
Circuit Analysis
Alyssa J. Pasquale, Ph.D.



Table of Contents Table of Contents

Table of Contents

Author Note 8

License and Attribution Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Symbol Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Changelog 9

1 Properties of Electric Circuits 10

1.1 Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Voltage as a Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Measuring Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Current as a Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Measuring Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Conservation of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Power Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Direct Current (DC) Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.2 Alternating Current (AC) Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.3 Dependent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.4 Equivalent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Elementary Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.2 Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.3 Ramp Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.4 Rectangular Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.5 Triangular Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.6 Exponential Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.7 Damped Sinusoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Circuit Laws 31

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Resistor Color Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Variable Resistors and Potentiometers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

cbna Alyssa J. Pasquale, Ph.D. 2 Last updated: 2023/05/18



Table of Contents Table of Contents

2.2.3 Measuring Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Resistors in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.5 Resistors in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.6 Equivalent Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Delta-Wye and Wye-Delta Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Delta-Wye Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Wye-Delta Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Calculating Voltage from Current and Resistance . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Calculating Current from Voltage and Resistance . . . . . . . . . . . . . . . . . . . . . 50

2.4.3 Calculating Resistance from Voltage and Current . . . . . . . . . . . . . . . . . . . . . 51

2.4.4 Ohm’s Law and the Power Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Voltage Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Wheatstone Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Current Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Kirchhoff’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7.1 Kirchhoff’s Current Law (KCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7.2 Kirchhoff’s Voltage Law (KVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.3 Finding Matrix Equations from KCL and KVL . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Mesh Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.1 Branch vs. Mesh Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.2 The Mesh Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Circuit Theorems 73

3.1 Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Source Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Open-Circuit Voltages and Short-Circuit Currents . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Open-Circuit Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.2 Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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Author Note

This book is an attempt to compile together my notes for Circuit Analysis (ENGIN-2210 at the College of

DuPage). I want students to have a free resource that they can use instead of paying hundreds of dollars for

a book that they may not read and does not align exactly with my course content.

That said, this book will always be a work in progress. I cannot guarantee that it is free from typos. I

will, however, do my best to implement your feedback if you find any issues with the text. Feel free to e-mail

me at pasqualea185@cod.edu with your notes.

License and Attribution Information

This book is licensed under creative commons as CC-BY-SA-NC. This license allows reusers to distribute,

remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and

only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must

license the modified material under identical terms. For more information, visit https://creativecommons.

org.

This license (CC-BY-SA-NC) includes the following elements:

b BY – Credit must be given to the creator

n NC – Only noncommercial uses of the work are permitted

a SA – Adaptations must be shared under the same terms

The suggested attribution for this book is “Circuit Analysis” by Alyssa J. Pasquale, Ph.D.,

College of DuPage, is licensed under CC BY-NC-SA 4.0.

The entirety of this work was created by Alyssa J. Pasquale, Ph.D. The cover photograph is by the author

and is a collection of circuit components (capacitors, trimmer pots, trimmer capacitors, soft potentiometers,

inductors, toggle switches, transistors, resistors, diodes, light-emitting diodes, and incandescent lamps). All

circuit diagrams, equations, and figures in this text were created by the author using LATEX libraries.

Symbol Notation

A note about symbols used in this text: DC quantities will be represented by capital letters such as V for

voltage, I for current, and P for power. Time-varying quantities will be represented by lowercase letters

such as v(t) for voltage, i(t) for current, and p(t) for power.
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1 Properties of Electric Circuits

1 Properties of Electric Circuits

Electric circuits have many different properties. Some of these properties describe quantities that we are

interested in measuring in a circuit. Properties such as voltage and current are things that engineers are

interested in designing circuits around; we want circuits to have particular values of voltage or current at

specific points in a design. It’s important for engineers to have a solid understanding of these properties.

They will form the basis for the remainder of the content of this textbook.

1.1 Charge

Charge is a fundamental property of matter, just as mass is a fundamental property of matter. Charge is

important because it interacts through electromagnetic forces. By physically separating two or more charges,

an electric field is generated that creates either attractive or repulsive forces. These forces can direct the

movement of charges throughout a circuit. Charge comes from protons and electrons. Protons each contain

one unit of positive charge (usually denoted as +e), which is equal to 1.6× 10−19 C. C stands for coulomb,

which is the SI unit used for charge. Electrons each contain one unit of negative charge, which is equal to

−1.6× 10−19 C. The symbol used for charge is Q.

1.2 Voltage

Voltage, also referred to as electric potential, potential difference, or electromotive force, is another important

property of circuits. Voltage defines how much work is done per unit of charge to move a “test charge”

between two points. While voltage can be an abstract property to understand, it is one of the three most

important properties of electric circuits (they are: voltage, current, and resistance). The symbol used for

voltage is V and the units are V (volts).

A useful way to understand voltage can be to compare it with its gravitational equivalent. While grav-

itational forces and electromagnetic forces have many differences, they also have many similarities. Grav-

itational potential energy describes the amount of energy that an object has by virtue of its mass and its

distance away from a reference mass. However, if that object were to disappear, the reference mass would

still exist, and that reference mass has the potential to generate energy if an object of mass were to find itself

some distance (r) away from the reference mass. This is depicted schematically in figure 1.1. This potential

to have energy is known as gravitational potential.
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1 Properties of Electric Circuits 1.2 Voltage

GPE = Gmm1/r GP = Gm/r

reference object of mass m

m1

r

reference object of mass m

r

Figure 1.1: Schematic depiction of gravitational potential energy and gravitational potential.

As humans living on the planet Earth, gravitational potential depends on the mass of the Earth, the

radius of the Earth, and the universal gravitational constant (G = 6.7×10−11 Nm2/kg2). While gravitational

potential energy is a concept that you have probably studied extensively in your physics classes, you have

probably not spent as much time on gravitational potential.

Electric potential energy describes the energy that an object has by virtue of its charge and its distance

away from a reference charge. However, if that object were to disappear, the reference charge would still

exist, and that reference charge has the potential to generate energy if an object of charge were to find itself

some distance (r) away from the reference charge. This is depicted schematically in figure 1.2. This potential

to have energy is known as electric potential, or voltage.

EPE = kqq1/r EP = kq/r

q q1

r

q

r

Figure 1.2: Schematic depiction of electric potential energy and electric potential (voltage).

Voltage therefore depends on the charge of the reference object, the distance between the two objects, as

well as Coulomb’s constant (k = 8.99× 109 Nm2/C2).

What is important in the context of circuit analysis is where voltage comes from and how it will be treated

as a quantity. Voltage can be generated in several different ways. Static electric fields are generated by

physically separating charges and keeping them apart from each other, which is what a battery accomplishes

using chemical means. Voltage can also be created by a time-varying magnetic field or charges moving

through a static magnetic field. These methods are how generators and power plants work.

In an electromagnetic physics class, the emphasis is generally on using Maxwell’s equations to solve for

voltage as a quantity. In electrical engineering, we will treat voltage as either a source that is applied to a

circuit (by means of a power supply, batteries, or function generator) and as a quantity to be measured over

various circuit elements.
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1 Properties of Electric Circuits 1.2 Voltage

1.2.1 Voltage as a Difference

It is important to reiterate that voltage is a potential difference. This implies that voltage must be measured

with respect to two points in a circuit. The terminology used in this book is to mention the “voltage dropped

over an element.” Voltage is also relative, which means that care needs to be taken in the measurement

or calculation of voltage drops. In other words, measuring the voltage drop with voltmeter leads in one

orientation will lead to the negative value of the measurement with the leads in the other orientation. (In

mathematical terms, Vab = −Vba.) Because voltage is relative, it is important to keep in mind what the

reference is when understanding what is meant by a positive or a negative voltage drop.

It is also important to discuss the concept of a reference potential. Generally, we use ground as a reference

potential of zero volts. The symbol for ground that is used on a circuit diagram resembles an upside-down

tree and is depicted in figure 1.3.

Figure 1.3: Circuit symbol used for ground.

The Earth serves as a good choice of zero potential (ground) in circuits. The Earth can absorb very

large amounts of charge without experiencing a change in this potential. Equipment with Earth ground

connections will typically have a copper wire that is buried into the Earth in order to facilitate this ability

to transfer charge.

Some objects (such as cars, airplanes, and some consumer electronic devices with portable power sources)

do not have a physical connection to Earth ground, but still make use of a reference voltage of zero potential.

For example, an airplane will typically use the metal chassis as a ground. However, this can lead to static

buildup as charge cannot always dissipate from the metal chassis. When an airplane is refueled, this can

be a particular hazard. For this reason, a fuel truck will ground itself to the airplane chassis to reduce

any possibility of static buildup and discharge. Electrostatic discharge can also be a hazard when using

integrated circuits, particularly those used for assembling computers. Care and consideration must be taken

to ensure that people are properly grounded before and during working with these objects.

1.2.2 Measuring Voltage

Voltage can be measured in a circuit using a device called a voltmeter. (A device that can measure multiple

properties – such as voltage, current, and resistance – is called a multimeter.) The circuit symbol for a

voltmeter is shown in figure 1.4. A voltmeter contains two leads: a positive and a reference (or common)

lead. When placed across the elements of a circuit, the potential difference between the two points (potential

at positive lead minus the potential at common lead) is measured. Modern digital voltmeters typically use

analog to digital converters and microcontrollers to turn a voltage measurement into a digital readout. Note

that it is important to establish the reference potential and ensure that the reference lead is in the correct
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1 Properties of Electric Circuits 1.3 Current

location. Otherwise the voltmeter will display the negative of the desired value. (Vab = −Vba)

V

Figure 1.4: Circuit symbol used for a voltmeter.

Due to Kirchhoff’s voltage law (explained in section 2.7.2 in this book), voltages must be measured in

parallel. In other words, if the voltage drop over a particular circuit element is to be measured, then one

lead of the voltmeter should be on one end of the element with the other lead of the voltmeter on the other

end of the element. This is shown graphically in figure 1.5.

Figure 1.5: A diagram of how voltage is measured in parallel (across a component).

It is important for a measuring tool to provide minimal impact on the functionality of a circuit. Because

a voltmeter is placed in parallel with a circuit element, it is important for current flow into the voltmeter

to be minimal. If current were to flow into the voltmeter, then it would change the current flowing through

the circuit and would impact the measurement of the voltage. For this reason, voltmeters are designed with

a very high internal resistance. This makes voltmeters rather safe to use, as placing a voltmeter incorrectly

cannot lead to an accidental low-resistance short circuit.

1.3 Current

Current quantifies the amount of charge moving past a point per unit of time (Q/t); if charge changes with

time, then current is equal to the time derivative of charge, depicted in equation 1.1. The symbol for current

is I.

i(t) =
dq(t)

dt
(1.1)

Because the units of charge are coulombs and the unit of time are seconds, the unit for current is C/s,

also known as A (ampere, or amp).

Negatively charged particles will move through a conductor in the presence of an electric field to an area

of high potential (positive charge). Current is defined opposite to the motion of negative charges. In other

words: current is defined opposite to the motion of electrons in a circuit.
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1 Properties of Electric Circuits 1.3 Current

1.3.1 Current as a Flow

Current relates to the flow of charge through an object. Because the charge is moving in a particular direction,

the sign of current correlates to the direction of the current. It is possible to calculate or measure current in

any arbitrary direction. If the calculation or measurement yields a positive result, it means that the direction

that was chosen is indeed the direction in which current is flowing. If the calculation or measurement yields

a negative result, it means that current is flowing in the opposite direction.

As an example, let’s assume that we have a circuit element and we believe that current is traveling from

left to right, as shown in figure 1.6. If we measure or calculate the current and obtain a positive result, it

means that the current is indeed flowing from left to right. However, if our measurement or calculation leads

to a negative result, it means that the current is flowing from right to left.

I

Figure 1.6: A circuit element; we are assuming that current flows from left to right.

1.3.2 Measuring Current

Current can be measured in a circuit using a device called an ammeter. The circuit schematic for an ammeter

is shown in figure 1.7. An ammeter contains two leads. Current enters through one lead and exits through

the reference (common) lead. When placed in series with a circuit element, the current flowing through the

ammeter is measured. An ammeter will measure the current flowing from one lead to the common lead;

therefore it is important to establish which connection to make with the common lead to ensure that the

readout is not going to be the negative value of what is desired.

A

Figure 1.7: Circuit symbol used for an ammeter.

