overflow Flag
	S – Sign Flag
	Z – Zero Flag
	C – Carry Flag
	Practice Problems

	Memory Addressing Modes
	Flash Program Memory
	SRAM Data Memory
	EEPROM Data Memory
	Memory Addressing
	Bit Addressing
	The Stack & Stack Operations
	Practice Problems

	Model Microcontroller
	Microcontroller Instructions
	Microcontroller Operation Codes (Opcodes)
	Model Microcontroller Program
	Practice Problems

	The ATmega328P Microcontroller
	Pinout Diagrams
	Writing Programs to Memory
	Fuse Bytes
	Practice Problems

	I/O Port Registers
	Electrical Characteristics
	Internal Pull-Up Resistors
	Alternate Pin Functions
	Practice Problems

	Analog to Digital Conversion
	Sampling
	Quantization
	Encoding
	ADC Architectures
	The ADC on the ATmega328P
	Digital to Analog Conversion
	Practice Problems

	Sensors & Sensor Calibration
	Choosing Resistor Values
	Sensor Calibration
	Mitigating Fluctuating Data & Sensor Noise

	Interrupts
	Program Flow
	Interrupt Service Routine (ISR)
	ISR Execution
	ISR Categories
	Enabling / Disabling Interrupts
	Practice Problems

	Clocks, Timers / Counters & Pulse-Width Modulation
	ATmega328P Clock
	Timer / Counters
	Timer / Counter Modes of Operation
	Pulse-Width Modulation (PWM)
	Watchdog Timer (WDT)
	Practice Problems

	Serial Communication
	Simplex & Duplex
	Architecture
	Data Transfer Protocol
	Universal Synchronous / Asynchronous Receiver / Transmitter (USART)
	Serial Peripheral Interface (SPI)
	Two-Wire Interface (TWI)
	Serial Communication Errors
	Practice Problems

	Power Management & Sleep Modes
	Sleep Modes
	Wake-Up Sources

	Control Systems & Feedback
	Proportional Feedback Control
	Proportional-Integral (PI) Control
	Proportional-Integral-Derivative (PID) Control

	C Concepts for Microcontrollers
	Standard Datatypes
	Variable Scope & Keywords
	Arrays
	Bitwise Operations
	Comparison & Boolean Operators
	Compound Operators
	Control Flow: Conditional
	Control Flow: Iterative

	Assembly
	Data Transfer Instructions
	Arithmetic & Logic Instructions
	Branch (Control Flow) Instructions
	Bit Manipulation Instructions
	Miscellaneous Instructions

	Index