Modern digital ammeters use a resistor with a very small value (called a shunt resistor) over which the

voltage can be measured using an analog to digital converter. Using Ohm’s law, the current can be calculated

using a microcontroller and displayed on a screen.

Due to Kirchhoff’s current law (explained in section 2.7.1 in this book), currents must be measured in

series. In other words, the path of the circuit must be broken open, and the ammeter must be inserted into

that path in order to measure the current flowing through that path. This is shown graphically in figure 1.8.

Figure 1.8: A diagram of how current is measured in series (in the same path as a component).
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1 Properties of Electric Circuits 1.4 Power

Just as with a voltmeter, is is important for an ammeter to disturb the functionality of the circuit as

little as possible. An ideal ammeter would contribute no voltage drop to the circuit. However, as a shunt

resistor is required to measure current, that means the shunt resistor should have as small a value as possible.

Because the internal resistance of an ammeter is so low, it is imperative to use caution when connecting an

ammeter. If a lot of current is caused to flow through an ammeter (by connecting the ammeter in a path

with very low resistance, for example by connecting it in parallel with an element rather than in series with

an element), then the internal circuitry can be damaged or a fuse blown.

1.4 Power

Energy is lost or gained at particular rates in each element in a circuit. This rate of energy loss (or gain) is

known as power. The symbol for power is P , and the units are W (watts). In general, power is defined as

the time derivative of energy or work in a circuit element (dw(t)/dt). The instantaneous power consumed

by a circuit element is given in equation 1.2.

p(t) = i(t)v(t) (1.2)

1.4.1 Conservation of Power

Conservation of power, which comes from conservation of energy, is an important concept in electric circuits.

This tells us that all power that is created or delivered in a circuit is equal to all of the power

that is absorbed or consumed in that circuit. Some circuit elements create or deliver power. Other

circuit elements absorb power. To determine which thing (delivering or absorbing) a circuit element is doing,

there are two methods to use. The first by being told what the circuit element is. Batteries, power supplies,

and function generators deliver power. Resistors absorb power.

The second method is by analyzing the voltage drop over and current flow through a circuit element. If

current flows from high potential to low potential in a circuit element, the element absorbs power. If current

flows from low potential to high potential in a circuit element, the circuit delivers power.
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1 Properties of Electric Circuits 1.5 Power Sources

Example: Determining if circuit elements deliver or absorb power

A

−

+

VA

B

+ −
VB

I

C

−

+

VC

D

+−
VD

Current flows from high to low potential in elements B and D: therefore B and D are absorbing power.

Current flows from low to high potential in elements A and C: therefore A and C are delivering power.

1.5 Power Sources

Power sources are used in a circuit to generate energy and distribute it to other circuit elements. The types

of power supplies that are typically used in circuits include batteries, constant voltage sources, constant

current sources, and function generators.

1.5.1 Direct Current (DC) Sources

Some sources are direct current (DC), which means that the value of the current or voltage supplied by the

source does not change with time. Three circuit symbols for DC power sources are shown in figure 1.9.

−
+

DC Voltage Battery DC Current

Figure 1.9: Three types of DC power sources: a voltage source, battery, and current source.

The DC voltage power supply contains plus and minus symbols. The plus sign represents the side of the

supply that corresponds to high potential. The minus sign represents the side of the supply that corresponds

to low potential. The battery does not contain plus or minus signs but instead has two lines: one long and

one short. The long end (which is the upper line in figure 1.9) corresponds to high potential, and the short

end corresponds to low potential. In the symbol for a current source, the arrow depicts the direction of

current flow (assuming that the source is properly connected in a complete circuit).
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1 Properties of Electric Circuits 1.5 Power Sources

1.5.2 Alternating Current (AC) Sources

In alternating current (AC) sources, the voltage or current supplied by the source is time-varying. Four

circuit symbols for AC power supplies are shown in figure 1.10.

VS

Sinusoidal Voltage

IS

Sinusoidal Current Square Wave Triangular Wave

Figure 1.10: Four types of AC power sources: sinusoidal voltage, sinusoidal current, square wave, and triangu-
lar wave.

The key to analyzing AC power supply circuit symbols is to look at the labels on the sources. The symbol

within the circle depicts the nature of the time-varying source: sinusoidal, square wave, or triangular wave.

The label or units on the label (given in V, A, or mA) depicts if the source is a voltage source or current

source.

While square waves and triangular waves will be explored in this textbook, the major type of time-varying

source that will be used is a sinusoidal wave. It is important to recall the anatomy of a sine wave, shown

below in figure 1.11.

0 2 4 6 8 10 12 14 16 18 20
−2

0

2
Vm

T

VPP

t (ms)

v
(t
)
(V

)

Figure 1.11: A timing diagram of a sinusoidal voltage source.

A cosine wave is expressed mathematically in equation 1.3.

v(t) = Vm cos

(
2πt

T
+ ϕ

)
= Vm cos(2πft+ ϕ) (1.3)

While the equation is given in terms of voltage, it is also the same format that is used to describe current,

power, or any other quantity that oscillates with respect to time. Each of the terms in the equation gives

important information about the source.

• Vm is the amplitude of the source, which is defined as the maximum displacement from the equilibrium

position.

• VPP , while not part of the equation, describes the peak-to-peak value of the source. This is equal to

twice the amplitude, or the difference between the maximum and minimum values.
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1 Properties of Electric Circuits 1.5 Power Sources

• VDC is not shown in either equation 1.3 or in figure 1.11, but is a constant added to a sine wave if the

equilibrium of the wave is not equal to zero. This parameter is known as the DC offset of the wave.

• T is equal to the period of the wave, which describes how long it takes for one oscillation to occur.

• f is the wave frequency. This is the inverse of period (f = 1/T ) and describes how many oscillations

occur per unit of time.

• ϕ is the phase of the wave. It describes the angular offset of the start of the wave.

1.5.3 Dependent Sources

All of the sources described in the previous two subsections are independent sources. That is, the values of

the sources are independent of any other property or characteristic of the circuit. This is the type of source

that you would expect when using a power supply or a battery that has a given voltage rating. It doesn’t

matter what values exist elsewhere in the circuit; a AA battery will always supply a voltage of 1.5 V.

This subsection describes dependent sources. These sources deliver voltage and current proportionally

to other circuit characteristics. It is important to note that dependent sources aren’t generally describing

something that you can buy and put into a circuit (such as a battery) but are used to model otherwise

complicated circuit elements (such as operational amplifiers and transistors).

There are four types of dependent sources. The circuit symbols are shown in figure 1.12. Note that

whereas independent sources are circular, dependent sources are diamond-shaped.

−
+

k · Vc

VCVS VCCS

gm · Vc −
+

rm · Ic

CCVS CCCS

ki · Ic

Figure 1.12: The four types of dependent sources: voltage-controlled voltage source, voltage-controlled cur-
rent source, current-controlled voltage source, and current-controlled current source.

Each dependent source has a magnitude that’s equal to a proportionality constant multiplied by a con-

trolling value. Each of these values is described in table 1.1.

Source Type Magnitude Proportionality Constant Controlling Value
Voltage-controlled voltage source (VCVS) Vd (V) k (unitless) Vc (V)
Voltage-controlled current source (VCCS) Id (A) gm (A/V) Vc (V)
Current-controlled voltage source (CCVS) Vd (V) rm (V/A, Ω) Ic (A)
Current-controlled current source (CCCS) Id (A) ki (unitless) Ic (A)

Table 1.1: Descriptions of the magnitude, proportionality constant, and controlling value for each type of de-
pendent source.
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1 Properties of Electric Circuits 1.5 Power Sources

1.5.4 Equivalent Sources

If a circuit contains multiple sources (whether they be DC or AC; dependent or independent), it may be

possible to combine sources together into an equivalent source. This is the first tool that we can use to help

simplify circuits.

Voltage sources can be added together if they are in series with each other. If there are any other

components between the sources, then the sources can still be added together as long as every circuit

component is in series. If it is necessary to measure the voltage at a node in between sources, then the

sources should not be combined.

Example: Combining voltage sources that are in series

−
+5 V

b

−+

2 V

a
a

−
+3 V

b

The two voltage sources can be combined because they are in series with each other. The total voltage

drop between nodes a and b are −2 V + 5 V = 3 V. The two voltage sources can therefore be combined

into a single voltage source with the equivalent voltage of 3 V.

Example: Combining voltage sources that are in series with other components

−
+1 V

b

a

− +

5 V

x
R y

−
+6 V

b

R
a

Even though a resistor is placed between the two voltage sources, they can still be combined because

the voltage sources are in series with each other. Note that if the voltage drop between node x and ground

(or between node y and ground) needs to be measured, combining the voltage sources will lead to incorrect

measurements.

Current sources can be added together if they are in parallel with each other. If there are any other

components between the sources, the sources can still be added together as long as every circuit component

is in parallel.

cbna Alyssa J. Pasquale, Ph.D. 19 Last updated: 2023/05/18



1 Properties of Electric Circuits 1.6 Elementary Signals

Example: Combining current sources that are in parallel

2 mA 1 mA

b

a

b

1 mA

a

The two current sources can be combined because they are in parallel with each other. The current flow

from b to a is 2 mA − 1 mA = 1 mA. The two sources can therefore be combined into a single source with

the equivalent current of 1 mA.

Example: Combining current sources that are in parallel with other components

5 mA

6 mA

a b

11 mA

a b

The two current sources can be combined because they are in parallel with each other. The presence of

the two resistors does not change anything about the configuration of the circuit. The total current flow

from a to b is 6 mA + 5 mA = 11 mA.

1.6 Elementary Signals

Elementary signals are used to mathematically describe the types of signals used as sources, or signals that

are commonly encountered in the analog circuit world. Each of the signals can be expressed mathematically.

1.6.1 Dirac Delta Function

The Dirac delta function is a useful approximation of a “spike.” It is used to model an impulse, and is

commonly used in signal processing (including Fourier analysis). It is defined as a normal (Gaussian)

distribution when the variance is equal to zero. The mathematical expression used to define the Dirac delta
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function is given in equation 1.4, where A is the amplitude and τ is the time at which the function occurs.

f(t) = Aδ(t− τ) (1.4)

The Dirac delta function defined in equation 1.4 is depicted graphically in figure 1.13.

τ
0

A

t (s)

Figure 1.13: Graphical depiction of a Dirac delta function.

Example: Plotting a signal composed of Dirac delta functions

Plot f(t) = 4δ(t-1) − 2δ(t+3). The first term has an amplitude of 4 and is located at t = 1 s. The second

term has an amplitude of −2 and is located at t = −3 s.

−2 0 2 4

−4

0

4

t (s)

f
(t
)

The Dirac delta function has a sifting property. It is capable of being used to determine the value of a

continuous function at a certain point. This property is defined in equation 1.5.

∫ ∞

−∞
f(t)δ(t− a) dt = f(a) (1.5)

1.6.2 Step Function

The unit step function is a function whose value is zero when the argument is negative, and one everywhere

else. In general, the unit step function can be multiplied by a value to give it an amplitude that is greater

than or less than one. The unit step function comes from integrating the Dirac delta function, as shown in

equation 1.6.

u(t) =

∫ t

−∞
δ(τ) dτ (1.6)

The step function is very useful for describing a source that is off for a long period of time before being

turned on at some moment. Mathematically, the step function is defined in equation 1.7, where A is the
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amplitude of the function and τ is the time at which the step starts.

f(t) = Au(t− τ) (1.7)

The step function defined in equation 1.7 is depicted graphically in figure 1.14.

τ
0

A

t (s)

Figure 1.14: Graphical depiction of a step function.

Example: Deriving the equation of a signal composed of step functions

Derive an equation corresponding to the graph below.

−2 0 2 4 6

−3

0

3

t (s)

f
(t
)

This signal is composed of four different step functions. The first occurs at t = –2 s and has an amplitude

of 1. The second step function occurs at t = 0 s. It must have an amplitude of 2 in order to bring the total

amplitude from 1 to 3. The third step function occurs at t = 2 s. Because the signal goes from a value of

3 to –2, the step function must have an amplitude of negative 5. The last step function occurs at t = 5 s

and has an amplitude of positive 2 to bring the signal value back to zero.

Each of these individual step functions is depicted below. The sum of each of the step functions will lead

to the graph above.

−2 0 2 4 6

−5

0

5

t (s)

f
(t
)

f(t) = u(t+2) + 2u(t) – 5u(t–2) + 2u(t–5)

1.6.3 Ramp Function

The ramp function is a signal whose value is zero when the argument is negative, and then has a constant

linear upward slope when the argument is positive. The ramp function comes from integrating the step
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function, as shown in equation 1.8.

r(t) =

∫ t

−∞
u(τ) dτ (1.8)

The equation used to express the ramp function is given in equation 1.9, where A is the slope of the

ramp, and τ is the time that the ramp function initiates.

r(t) = A(t− τ)u(t− τ) (1.9)

The graphical depiction of a ramp function is shown in figure 1.15.

τ
0

t (s)

Figure 1.15: Graphical depiction of a ramp function.

Example: Calculating current from ramp function charge

The charge entering a circuit element is shown in the graph below. Use it to calculate the current flow.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

−1

0

1

t (s)

q(
t)

(m
C
)

Current is equal to the time derivative of charge. The time derivative is plotted below.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

−1

0

1

t (s)

i(
t)

(m
A
)

i(t) = 0.5 mA u(t) – 1.5 mA u(t-2) + 1.3 mA u(t–4) – 0.3 mA u(t–7)

1.6.4 Rectangular Pulse

A rectangular pulse describes a signal that is initially zero, takes on a particular value for a finite interval

of time, and then returns instantaneously to zero. It is different from the step function in that the step

function never returns to zero again. A rectangular pulse is especially relevant in electrical engineering as it

can be used to describe periodic square waves that are commonly used as clock sources. The mathematical
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equation for a rectangular pulse is given in equation 1.10, where A defines the amplitude of the pulse, τ

defines the width of the pulse, and λ defines the center of the function.

f(t) = Arect

(
t− λ

τ

)
(1.10)

A rectangular pulse is depicted graphically in figure 1.16.

λ− τ/2 λ λ+ τ/2
0

A

t (s)

Figure 1.16: Graphical depiction of a rectangular pulse function.

Example: Plotting a signal composed of rectangular pulses

Plot f(t) = –3rect((t+5)/2) + 2rect((t–5)/4). The first term has an amplitude of –3, a width of 2 s, and

is centered at t = –5 s. The second term has an amplitude of 2, a width of 4 s, and is centered at t = 5 s.

−8 −6 −4 −2 0 2 4 6 8 10

−3

0

3

t (s)

f
(t
)

1.6.5 Triangular Pulse

The triangular pulse is defined as a function that is zero, linearly ramps up to a particular value, and then

linearly ramps down to zero again. As the rectangular pulse is to the step function; the triangular pulse is to

the ramp function. The equation for a triangular pulse is given in equation 1.11, where A is the amplitude

of the pulse, τ is the half-width of the pulse, and λ is the center of the pulse. Note that the definitions for

the width of a rectangular and triangular pulse are different!

f(t) = Atri

(
t− λ

τ

)
(1.11)

A triangular pulse is shown graphically in figure 1.17.
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λ− τ λ λ+ τ
0

A

t (s)

Figure 1.17: Graphical depiction of a triangular pulse function.

Example: Finding the equation of a waveform

Find the equation corresponding to f(t), shown below.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2.5

5

t (s)

f
(t
)

f(t) is composed of a rectangular pulse and a triangular pulse. The rectangular pulse has an amplitude

of 2, is centered at t = 0 s, and has a width of 6 s. The triangular pulse has an amplitude of 3, is centered

at t = 0 s, and has a half-width of 3 s.

f(t) = 2rect(t/6) + 3tri(t/3)

1.6.6 Exponential Decay

The exponential function is ubiquitous in engineering. Specifically, a decaying exponential is found as the

solution to many engineering problems. (A rising exponential function is not stable as it would eventually

require an infinite amount of energy to sustain.) An exponential can be defined mathematically in equa-

tion 1.12, where A is the initial amplitude of the exponential, τ is the time at which the exponential begins

its decay, and α is how quickly the exponential decays to zero.

f(t) = Ae−α(t−τ)u(t− τ) (1.12)

A decaying exponential function is depicted graphically in figure 1.18.
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τ
0

A

t (s)

Figure 1.18: Graphical depiction of exponential decay.

1.6.7 Damped Sinusoid

A damped sinusoid describes the behavior of almost all harmonic motion (such as a mass on a spring, a door

swinging open and closed on a hinge, or a second-order circuit). A damped sinusoid is defined as a sinusoidal

signal multiplied by a decaying exponential, as shown in equation 1.13

f(t) = Ae−α(t−τ) sin(ωt)u(t− τ) (1.13)

In equation 1.13, all of the terms are the same as those given for the exponential decay. ω defines the

angular frequency of the sinusoidal wave. A damped sinusoid is shown graphically in figure 1.19.

τ

−A

0

A

t (s)

Figure 1.19: Graphical depiction of a damped sinusoid.
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Example Problems

Power

1. How much power is supplied by the unknown element shown in figure 1.20?

+10 mW

−5 mW

??

+3 mW

Figure 1.20: Circuit schematic for power question 1.

2. A voltage source supplies 12 V and has a power consumption of 5 W. How much current is the voltage

source supplying to the circuit?

3. Which of the circuit elements shown in figure 1.21 (a) absorb power and (b) deliver power? Current

flows clockwise through the circuit.

−

+

VA

+ −
VB

+

−

VC

+ −
VD

Figure 1.21: Circuit schematic for power question 3.

4. Calculate the power consumed by a circuit when v(t) = 5 cos(2π50t) V and i(t) = 0.1 cos(2π50t) A.

5. Calculate the power consumed by a circuit when v(t) = 3t V and i(t) = 40δ(t− 5) mA.

Sinusoidal Waves

6. What are Vm, VDC , f , and ϕ of the function v(t) = 3.8 cos(2π20t+ 25π/180) + 3 V?

7. What are Vm, VPP , and T of the function v(t) = 2.19 cos(2π40t− 20π/180) + 6 V?

cbna Alyssa J. Pasquale, Ph.D. 27 Last updated: 2023/05/18



1 Properties of Electric Circuits Example Problems

8. What are Vm, VDC , and f of the function shown in figure 1.22?

0 2 4 6 8 10 12 14 16 18 20
−1
0
1
2
3

t (ms)

v
(t
)
(V

)

Figure 1.22: Waveform for sinusoidal waves question 8.

9. Sketch the function i(t) = 400 cos(2π100t+ 45π/180) + 200 mA.

10. What minimum DC offset should be added to i(t) = 30 cos(2π200t − 50π/180) mA to prevent any

negative values from occurring on the output?

Sources

11. What kind of dependent source is shown in figure 1.23? How do you know?

−
+

4VX

+ −
VX

−
+

Figure 1.23: Circuit schematic for sources question 11.

12. What kind of dependent source is shown in figure 1.24? How do you know?

−+

3.2IX

IX

Figure 1.24: Circuit schematic for sources question 12.
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13. Calculate the current supplied by the dependent source as shown in figure 1.25.

0.2IX

−+

+

A 4.8 mA

IX

Figure 1.25: Circuit schematic for sources question 13.

14. Reduce figure 1.26 to a circuit that contains only one independent source.

−
+3 V

−
+ 4 V

Figure 1.26: Circuit schematic for sources question 14.

15. Reduce the circuit given in figure 1.27 as much as possible.

−
+10 V

−+

0.4IX

IX

−
+ 8 V

Figure 1.27: Circuit schematic for sources question 15.
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Elementary Signals

16. Find an equation for the signal shown in figure 1.28.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−2
−1
0

1

2

t (s)

f
(t
)

Figure 1.28: Signal for elementary signals question 16.

17. Find an equation for the signal shown in figure 1.29.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−2
−1
0

1

2

t (s)

f
(t
)

Figure 1.29: Signal for elementary signals question 17.

18. Sketch the function f(t) = 3 tri(t+ 2)− 2 tri
(
t−5
5

)
.

19. Sketch the function f(t) = 3u(t+ 5) + t
2u(t).

20. If the charge in a circuit is measured as q(t) = 2 tri
(
t+6
2

)
+0.5tu(t)−1.5(t−4)u(t−4)+1.5(t−8)u(t−

8)− 0.5(t− 12)u(t− 12) C, sketch the current.
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2 Circuit Laws

Circuit laws enable us to fill up our “toolbox” with tools that enable us to simplify and analyze circuits.

First, we must understand the terminology used in circuits.

2.1 Definitions

A circuit is an interconnection of elements. It can be simple (consisting of very few parts), very complicated,

or anywhere in between. Circuit elements consist of sources, passive elements, and active elements. Sources

were described in section 1.5 in the previous chapter. They can be dependent or independent and can source

either voltage or current. Passive elements consist of components such as resistors, capacitors, inductors,

and diodes. These circuit elements do not require a connection to a power supply in order to function. A

resistor inherently has resistance, which does not need to be activated with a power supply. Active elements,

on the other hand, require power to operate. Transistors and operational amplifiers are examples of active

circuit elements.

A node is a point in a circuit where two or more elements are connected. It is important to recognize

and understand nodes, as they are used in many of the circuit analysis tools explained in this chapter. A

diagram depicting three types of circuit nodes (depicted with thick black dots) is shown in figure 2.1. The

rectangles in each diagram represents a “generic” circuit element (which could be a resistor, a capacitor, a

source, or something else).

simple node node node

Figure 2.1: Three examples of circuit nodes.

It is important to note that a node is not always depicted with a thick black dot on a circuit diagram.

A node exists at a point of common potential. The circuit shown in figure 2.2 has three nodes labeled A,

B, and C. Node A is a point of common potential between the power supply and element 1. Node B is

a point of common potential connecting elements 1, 2, and 3. This node looks like the nodes shown in

figure 2.1, as it is depicted with a thick dot (indicating an electrical connection). Finally, node C is a point

of common potential connecting the low potential end of the power supply, one end of element 2, and one

end of element 3.
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node
A

−
+

1

2

3

−
+

1

2

node
B

3

−
+

1

2

3

node
C

Figure 2.2: Each of the three nodes in this circuit is shown with thick lines. Node A (left) connects the power
supply and element 1. Node B (middle) connects elements 1, 2, and 3. Node C (right) connects the power sup-
ply to elements 2 and 3.

In figure 2.2, we can say that elements 2 and 3 share two common nodes (nodes B and C). Later in this

chapter we will learn that devices that are connected with two common nodes are said to be in parallel with

each other.

A branch in a circuit represents a portion of a circuit that exists in a path between two nodes. A loop

is a closed path that starts at a node and returns to the same node. Finally, a mesh is a loop that has no

other loops inside of it. Nodes, loops and meshes are important concepts, as they are used in circuit analysis

tools explained later in this chapter. The circuit diagram shown in figure 2.3 has six branches: one for each

circuit element (sinusoidal source, DC voltage source, DC current source, resistor, capacitor, and inductor).

−
+

Figure 2.3: A circuit diagram consisting of four nodes, six branches, seven loops, and three meshes.

The three meshes of the circuit in figure 2.3 consist of loops that do not have any other loops inside of

them. These are shown in thick outlines in figure 2.4.

−
+

−
+

−
+

Figure 2.4: The three meshes (each shown in thick lines) from the circuit in figure 2.3.
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The seven loops in the circuit include the three meshes as well as four additional loops, each of which

contain other loops inside of them. These four additional loops are shown in figure 2.5.

−
+

−
+

−
+

−
+

Figure 2.5: The four additional circuit loops (each shown in thick lines) from the circuit in figure 2.3.

2.2 Resistor

A resistor is a circuit element that regulates the flow of current. This is the first passive element that will

be studied in detail in this textbook. Resistance, which is a property of resistors, defines how much the

resistor opposes the flow of current. Resistance has a symbol of R and units of Ω (ohms), and is given

by equation 2.1, where ρ is a property inherent to a material (known as resistivity), l is the length of the

resistor, and A is the cross-sectional area of the resistor.

R =
ρl

A
(2.1)

The symbol used for a resistor in circuit diagrams is shown in figure 2.6.

Figure 2.6: The circuit symbol for a resistor.

Resistors have very many important applications in circuits (tuning resonant frequencies, creating partic-

ular amplifier gains, or to create particular voltage or current values, among other things), and are therefore

an important circuit element to understand.

Physically, resistors come in many shapes, sizes, and forms. There are fixed resistors (resistors whose

resistance value is not meant to change) and variable resistors (which will be discussed in more detail in
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section 2.2.2 below). Most typical hobbyist resistors are made from carbon film deposited on a piece of

ceramic, with the ends of the carbon film connected to metal wires (known as leads). A helix shape is

carved into the carbon film; it is the pitch of the helix and thickness of the carbon film that determines the

resistance of the device. Carbon film resistors typically have tolerances between 2%–5%.

2.2.1 Resistor Color Codes

Carbon film resistors are coated and painted with colored stripes to distinguish each resistor’s value in ohms.

Most of these resistors contain four stripes (although five- and six-stripe versions do exist, they will not be

discussed in this book). These stripes are depicted in figure 2.7. The first and second bands dictate the

value of the resistance. The third band acts as a multiplier, and the tolerance band denotes how accurate

the value of the resistor is. Each of the colors depicts a particular value, outlined in table 2.1.

first band (brown)

second band (black)

multiplier (red)

tolerance (gold)

Figure 2.7: Depiction of each of the colored bands on a four-band carbon film resistor. This particular resistor
has brown-black-red-gold stripes, and therefore has a value of 1000 Ω ± 5%.

Color Value Multiplier Tolerance
(1st and 2nd bands)

Black 0 100 Ω –
Brown 1 101 Ω ±1%
Red 2 102 Ω ±2%
Orange 3 103 Ω ±0.05%
Yellow 4 104 Ω ±0.02%
Green 5 105 Ω ±0.5%
Blue 6 106 Ω ±0.25%
Violet 7 107 Ω ±0.1%
Gray 8 – ±0.01%
White 9 – –
Gold – 10-1 Ω ±5%
Silver – 10-2 Ω ±10%
no band – – ±20%

Table 2.1: Descriptions of each of the colors used to denote values on a resistor.

To determine the value of a resistor, it is important to first establish which band corresponds to the

first, and which corresponds to the tolerance band. Usually, the first band is painted closer to the lead than

the tolerance band is. Otherwise, it can be helpful to note that the large majority of inexpensive hobbyist

carbon-film resistors have a gold tolerance band, which also can help orient the resistor (but this trick will
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not be valid with any other tolerance value!). The first and second bands give the value of the resistor. Red

orange is 23. Brown green is 15. Then, the multiplier is used to determine the weight of the value. Red

orange blue is 23× 106 Ω, or 23 MΩ. Brown green red is 15× 102 Ω, or 1.5 kΩ. The tolerance band depicts

the range of percentages over which the actual value of the fabricated resistor is valid.

2.2.2 Variable Resistors and Potentiometers

A variable resistor is a resistor whose value is not fixed but that can be altered by the user. Variable resistors

used to be called rheostats, but that term is falling out of favor. The circuit symbol used for variable resistors

is shown in figure 2.8. Note that a variable resistor is a two-terminal device.

Figure 2.8: Circuit symbol used for a variable resistor.

A potentiometer is a three-terminal device that can be used as either a voltage divider or a variable

resistor. The circuit symbol for a potentiometer is shown in figure 2.9.

Figure 2.9: Circuit symbol used for a potentiometer.

Two fixed leads are connected to a resistive element (commonly made out of either carbon or wound

wire) in a semi-circular configuration. A moveable lead called the wiper can then be positioned at any point

along the resistive element. This is depicted in figure 2.10. While the total resistance between the fixed

leads is constant, the resistance between the wiper and either of the two fixed leads changes as the wiper’s

position changes.

fixed
lead

fixed
lead

moveable
wiper

Figure 2.10: A schematic of a potentiometer. The gray semicircular area corresponds to the resistive element.
Two leads (one at each end of the resistive element) are fixed. The third lead is a moveable wiper.
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A potentiometer can be used as a voltage divider. Voltage dividers (which will be explained in greater

detail in section 2.5) take a fixed voltage and proportionally divide it up into two or more values. If a fixed

voltage is applied to the two fixed leads of a potentiometer, then the voltage drop between either lead and the

wiper will be modified depending on the position of the wiper. This is depicted schematically in figure 2.11.

Note that while V1 and V2 can change depending on the position of the wiper, V1 + V2 = VS will always be

satisfied.

−
+Vs

+

−

V1

+

−

V2

−
+Vs

+

−
V1

+

−

V2

−
+Vs

+

−

V1

+

−
V2

Figure 2.11: A potentiometer can be used as a voltage divider. The relationship V1 + V2 = VS is always pre-
served, regardless of the individual values of V1 and V2.

A potentiometer can also be used as a variable resistor. In this case, one of the fixed leads will be ignored,

and the resistance between the other fixed lead and the wiper will be used. Because the wiper itself has a

small amount of resistance, it should be shorted to the unused fixed lead. This is depicted schematically in

figure 2.12.

−
+Vs −

+Vs

Figure 2.12: A potentiometer can be used as a variable resistor by configuring it as shown in the right-hand
diagram. Both of these schematics are functionally equivalent.

2.2.3 Measuring Resistance

Resistance can be measured in a circuit using a device called an ohmmeter. The circuit schematic for an

ohmmeter is shown in figure 2.13. An ohmmeter contains two leads. When the leads are placed on either end

of the elements of a circuit, a constant current is passed through the circuit elements and the resulting voltage

is measured with an analog to digital converter. Using Ohm’s law, the resistance of the circuit elements can

be calculated and displayed. Because resistors don’t have any polarity or direction to them, the ordering

of the leads is unimportant (the common lead can be placed on either end of the circuit elements without

impacting the result). However, because an ohmmeter operates by sending a current through the circuit
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elements and measuring the resulting voltage, it is important to know that resistance cannot be measured

in a circuit unless all other power sources have been disconnected.

Ω

Figure 2.13: Circuit symbol used for an ohmmeter.

Because an ohmmeter sends a constant current through a circuit and measures the resulting voltage, an

ohmmeter must be connected in parallel across the components to be measured, as shown in figure 1.5.

2.2.4 Resistors in Series

The first tool to analyze and simplify resistors is to understand how to combine resistors in series. That

is: all of the resistors are in the same path in a circuit and share the same current flow. A circuit diagram

containing five resistors in series is shown in figure 2.14.

Figure 2.14: Five resistors in series in a circuit.

Without having formalized the concepts of Kirchhoff’s laws yet (which will occur in section 2.7), we can

use equation 2.1 to form a conceptual understanding of what happens when resistors are connected together

in series. Of the parameters given in equation 2.1, the only one that effectively changes when resistors are

connected in series is the length (l). The resistivity, being a property inherent to the material used to create

the resistor does not change. The cross-sectional area also remains unchanged throughout. This is depicted

in figure 2.15.

l1 + l2 + l3 + l4 + l5
A

Figure 2.15: When resistors are connected in series, the parameter of equation 2.1 that changes is the length.

Because the total length of the circuit is equal to the sum of the individual lengths of each resistor, we

can express the total resistance (known as the equivalent resistance) of the circuit likewise, shown in

equation 2.2 and derived below.

REQ = R1 +R2 +R3 + ...+Rn (2.2)
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DERIVATION

REQ =
ρ(l1 + l2 + l3 + ...+ ln)

A

=
ρl1
A

+
ρl2
A

+
ρl3
A

+ ...+
ρln
A

= R1 +R2 +R3 + ...+Rn

Qualitatively, the resistance in a series circuit increases. It is therefore impossible for the equivalent

resistance of a series circuit to be less than the value of any individual resistor. (This last property acts as

a useful “smell test” when working out complicated circuits problems.)

2.2.5 Resistors in Parallel

The second tool that can be used to simplify complicated resistive circuits is equivalent resistance for resistors

in parallel. In this case, each resistor shares a common node on either end of the circuit element, but each

contains its own unique branch through which current can flow. A circuit diagram containing five resistors

in parallel is shown in figure 2.16.

Figure 2.16: Five resistors in parallel in a circuit.

In this case, the effective parameter that changes in equation 2.1 is the cross-sectional area (A), shown

in figure 2.17. The length and resistivity remain unchanged.

A1 +A2 +A3 +A4 +A5

l

Figure 2.17: When resistors are connected in parallel, the parameter of equation 2.1 that changes is the area.

It is now possible to express the equivalent resistance of a circuit with parallel resistors using the equation
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shown in equation 2.3 and derived below.

1

REQ
=

1

R1
+

1

R2
+

1

R3
+ ...+

1

Rn
(2.3)

DERIVATION

REQ =
ρl

A1 +A2 +A3 + ...+An

=
1

A1

ρl + A2

ρl + A3

ρl + ...+ An

ρl

1

REQ
=

A1

ρl
+

A2

ρl
+

A3

ρl
+ ...+

An

ρl

=
1

R1
+

1

R2
+

1

R3
+ ...+

1

Rn

Qualitatively, the resistance in a parallel circuit decreases. The equivalent resistance cannot be greater

than the value of any of the individual resistors.

Frequently, it is necessary to combine two resistors in parallel. In that case, we can solve equation 2.3 to

find a handy equation to use without having to calculate the reciprocal of the sum of reciprocals. (Note: this

equation will only work for two resistors in parallel.) This solution is shown in equation 2.4 and is derived

below.

REQ =
R1R2

R1 +R2
(2.4)

DERIVATION

1

REQ
=

1

R1
+

1

R2

=
R2

R1R2
+

R1

R1R2

=
R1 +R2

R1R2

REQ =
R1R2

R1 +R2

2.2.6 Equivalent Resistance

It is important to point out that most circuits are not 100% series nor 100% parallel. Many circuits have

segments that contain elements in parallel, and segments that contain elements in series. In our discussion of

delta-wye transforms in the next section in this book, we will see that there are some resistor combinations

that are neither parallel nor series, but require a transformation before they can be made into parallel or
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series combinations.

The equivalent resistance in a circuit refers to the amount of resistance “seen” between two particular

nodes. (While we know that there are no eyeballs looking between nodes – at least, there are none depicted

on the circuit diagram – this phrase is commonly used to describe the calculation of equivalent resistance

between two nodes.) The equivalent resistance “seen” between two nodes indicates the resistance that would

be measured between the two nodes.

Equivalent resistance can be calculated by combining resistors using the parallel and series combinations

explained previously. Usually this is an iterative process. Start by combining any resistors that are purely in

parallel with each other, or that are purely in series with each other. Then, reassess the circuit and see if any

more opportunities for combinations arise. Continue until the circuit contains as few elements as possible.

The symbology that will be used in equivalent resistance equations in this textbook is a + sign for

series combination (as the resistances are indeed just being added together) and a // symbol for parallel

combinations. The order of operations is to deal with everything inside of parenthesis first; after that

calculate parallel combinations; finally, calculate series combinations.

Consider the circuit shown in figure 2.18. Note that the circuit is not purely series nor is it purely

parallel. In addition, we cannot start combining together circuit elements until we know which nodes to use

to calculate the equivalent resistance. It is possible to calculate the equivalent resistance between any two

nodes in the circuit. Not all of the circuit nodes are shown; just a few have been selected to demonstrate

different equivalent resistance calculations.

a

R1

R2

b

R3

R4

c

R5

R6

d

R7

R8 e

R9

f

Figure 2.18: A circuit composed of nine resistors that is neither purely series nor purely parallel.

While it might be tempting to immediately combine resistors R4 and R5 in series, resistors R6 and R7 in

series, and then those two combinations in parallel with each other, it is possible to calculate an equivalent

resistance between nodes c and d; in that case, those resistors cannot be combined! Therefore, it is important

to pay attention to the nodes to be used to calculate the equivalent resistance before combining resistors

together. We will use this circuit to calculate equivalent resistance between three different pairs of nodes to

demonstrate the process. In all cases, it is wise to start combining resistors as far away from the reference

nodes as possible.
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Schematically, it’s possible to depict equivalent resistance measured between two nodes by clearly indi-

cating them on a circuit diagram. This is shown for the calculation of equivalent resistance between nodes

a and b in figure 2.19.

a

b

REQ →

R1

R2

R3

R4

R5

R6

R7

R8

R9

Figure 2.19: Schematic depiction of the equivalent resistance between nodes a and b in the circuit given in
figure 2.18.

In this case, the resistors on the right-hand side of the schematic are as far from the reference nodes as

possible. First, combine resistors R8 and R9 in series, as they share a common path in the circuit. Resistors

R4 and R5 can be combined in series, as can resistors R6 and R7. Those equivalent resistances can now be

combined in parallel. That combination can be added in series with R3. Finally, that equivalent resistance

can be combined in parallel with the series combination of R1 and R2. This equivalent resistance is shown

mathematically in equation 2.5. If each of the resistors were equal to 1 kΩ, then the equivalent resistance

would be 10/11 kΩ.

REQ,ab = ((R8 +R9)//(R6 +R7)//(R4 +R5) +R3)//(R1 +R2) (2.5)

Next, let’s consider the case of calculating the equivalent resistance between nodes e and f. This is

depicted schematically in figure 2.20.

← REQ

e

f

R1

R2

R3

R4

R5

R6

R7

R8

R9

Figure 2.20: Schematic depiction of the equivalent resistance between nodes e and f in the circuit given in
figure 2.18.
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In this case, the resistors on the left-hand side of the schematic are as far from the reference nodes

as possible. Resistors R1, R2, and R3 can be combined in series. That equivalent resistance can then be

combined in parallel with the series combinations of R4 and R5 as well as R6 and R7. That equivalent

resistance is combined in series with R8. That equivalent resistance is finally combined in parallel with R9.

This is shown mathematically in equation 2.6. If each of the resistors were equal to 1 kΩ, the equivalent

resistance would be 7/11 kΩ. Equivalent resistance is not equal at all points in a circuit!

REQ,ef = ((R1 +R2 +R3)//(R4 +R5)//(R6 +R7) +R8)//R9 (2.6)

Finally, we will consider the case of equivalent resistance between nodes a and e. This is depicted

schematically in figure 2.22.

REQ

↓a
e

R1

R2

R3

R4

R5

R6

R7

R8

R9

Figure 2.21: Schematic depiction of the equivalent resistance between nodes a and e in the circuit given in
figure 2.18.

In this case, resistors R4 and R5 can be combined in series, as can R6 and R7. Those equivalent resistances

can then be combined in parallel. In addition, R1 and R2 can be combined in series. The resulting circuit

is shown in figure 2.22.

a

R1 +R2

R3

(R4 +R5)//(R6 +R7)

R8

e

R9

REQ

↓

Figure 2.22: Reduced circuit from figure 2.18 when measuring between nodes a and e.
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Note that none of the remaining resistors can be combined in either series or in parallel! At this point, we

are unable to move forward with the resistance calculation between nodes a and e. Eventually, we will solve

this problem with delta-wye and wye-delta transforms (explained in section 2.3). It is crucial to understand

that not all resistors are necessarily going to be connected in parallel or series combinations.

2.3 Delta-Wye and Wye-Delta Transforms

As mentioned previously, there are situations when a resistive circuit cannot be reduced using parallel and

series combinations. In those cases, it may be possible to transform the resistor configuration to a functionally

identical equivalent. After completing a transformation, series and parallel combinations may be possible.

The two transformations that will be discussed in this book are delta-wye and wye-delta transforms.

A delta circuit arrangement is shown in figure 2.23.

b

R1

R2

a

R3

c

Figure 2.23: A delta circuit.

The resistance between any two nodes in a delta circuit are parallel and series combinations of those

resistors, shown in equations 2.7–2.9.

Rab = R1//(R2 +R3) (2.7)

Rbc = R2//(R1 +R3) (2.8)

Rac = R3//(R1 +R2) (2.9)

A wye circuit arrangement is shown in figure 2.24. Note that it has one more node than a delta circuit.

Ra

a

Rb

b

Rc

c

Figure 2.24: A wye circuit.

The resistance between any two nodes in a wye circuit are series combinations of those resistors, shown
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in equations 2.10–2.12.

Rab = Ra +Rb (2.10)

Rbc = Rb +Rc (2.11)

Rac = Ra +Rc (2.12)

2.3.1 Delta-Wye Transforms

A delta-wye transform modifies a delta arrangement of resistors (figure 2.23) and turns it into an equivalent

wye arrangement (figure 2.24). The equivalent resistance between any two nodes of the wye circuit must be

identical to the corresponding equivalent resistances of the delta circuit in order to make this transformation

valid. Equation 2.7 is set equal to equation 2.10; equation 2.8 is set equal to equation 2.11; and equation 2.9

is set equal to equation 2.12. The terms Ra, Rb, and Rc are solved for. (The algebraic details of these

derivations will not be shown in this book.) The results are given in equations 2.13–2.15. These equations

govern the delta-wye transform.

Ra =
R1R3

R1 +R2 +R3
(2.13)

Rb =
R1R2

R1 +R2 +R3
(2.14)

Rc =
R2R3

R1 +R2 +R3
(2.15)

Example: Using a delta-wye transform to calculate equivalent resistance

Calculate the equivalent resistance of the circuit shown in figure 2.18 between nodes c and d. Each of

the resistors has a value of 1 kΩ. The circuit has been re-drawn below.

1 kΩ

1 kΩ

1 kΩ

1 kΩ

Ω

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

Combine all series resistors.
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3 kΩ

1 kΩ

Ω

1 kΩ

1 kΩ

1 kΩ

2 kΩ

No more resistors that can be combined in either series or in parallel. Two delta-wye transforms can

be done. To make it more obvious, the resistors have been slightly re-drawn. Each delta configuration is

depicted with thick black outlines, and each node is labeled.

B

3 kΩ

C

1 kΩ

ΩA

1 kΩ

1 kΩ

D

1 kΩ

E

2 kΩ

F

Calculate each of the wye resistor values using equations 2.13–2.15.

Ra =
(1 kΩ)(1 kΩ)

1 kΩ + 3 kΩ + 1 kΩ
= 200 Ω

Rb =
(1 kΩ)(3 kΩ)

1 kΩ + 3 kΩ + 1 kΩ
= 600 Ω

Rc =
(3 kΩ)(1 kΩ)

1 kΩ + 3 kΩ + 1 kΩ
= 600 Ω

Rd =
(1 kΩ)(1 kΩ)

1 kΩ + 2 kΩ + 1 kΩ
= 250 Ω

Re =
(1 kΩ)(2 kΩ)

1 kΩ + 2 kΩ + 1 kΩ
= 500 Ω

Rf =
(2 kΩ)(1 kΩ)

1 kΩ + 2 kΩ + 1 kΩ
= 500 Ω

Re-draw the circuit with the wye configurations.
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B

600 Ω

E

200 Ω
A

Ω
D

600 Ω

C

250 Ω

500 Ω

500 Ω

F

Combine all series resistors. (Both of them are combinations of 500 Ω and 600 Ω.)

1100 Ω

200 Ω

Ω

250 Ω

1100 Ω

Combine all parallel resistors.

550 Ω

200 Ω

Ω

250 Ω

The equivalent resistance is equal to the series combination of the remaining resistances.

REQ,cd = 200 Ω + 550 Ω + 250 Ω = 1000 Ω

2.3.2 Wye-Delta Transforms

A wye-delta transform modifies a wye arrangement of resistors (figure 2.24) and turns it into a delta arrange-

ment (figure 2.23). Just as with the delta-wye transforms, the circuits must be equivalent to each other.

Equation 2.7 is set equal to equation 2.10; equation 2.8 is set equal to equation 2.11; and equation 2.9 is set

equal to equation 2.12. The terms R1, R2, and R3 are solved for. (The algebraic details of these derivations

will not be shown in this book.) The results are given in equations 2.16–2.18. These equations govern the
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wye-delta transform.

R1 =
RaRb +RbRc +RaRc

Rc
(2.16)

R2 =
RaRb +RbRc +RaRc

Ra
(2.17)

R3 =
RaRb +RbRc +RaRc

Rb
(2.18)

Example: Using a wye-delta transform to calculate equivalent resistance

Calculate the equivalent resistance of the circuit shown.

3 kΩ 2 kΩ

4 kΩ

2 kΩ

5 kΩREQ →

None of these resistors shares a branch, therefore none are in series. None of these resistors shares two

nodes, therefore none are in parallel. A wye-delta transform is required. (Alternatively, a delta-wye transform

could be performed.)

The resistors in the wye-arrangement are shown with thick black lines. Each of the nodes is labeled.

A
3 kΩ 2 kΩ

B

4 kΩ

C

2 kΩ

5 kΩREQ →
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Use equations 2.16–2.18 to solve for R1, R2, and R3.

R1 =
26000 Ω2

4000 Ω
= 6500 Ω

R2 =
26000 Ω2

3000 Ω
= 8667 Ω

R3 =
26000 Ω2

2000 Ω
= 13000 Ω

Re-draw the circuit.

A
6.5 kΩ

B

8.7 kΩ

C

13 kΩ

2 kΩ

5 kΩREQ →

Calculate the equivalent resistance.

REQ = ((2 kΩ//6.5 kΩ) + (5 kΩ//8.67 kΩ))//13 kΩ

= (1.5 kΩ + 3.2 kΩ)//13 kΩ

= 4.7 kΩ//13 kΩ

= 3.45 kΩ

2.4 Ohm’s Law

Ohm’s law states the relationship between voltage, current, and resistance in a circuit. Current is propor-

tional to voltage drop, and inversely proportional to the resistance of the circuit. In equation form, Ohm’s

law is usually stated in one of three ways, shown in equations 2.19–2.21. Ohm’s law is the first tool that we

can use to analyze currents through and voltages dropped over various elements in a circuit.

V = IR (2.19)

I =
V

R
(2.20)

R =
V

I
(2.21)

It is important to recall that voltage is a relative measurement (leading to a positive or negative result,
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depending on which way it is referenced) and that the sign of current relates to the direction. This means

that it is important to pay attention to references and directions when using Ohm’s law.

It is vital to pay attention to the units used in Ohm’s law. One ohm (the unit for resistance) is equal to

one volt divided by one amp. If using units of ohms, all voltages must be expressed in volts and all currents

must be expressed in amps. Frequently, resistance will be quantified in units of kilohms. If using units of

kilohms, all voltages must be expressed in volts and all currents must be expressed in milliamps.

2.4.1 Calculating Voltage from Current and Resistance

If current and resistance are known, then the voltage drop can be calculated. Consider the resistor shown

in figure 2.25. The value of the resistance has no polarity or direction. If the direction of current flow is

from node a to node b, then node a corresponds to high potential and node b corresponds to low potential.

In that case, Vab (the electric potential at a minus the electric potential at b) is positive. If the direction of

current flow is from node b to node a, then node b corresponds to high potential and Vab would be negative.

a
R

b

Figure 2.25: A resistor used to demonstrate Ohm’s law.

In other words, current flows from high potential to low potential. The direction of the current can

therefore be used to distinguish the high potential end of the circuit element (depicted with a + sign) from

the low potential end (depicted with a − sign). This is depicted schematically in figure 2.26.

+ −
V

I

− +
V

I

Figure 2.26: Current flows from high to low potential. Therefore, the direction of current can be used to de-
termine which end of a circuit element corresponds to high potential and which corresponds to low potential.

Example: Calculating voltage from current and resistance

Calculate the voltage drop across the resistors.

5 mA 3 kΩ 2 kΩ

−

+

V

Calculate the equivalent resistance of the two resistors.

REQ =
(3 kΩ)(2 kΩ)

2 kΩ + 3 kΩ
= 1.2 kΩ
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The circuit can be re-drawn.

5 mA 1.2 kΩ

−

+

V

The voltage is defined in the opposite direction as the current flow.

V = (−5 mA)(1.2 kΩ) = −6 V

If the voltage had been defined in the other direction, then it would be measured in the same direction

as the current, and the sign would be positive.

2.4.2 Calculating Current from Voltage and Resistance

If the voltage drop over a circuit element as well as the resistance is known, then the current flow can be

calculated. Current flows from high potential to low potential. However, current can be assigned in any

arbitrary direction; if the assignment of the current flow was from low to high potential, then a negative

current will be calculated, as discussed in section 1.3.1 in this book. Therefore, when calculating current in

a circuit (as we will do in section 2.7.1), it is not important which direction is chosen to define current, as

the real direction will make itself known with the sign of the result. This relationship between voltage drop

and current direction assignment is depicted schematically in figure 2.27.

+ −
V

current is positive

− +
V

current is negative

Figure 2.27: Current flows from high to low potential. If the direction of current flow was chosen in this direc-
tion, current will be positive (left). If the flow was assigned in the opposite direction, current will be negative
(right).

Example: Calculating current from voltage and resistance

Calculate the current flowing through the circuit.

−
+8 V

2 kΩ

3 kΩ

I
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Calculate the equivalent resistance of the two resistors.

REQ = 2 kΩ + 3 kΩ = 5 kΩ

The circuit can be re-drawn.

−
+8 V 5 kΩ

I

The current is flowing from high to low potential, so the sign (direction) of the current will be positive.

I =
8 V

5 kΩ
= 1.6 mA

If the current had been defined in the other direction, then it would be measured from low to high

potential and the sign would be negative.

2.4.3 Calculating Resistance from Voltage and Current

When using voltage and current to calculate resistance, it is important to ensure that the directionality of

the current and the polarity of the voltage align with each other. In other words: if voltage is measured

from high to low potential, then the current flow must be assigned to flow in that direction (from high to

low). If the voltage was measured from low to high potential, then the current flow must be assigned to flow

from low to high.

In this textbook, the circuits that will be analyzed will all have a positive resistance. This is helpful

in ensuring that our polarities/directions are assigned correctly, because we will find that we are always

multiplying a positive voltage with a positive current or a negative voltage with a negative current, but

never a positive with a negative. However, it is important to note that there are negative resistance circuits

which may be encountered in a higher level class. In those cases, it will be crucial to pay attention to the

assigned polarities and directions!

Example: Calculating resistance from voltage and current

Calculate the value of resistor R1.

−
+12 V

R1

100 Ω

30 mA
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Use Ohm’s law (equation 2.21) to solve this problem. The total resistance of this circuit is the series

combination of R1 and the 100 Ω resistor.

Voltage and current are both defined in compatible directions, so none of the signs need to be changed

in the calculation. Because ohms are used in the calculation, the current flow through the circuit will be

expressed in units of amps. (Alternatively, the resistance could be converted to kΩ while leaving the current

in mA.)

R1 + 100 Ω =
12 V

0.03 A

R1 = 400 Ω− 100 Ω

= 300 Ω

2.4.4 Ohm’s Law and the Power Equation

Together with the power equation, it is possible to know any two of four properties (current, voltage,

resistance, and power) and solve for the others. The equations that link Ohm’s law and the power equation

are shown in equations 2.22–2.24.

P = IV (2.22)

P = I2R (2.23)

P =
V 2

R
(2.24)

Just as we were concerned with units while utilizing Ohm’s law, we are similarly interested in paying close

attention to units when using the power equations. If ohms are used in equations 2.22–2.24, then voltage

must be expressed in volts, current must be expressed in amps, and the power units will be expressed in

watts. Alternatively, if kilohms are used for resistance, then voltage must be expressed in volts, current must

be expressed in milliamps, and power will be expressed in milliwatts.

Example: Power calculation

Calculate the power consumed by the resistor in the circuit. Then, calculate the value of the resistor.

+ −
25 V

10 A

Use equation 2.22 to calculate the power consumed by the resistor.

P = (10 A)(25 V) = 250 W

Use Ohm’s law (equation 2.21) to calculate the value of the resistor. (Alternatively, equation 2.19 or 2.20
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could be used to solve for R.)

R =
25 V

10 A
= 2.5 Ω

Example: Calculating voltage

The 200 Ω resistor is consuming 500 mW of power. Calculate the value of the voltage source.

−
+VS

200 Ω

400 Ω

Calculate the current that flows through the circuit by solving equation 2.23 for I. The units will be

converted to V, A, Ω, and W.

I =

√
P

R
=

√
0.5 W

200 Ω
= 0.05 A

Use Ohm’s law (equation 2.19) to calculate the value of the voltage source that is required to generate

this current flow.

VS = (0.05 A)(200 Ω + 400 Ω) = 30 V

Example: Calculating minimum safe resistor value

What is the minimum resistor value that can be used in this circuit, if the resistor is rated for a maximum

power of 1/4 W?

−
+10 V

Use equation 2.24.

Rmin =
(10 V)2

0.25 W
= 400 Ω

2.5 Voltage Divider

The voltage divider is a tool that uses Ohm’s law to calculate the voltage dropped over resistive elements

that are in series with each other without having to calculate current.
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−
+Vs

R1

R2

+

−

VOUT

Figure 2.28: Schematic used to demonstrate the voltage divider tool.

Given a circuit with a voltage source and two resistors in series (shown in figure 2.28), Ohm’s law can be

used to calculate the overall voltage/current relationship of the circuit, and is shown in equation 2.25.

I =
VS

R1 +R2
(2.25)

Because the current flowing through the resistor of interest (R2 in this example) is equal to the current

flowing through the entire circuit, we can use Ohm’s law to calculate the voltage drop over the resistor

(VOUT = IR2), and plug in the result of equation 2.25 to remove the current term from the equation. This

is shown in equation 2.26.

VOUT =
VSR2

R1 +R2
(2.26)

In general, equation 2.27 can be used to find the voltage dropped over the kth resistor of n resistors in

series (where k < n), given a source voltage of VS . As mentioned, there is no need to calculate current as

long as the voltage and resistor values are known.

Vk = VS

(
Rk

R1 +R2 +R3 + ...+Rk + ...+Rn

)
(2.27)

Example: Using the voltage divider

Calculate VOUT in the following circuit.

−
+20.5 V

20 kΩ 32 kΩ

38 kΩ

27 kΩ

30 kΩ

28 kΩ

+

−

VOUT
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Combine all resistors that are in series and re-draw the circuit.

−
+20.5 V

52 kΩ

38 kΩ 57 kΩ

+

−

VOUT

28 kΩ

The 28 kΩ and 52 kΩ resistors are in parallel with each other and have an equivalent resistance of

18.2 kΩ. The 38 kΩ and 57 kΩ resistors are in parallel with each other and have an equivalent resistance of

22.8 kΩ. The circuit can be re-drawn again.

−
+20.5 V

18.2 kΩ

22.8 kΩ

+

−

VOUT

Use the voltage divider rule to calculate the output voltage.

VOUT = 20.5 V

(
22.8 kΩ

22.8 kΩ + 18.2 kΩ

)
= 11.4 V

2.5.1 Wheatstone Bridge

A Wheatstone bridge is a measuring tool that can be used to indirectly determine the resistance of an object

with otherwise unknown resistance. It is useful when measuring small resistances (or changes in resistance)

that may not be within the accuracy of an ohmmeter. As will be demonstrated, the unknown resistance

value is largely invariant to noise from the voltage source as its value is independent from the source. The

schematic of a Wheatstone bridge is shown in figure 2.29, with the unknown resistance labeled RX .

The value of RX can be determined if the bridge is balanced. This occurs when the value of the variable

resistor (R2) is changed such that the voltmeter reads 0 V. When the bridge is balanced, V1 and V2 are

equal. The voltage divider rule can be used to calculate V1 and V2. Then, set V1 and V2 equal to calculate

RX . This is shown in equation 2.28 and derived below.

RX =
R2R3

R1
(2.28)
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R3R1

R2

+

−

V1

V

RX

+

−

V2

−
+VS

Figure 2.29: Circuit schematic of a Wheatstone bridge circuit. R2 is a variable resistor and RX is unknown.

DERIVATION

VS

(
R2

R1 +R2

)
= VS

(
RX

R3 +RX

)
R2

R1 +R2
=

RX

R3 +RX

R2(R3 +RX) = RX(R1 +R2)

R2R3 +R2RX = RXR1 +RXR2

R2R3 = RXR1

RX =
R2R3

R1

2.6 Current Divider

The current divider uses Ohm’s law to calculate the current flowing through resistive elements that are in

parallel with each other without having to calculate voltages.

IS R1

I1

R2

+

−

V

I2

Figure 2.30: Schematic used to demonstrate the current divider tool.

Given a circuit with a current source and two resistors in parallel (shown in figure 2.30), Ohm’s law can

be used to calculate the overall voltage/current relationship of this circuit, and is shown in equation 2.29.

V = IS

(
1

1
R1

+ 1
R2

)
(2.29)

Because the voltage dropped over both resistors is equal to V , Ohm’s law applied over each individual

resistor can now be used to determine the individual currents flowing through each resistor. Ohm’s law
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states that the current flowing through R1 is equal to V/R1. Therefore, equation 2.29 can be divided by R1

to calculate the current flowing through that resistor. This is shown in equation 2.30.

I1 = IS

(
1
R1

1
R1

+ 1
R2

)
(2.30)

Note the similarity with the voltage divider rule. Here we are using reciprocal resistances due to the

parallel configuration of the resistors. In general, equation 2.31 (derived below) can be used to find the

current flowing through the kth resistor of n resistors in parallel (where k < n), given a source current of IS .

As mentioned, there is no need to calculate the total voltage as long as the current and resistor values are

known.

Ik = IS

(
REQ

Rk

)
(2.31)

DERIVATION

Ik = IS

(
1
Rk

1
R1

+ 1
R2

+ 1
R3

+ ...+ 1
Rk

+ ...+ 1
Rn

)

= IS

(
1
Rk

1
REQ

)

= IS

(
REQ

Rk

)

Example: Using the current divider

The current through the load resistor must be 50 mA. Calculate the value of the load resistance that is

required to accomplish this.

300 mA 2 kΩ 3 kΩ RLOAD

ILOAD

Reduce the circuit by combining the 2 kΩ and 3 kΩ resistors in parallel.

300 mA 1.2 kΩ RLOAD

50 mA
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Use the current divider rule to calculate the load resistance.

50 mA = 300 mA

(
(1.2 kΩ)(RLOAD)/(1.2 kΩ +RLOAD)

RLOAD

)
50 mA

300 mA
=

(
1.2 kΩ

1.2 kΩ +RLOAD

)
1.2 kΩ = 0.167(1.2 kΩ +RLOAD)

7.2 kΩ = 1.2 kΩ +RLOAD

RLOAD = 6 kΩ

2.7 Kirchhoff’s Laws

Kirchhoff’s laws, used together with Ohm’s law, form a powerful set of tools for analyzing the currents

through and voltages dropped over elements in even very complicated circuits. The two Kirchhoff’s laws are

Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

2.7.1 Kirchhoff’s Current Law (KCL)

Kirchhoff’s current law (KCL) is a byproduct of the principle of conservation of charge. At any point in a

circuit, the charge flowing in to that point must be equal to the charge flowing out of that point. This relates

to current because current is equal to the change in charge over time. If net charge is conserved, then net

current must be as well. KCL can be stated in three slightly different, but identical, ways.

• The sum of all current entering a node is equal to zero.

• The sum of all current leaving a node is equal to zero.

• The sum of all current entering a node is equal to the sum of all current leaving a node.

An important consequence of KCL is that the current flowing through any branch of a circuit is the same

everywhere throughout that branch at any moment in time. The currents that are calculated using KCL are

called branch currents. (This may seem like the only type of current that can be measured, but we will learn

later in this chapter that mesh analysis is a tool that enables us to find mesh currents, which are different

from branch currents.)

Example: Kirchhoff’s current law

Calculate the value of I2.
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200 mA

50 mA I2

100 Ω

+

−

10 V

KCL states that the sum of all currents entering the node connecting all three generic elements to the

high potential end of the current source must be zero. Use this and Ohm’s law to solve for I2.

0 = 200 mA− 50 mA− I2 −
10 V

0.1 kΩ

I2 = 50 mA

2.7.2 Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s voltage law (KVL) is a byproduct of the principle of conservation of energy. Energy must be

conserved in each loop in a circuit. Energy is equal to charge times voltage, and as energy and charge are

both conserved, voltage must be as well. KVL can be stated in three slightly different, but identical, ways.

• The sum of all of the voltage drops in a loop is equal to zero.

• The sum of all of the voltage rises in a loop is equal to zero.

• The sum of all of the voltage drops in a loop is equal to the sum of all of the voltage rises in a loop.

An important consequence of KVL is that the voltage drops over parallel elements are identical.

Example: Kirchhoff’s voltage law

Determine the value of the voltage drop over each circuit element and indicate the correct polarity.

−
+3 V

element 1

−
+2 V

element 2

−
+5 V

element 3

KVL states that the sum of all voltage drops in a loop must be equal to zero. The lower left loop can
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be analyzed in a clockwise fashion to calculate the voltage drop over element 1.

0 = −3 V + V1 − 2 V

V1 = 5 V

The lower right loop can be analyzed in a clockwise fashion to calculate the voltage drop over element

2. The negative sign indicates that the right-hand side of the element is the high potential side.

0 = 2 V + V2 + 5 V

V2 = −7 V

The loop consisting of the 3 V source, element 3, and the 5 V source can be analyzed in a clockwise

fashion to calculate the voltage drop over element 3. The negative sign indicates that the right-hand side of

the element is the high potential side.

0 = −3 V + V3 + 5 V

V3 = −2 V

The circuit can now be re-drawn, indicating the voltage and polarity of each circuit element.

−
+3 V

element 1

+ −
5 V

−
+2 V

element 2

− +
7 V

−
+5 V

element 3

− +
2 V

2.7.3 Finding Matrix Equations from KCL and KVL

Together, KCL and KVL can be used to solve for every branch current in a circuit. Those branch currents

can be multiplied by resistance to find voltage drops over each resistor in a circuit. By analyzing nodes and

loops in a circuit, a number of equations (using KCL, KVL, and Ohm’s law) can be found. If there are n

unknown currents in the circuit, n linearly independent equations will be needed. A matrix can then be used

to solve for the unknowns.

This book will not discuss matrix reduction techniques, which is better suited for a linear algebra text-

book. Gauss-Jordan elimination can be used to find the reduced row echelon form of a matrix. Alternatively,
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a graphing calculator can be used to solve the matrices. In short: this book is not about how to solve matrix

equations. This book is about how to set up those matrix equations by using KCL and KVL.

Consider the circuit in figure 2.31. There are four unknown currents so four linearly independent equations

will need to be used to solve for each current. The direction of each current has been arbitrarily chosen.

b

R3

I3 d

R4

I4
c

R2I2
a

−
+VS

R1

I1

IS

Figure 2.31: Circuit used to demonstrate using KCL and KVL to solve for unknown currents.

To find a sufficient number of linearly independent equations, analysis can occur at nodes (using KCL)

and around loops (using KVL). It is important to try to find nodes at which we know (or want to know) all

of the currents entering and exiting. In figure 2.31, there are four nodes, each labeled with a letter. This

means we could generate four KCL equations (one at each node). However, by closely analyzing nodes a and

d, we see that the current flowing through the voltage source is unknown. Therefore, it would not be ideal

to include nodes a or d in our set of equations. While not a standard term in electrical engineering, this

textbook will use the term perfect node to denote a node at which we know or care about all of the currents

entering or exiting that node.

The circuit in figure 2.31 therefore has two perfect nodes: node b and node c. These nodes will be used

solve KCL, giving us our first two linearly independent equations, shown in equations 2.32 and 2.33.

I2 − I3 − I4 = 0 (2.32)

I1 + I4 − IS = 0 (2.33)

We turn to KVL to find the remaining two equations. Just as we searched for perfect nodes to find KCL

equations, we will look for perfect loops to find KVL equations. In a perfect loop, all of the voltages are

known or are known resistances multiplied by currents we hope to find. In figure 2.31, any loop that contains

the current source would not be a perfect loop; we do not know (or care to find) the voltage dropped over

the current source.

It is also of the utmost important to find linearly independent equations when using KVL. This means

that the loops that we choose must contain at least one unique circuit element from the others. For example

(which is not necessarily relevant to the solution of this particular circuit): the loop containing VS , R2, and
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R3 as well as the loop containing R3, R4, and IS are linearly independent. Including a third loop of VS ,

R2, R4, and IS would not add anything new to the circuit. The equations derived from these three loops

would not lead to three linearly independent equations; they would only lead to two linearly independent

equations.

Turning back to the example at hand: we desire two linearly independent equations that come from

perfect loops. Two loops that satisfy those criteria are: the loop containing VS , R2, and R3 and the loop

containing R1, R4, and R2. Apply KVL around each loop. Use the direction of the current to determine if

the voltage is a rise or a drop. Voltage rises will be negative, and voltage drops will be positive. The two

equations are given in equation 2.34 and 2.35.

−VS +R2I2 +R3I3 = 0 (2.34)

R1I1 −R4I4 −R2I2 = 0 (2.35)

Now that four linearly independent equations have been found, they can be put into the form of αI1 +

βI2 + γI3 + δI4 = c and placed into a matrix. Each of the equations, rewritten, are shown in equation 2.36.

I2 −I3 −I4 = 0

I1 +I4 = IS

R2I2 +R3I3 = VS

R1I1 −R2I2 −R4I4 = 0

(2.36)

The corresponding matrix is shown in equation 2.37. Now it can be solved to find each of the individual

currents.


0 1 −1 −1 0

1 0 0 1 IS

0 R2 R3 0 VS

R1 −R2 0 −R4 0

 (2.37)

One final note about matrix analysis of KCL and KVL. It is not always possible to find a sufficient

number of perfect loops and perfect nodes. If there are more unknowns than equations after exhausting all

of the perfect nodes and loops, then it is time to define a new unknown. Then another node or loop equation

will be available to use.

2.8 Mesh Analysis

Mesh analysis is another tool that uses KCL and KVL to solve for unknowns. In this case, mesh currents

(as opposed to branch currents, which the previous analysis tools calculated) will be derived. In this book,

mesh currents are defined in a clockwise direction.
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2.8.1 Branch vs. Mesh Currents

The circuit shown in figure 2.32 has two meshes (and therefore two mesh currents: IA and IB). In addition,

there are three branch currents defined as I1, I2, and I3.

−
+VS

R1 I1

R2

I2

R3 I3

R4IA IB

Figure 2.32: This circuit contains two meshes and three defined branches.

Each of the branch currents denote how much current actually flows through each circuit element. This

makes the concept of branch currents relatively easy to understand. Branch currents are something we could

measure with an ammeter. However, a mesh current is different from a branch current. It is more of an

abstraction than a physical parameter. It is possible to relate all of the branch and mesh currents. These

relationships are given in equations 2.38–2.40. Note that when a branch current is “shared” between two

meshes, then the branch current is equal to the sum of both currents (paying close attention to the direction).

I1 = IA (2.38)

I2 = IA − IB (2.39)

I3 = IB (2.40)

2.8.2 The Mesh Analysis Method

The steps to performing mesh analysis are given below.

1. Identify each mesh and draw and label each mesh (use a clockwise direction).

2. Perform KVL around each mesh (using the mesh currents) and determine the corresponding equations.

3. If a current source is contained within a mesh, that mesh current will be equal to the value of the

current source.

4. If a current source is shared between two meshes:

(a) pretend that the current source does not exist (treat it as an open circuit) and find the KVL

equation for the loop connecting the two meshes (called a supermesh), then

(b) relate the two mesh currents in the supermesh to the current source (branch current) to obtain a

new equation.
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5. If there is a dependent source (or sources), additional equations relating the controlling values may be

required.

The circuit shown in figure 2.33 will be used to demonstrate the mesh analysis procedure. It has been

carefully chosen to contain both a dependent source and a supermesh. Each of the meshes have already been

identified and labeled.

−
+

rmI

R2 I

IS

a
R3

R4

R5

R1

I1 I2

I3

Figure 2.33: Circuit schematic used to demonstrate the mesh analysis method.

There is only one regular mesh in this circuit: the one containing mesh current I3. The other two meshes

correspond to a supermesh due to the current source that exists at the intersection of the two meshes.

Therefore there is only one mesh equation to find, shown in equation 2.41. (Note that we are ignoring I, the

branch current used to define the current-controlled voltage source.) This concludes step two.

R1I3 +R3(I3 − I2) +R2(I3 − I1) = 0 (2.41)

Step three does not apply to this circuit. There are no current sources that are unshared between meshes.

Step four introduces the supermesh. The supermesh consists of the two loops containing I1 and I2. Because

of the existence of the supermesh, KCL will be applied at node a. The supermesh equation is given in

equation 2.42 and the KCL equation is shown in equation 2.43.

−rmI +R2(I1 − I3) +R3(I2 − I3) +R4I2 +R5I1 = 0 (2.42)

I1 + IS − I2 = 0 (2.43)

At this point, there are three equations. However, the presence of the controlling current (I) provides an

additional unknown. This means that one more equation is required. We can use the relationship between

branch currents and mesh currents to find an equation for the controlling current, shown in equation 2.44.

While this equation can be directly plugged in to the supermesh equation (equation 2.42), it is the opinion
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of the author that it eliminates error to include it as a separate equation to be used in the matrix.

I = I1 − I3 (2.44)

Now that there are four linearly independent equations (equations 2.41–2.44), they can be rewritten in

the form of αI1 + βI2 + γI3 + δI = c and placed into a matrix. Each of the equations, rewritten, are shown

in equation 2.45.

−R2I1 −R3I2 +(R1 +R2 +R3)I3 = 0

(R2 +R5)I1 +(R3 +R4)I2 −(R2 +R3)I3 −rmI = 0

I1 −I2 = −IS
I1 −I3 −I = 0

(2.45)

The corresponding matrix is shown in equation 2.46. It can be solved to find each of the mesh currents

(as well as the controlling current).


−R2 −R3 (R1 +R2 +R3) 0 0

(R2 +R5) (R3 +R4) −(R2 +R3) −rm 0

1 −1 0 0 −IS
1 0 −1 −1 0

 (2.46)
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Example Problems

Equivalent Resistance

1. Calculate the equivalent resistance of the resistors shown in figure 2.34.

R1

R2

R3

Figure 2.34: Circuit diagram for equivalent resistance question 1.

2. Minimize the circuit diagram shown in figure 2.35 as much as possible.

10 Ω

24 Ω

18 Ω

−
+2 V

47 Ω

130 mA

33 Ω

Figure 2.35: Circuit diagram for equivalent resistance question 2.

3. Use the circuit diagram shown in figure 2.36 to calculate the equivalent resistance between nodes a and

b. Each resistor has a value of 1 kΩ.

a

b

c

Figure 2.36: Circuit diagram for equivalent resistance questions 3–4.

4. Use the circuit diagram shown in figure 2.36 to calculate the equivalent resistance between nodes b

and c. Each resistor has a value of 1 kΩ.
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5. Calculate the equivalent resistance of the resistors shown in figure 2.37.

10 kΩ 4.7 kΩ

1.8 kΩ

24 kΩ

18 kΩ
2 kΩ

6.8 kΩ
5.6 kΩ

Figure 2.37: Circuit diagram for equivalent resistance question 5.

Ohm’s Law

6. If the voltage source can supply a maximum current of 2 A, what is the minimum value of RX that

can be used in the circuit shown in figure 2.38.

−
+10 V

1.3 Ω

RX

Figure 2.38: Circuit diagram for Ohm’s law question 6.

7. Calculate IX in the circuit shown in figure 2.39.

IS 8 kΩ

−

+

25 V

IX

20 kΩ

−
+VS

Figure 2.39: Circuit diagram for Ohm’s law question 7.
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8. Calculate the amount of power consumed by the 20 Ω resistor in the circuit shown in figure 2.40.

8 mA 20 Ω 5 Ω

Figure 2.40: Circuit diagram for Ohm’s law question 8.

9. Calculate the amount of power supplied by the load in the circuit shown in figure 2.41.

5 A 10 Ω

50 Ω

100 Ω

Figure 2.41: Circuit diagram for Ohm’s law question 9.

10. Calculate the minimum value of R that can be used to keep the power consumed by either resistor to

less than or equal to 250 mW in the circuit shown in figure 2.42.

−
+20 V

R

R

Figure 2.42: Circuit diagram for Ohm’s law question 10.
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Voltage and Current Divider

11. Use the voltage divider rule to calculate VX in the circuit shown in figure 2.43.

−
+7.2 V

3 kΩ

6 kΩ

+

−

VX

Figure 2.43: Circuit diagram for voltage and current divider question 11.

12. Use the current divider rule to calculate IX in the circuit shown in figure 2.44.

500 mA 42 Ω 12 Ω 24 Ω

IX

Figure 2.44: Circuit diagram for voltage and current divider question 12.

13. Use the voltage divider rule to calculate VX in the circuit shown in figure 2.45.

−
+8 V

220 Ω

330 Ω

100 Ω

470 Ω

+

−

VX

Figure 2.45: Circuit diagram for voltage and current divider question 13.

14. Use the current divider rule to calculate IX in the circuit shown in figure 2.46.

210 mA 400 Ω

25 Ω

200 Ω 150 Ω

IX

Figure 2.46: Circuit diagram for voltage and current divider question 14.
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15. Use the voltage divider rule to calculate VX1 and VX2 in the circuit shown in figure 2.47.

−
+VS

R4

R5

R6

R7

+

−

VX2

R1R2

R3

+

−

VX1

Figure 2.47: Circuit diagram for voltage and current divider question 15.

Kirchhoff’s Laws

16. Calculate VX in the circuit shown in figure 2.48.

−
+5 V

+ −
2 V

+

−

VX

Figure 2.48: Circuit diagram for Kirchhoff’s laws question 16.

17. Calculate IX in the circuit shown in figure 2.49.

10 mA

4 mA IX

Figure 2.49: Circuit diagram for Kirchhoff’s laws question 17.

18. Calculate IX in the circuit shown in figure 2.50.

−
+5 V

1 kΩ

100 Ω

IX

1 kΩ

−
+3 V

Figure 2.50: Circuit diagram for Kirchhoff’s laws question 18.
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19. Calculate VX in the circuit shown in figure 2.51.

−
+10 V

100 Ω

50 Ω

−+

2 V
200 Ω

1 kΩ

+

−

VX

Figure 2.51: Circuit diagram for Kirchhoff’s laws question 19.

20. Calculate VX in the circuit shown in figure 2.52.

0.2IX

20 kΩ

48 kΩ

+

−

VX

IX

100 kΩ

−
+ 320 V

Figure 2.52: Circuit diagram for Kirchhoff’s laws question 20.

Mesh Analysis

21. Calculate mesh currents IA and IB in the circuit shown in figure 2.53.

10 mA

2 mA

IA IB

Figure 2.53: Circuit diagram for mesh analysis question 21.

22. A branch is shared by two clockwise meshes. The left mesh current is 3 A and the right mesh current

is –6 A. Calculate the branch current.

cbna Alyssa J. Pasquale, Ph.D. 71 Last updated: 2023/05/18



2 Circuit Laws Example Problems

23. Calculate mesh current IX in the circuit shown in figure 2.54. Assume that each mesh contains at least

one linear circuit element.

I1 I2 I3

I4 IX I5

I6 I7 I8

Figure 2.54: Circuit diagram for mesh analysis question 23.

24. Use mesh analysis to calculate VX in the circuit shown in figure 2.51 (in the Kirchhoff’s laws section).

25. Use mesh analysis to calculate VX in the circuit shown in figure 2.55.

−
+20 V

10 Ω

20 Ω

+

−

VX

60 Ω

8 mA 10 Ω

Figure 2.55: Circuit diagram for mesh analysis question 25.
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3 Circuit Theorems

In this chapter, various theorems that can be used to analyze circuit properties will be explored. These

theorems are all handy tools that can be placed into our circuit analysis toolbox. Between this and the

previous chapter, all of the tools and skills required to solve all of the problems in this textbook have been

made available. The remaining chapters in this book will use these tools to analyze interesting and complex

circuits.

3.1 Superposition

Superposition applies to all linear circuits (which is the only kind of circuit explored in this textbook). If a

linear circuit has n independent sources, then n subcircuits can be created, each with one of the independent

sources activated and all others deactivated. Add the properties of each of the subcircuits together to find

the total value of the property. To deactivate a voltage source, replace the voltage source with a short circuit

(corresponding to 0 V). To deactivate a current source, replace the current source with an open circuit

(corresponding to 0 A). Any dependent sources that exist in the circuit cannot be eliminated and must be

present in all subcircuits.

It is not necessary to perform superposition to determine circuit properties. As discussed in the previous

chapter, KCL/KVL and mesh analysis are capable of solving for any unknown current or voltage in a circuit.

However, superposition may be simpler and more straightforward to solve, especially in cases with few

independent sources.

The circuit shown in figure 3.1 will be used to demonstrate the superposition theorem.

IS

R1

R2

I

R3

−
+ VS

Figure 3.1: Circuit schematic used to demonstrate the superposition theorem.

As there are two independent sources, two subcircuits can be created. The first, shown in figure 3.2

contains the current source. The voltage source is deactivated (replaced with a short circuit).
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IS

R1

R2

IA

R3

Figure 3.2: A subcircuit of figure 3.1 with the voltage source deactivated.

There are many tools that can be used to find IA, but the current divider will be used. The results are

shown in equation 3.1.

IA = IS

(
R3

R2 +R3

)
(3.1)

The second subcircuit, shown in figure 3.3, contains the voltage source. The current source has been

deactivated by replacing it with an open circuit.

R1

R2

IB

R3

−
+ VS

Figure 3.3: A subcircuit of figure 3.1 with the current source deactivated.

Because R1 is not connected in a complete path, it can be disregarded. Ohm’s law is sufficient to calculate

the current IB , shown in equation 3.2.

IB =
−VS

R2 +R3
(3.2)

The total current, I, through the original circuit shown in figure 3.1 is equal to the sum of both of the

subcircuit currents (I = IA + IB). This is shown in equation 3.3.

I = IS

(
R3

R2 +R3

)
− VS

R2 +R3
(3.3)

Example: Superposition

Use superposition to calculate VOUT.
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1.8 kΩ

2.4 kΩ

5.1 kΩ

−
+5 V

3.3 kΩ

5.6 kΩ

+

−

VOUT

10 mA

Deactivate the current source (replace it with an open circuit) and calculate the contribution to VOUT

from the voltage source.

1.8 kΩ

2.4 kΩ

5.1 kΩ

−
+5 V

3.3 kΩ

5.6 kΩ

+

−

VOUT,1

Combine the 1.8 kΩ and 2.4 kΩ resistors in series.

4.2 kΩ

5.1 kΩ

−
+5 V

3.3 kΩ

5.6 kΩ

+

−

VOUT,1

It is necessary to find the voltage drop over the 4.2 kΩ resistor so that a voltage divider can be used to

calculate VOUT,1. This voltage drop can be calculated by combining the 4.2 kΩ resistor in parallel with the

series combination of the 3.3 kΩ and 5.6 kΩ resistors and using a voltage divider.

V4.2k = 5 V

(
4.2 kΩ//8.9 kΩ

5.1 kΩ + 4.2 kΩ//8.9 kΩ

)
= 5 V

(
2.85 kΩ

5.1 kΩ + 2.85 kΩ

)
= 1.79 V
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+

−

1.79 V

3.3 kΩ

5.6 kΩ

+

−

VOUT,1

Use the voltage divider rule to calculate VOUT,1.

VOUT,1 = 1.79 V

(
5.6 kΩ

3.3 kΩ + 5.6 kΩ

)
= 1.13 V

Deactivate the voltage source (replace with a short) to determine the contribution to the output voltage

due to the current source.

1.8 kΩ

2.4 kΩ

5.1 kΩ

3.3 kΩ

5.6 kΩ

+

−

VOUT,2

10 mA

The 1.8 kΩ and 2.4 kΩ resistors are in series. That combination is in parallel with the 5.1 kΩ resistor.

2.30 kΩ

3.3 kΩ

5.6 kΩ

+

−

VOUT,2

10 mA
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Use a current divider to determine the current flowing through the 5.6 kΩ resistor.

I5.6k = 10 mA

(
(5.6 kΩ + 2.30 kΩ)//3.3 kΩ

5.6 kΩ + 2.30 kΩ

)
= 10 mA

(
2.33 kΩ

5.6 kΩ + 2.30 kΩ

)
= 2.95 mA

Use Ohm’s law to calculate VOUT,2.

VOUT,2 = (2.95 mA)(5.6 kΩ) = 16.50 V

Add the two voltages together to calculate VOUT.

VOUT = 1.13 V + 16.50 V = 17.63 V

3.2 Source Transformation

Source transformation is a process where a current source can be transformed into a voltage source and

vice versa. The transformation process changes the source type and the resistor location, but results in an

equivalent circuit. The goal of source transformation is usually to reduce a circuit by changing the position

of the source and a resistor; this can lead to further reductions using series and parallel combinations of

resistors.

First, it is important to establish what is meant by equivalent circuits. Two equivalent circuits, as shown

in figure 3.4, will have identical voltage drops over the load (depicted as V ) as well as identical currents

flowing into the load (depicted as I).

−
+VS

RS I

+

−

V
load
circuit

VS/RS

I

RS

+

−

V
load
circuit

Figure 3.4: Both of these circuits are equivalent as they have identical voltage drops over the load (V ) and
current flow into the load (I).

A voltage source in series with a resistor can be transformed into an equivalent circuit with a current

source in parallel with a resistor. Ohm’s law is used to determine the value of the current source, which is

equal to VS/RS . This is depicted schematically in figure 3.5.
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−
+VS

RS

a

b

VS/RS

a

RS

b

Figure 3.5: The transformation of a voltage source in series with a resistor (left) to a current source in parallel
with a resistor (right).

A current source in parallel with a resistor can be transformed into an equivalent circuit with a voltage

source in series with a resistor. The voltage source value will be equal to ISRS (using Ohm’s law). This is

depicted schematically in figure 3.6.

IS

a

RS

b

−
+ISRS

RS

a

b

Figure 3.6: The transformation of a current source in parallel with a resistor (left) to a voltage source in series
with a resistor (right).

In either case (converting a voltage source to a series source, or vice versa), the position of the resistor

changes but the value of the resistor remains unchanged.

It is possible to conduct source transformation with any kind of power source used in a linear circuit.

That is: source transformation can be achieved with dependent sources or AC sources. This process is not

limited to independent or DC sources.

Example: Source transformation

Calculate VX using source transformation. The units of the dependent source are in A/V.

3 mA 2 kΩ

+

−

VX

3 kΩ

0.005VX 1 kΩ

It is not useful to transform the independent source because the voltage of interest is measured across

the 2 kΩ resistor. Instead, the dependent source can be transformed from a VCCS to a VCVS. The new
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proportionality constant is calculated below.

k = (0.005 A/V)(1000 Ω) = 5

3 mA 2 kΩ

+

−

VX

3 kΩ

−
+5VX

1 kΩ

The 3 kΩ and 1 kΩ resistors can be combined in series. Then, the VCVS can be source-transformed

back into a VCCS. The new proportionality constant is calculated below.

gm =
5

4000 Ω
= 0.00125 A/V

3 mA 2 kΩ

+

−

VX 0.00125VX4 kΩ

The two resistors can be combined in parallel. Because the two current sources are in parallel, they can

be combined (paying close attention to units).

(3 − 1.25 VX) mA 1.33 kΩ

+

−

VX

Use Ohm’s law to calculate VX. Units have been removed from the calculations for clarity; all quantities

are measured in either mA, V, or kΩ.

VX = (3− 1.25VX)(1.3)

= 4− 1.67VX

=
4

2.67

= 1.5 V
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3.3 Open-Circuit Voltages and Short-Circuit Currents

Before moving on to more circuit theorems, it is important to discuss the concept of open-circuit voltages

and short-circuit currents. These two measurement techniques will be used in abundance when discussing

both Thévenin’s and Norton’s theorems so it is important to have a solid understanding of them.

3.3.1 Open-Circuit Voltage

Open-circuit voltage (known as VOC) is the potential difference between two terminals when they are dis-

connected from any load circuit. This is shown for a generic circuit in figure 3.7, if the open-circuit voltage

is to be measured between the terminals at nodes a and b.

a

b

load
circuit

a

b

+

−

VOC

Figure 3.7: To calculate the open circuit voltage (VOC) of the circuit on the left, disconnect the two terminals
from the load, as shown on the right.

Once the circuit has been re-drawn to disconnect the load, use any circuit law or theorem (Ohm’s law,

voltage or current divider, mesh analysis, KCL/KVL, superposition, source transformation, etc.) to calculate

the open-circuit voltage.

Example: Calculating open-circuit voltage

Calculate VOC.

−
+5 V

3 kΩ

4 kΩ

+

−

VX

2 kΩ

−
+

0.8VX

+

−

VOC

Source transformation will be used to solve this circuit. (Note that KCL/KVL or mesh analysis could

also be used.) Both voltage sources will be transformed into current sources. The proportionality constant

of the VCCS below is in units of mA/V.
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5/3 mA 3 kΩ 4 kΩ

+

−

VX 2 kΩ 0.4VX

+

−

VOC

All three resistors can be combined in parallel. Both of the current sources can be added together.

(5/3+0.4 VX) mA 0.92 kΩ

+

−

VX

+

−

VOC

Ohm’s law can be used to calculate VOC, which is equal to VX. All quantities are measured in units of

V, mA, or kΩ.

VOC = VX = (5/3 + 0.4VX)(0.92)

= 1.53 + 0.37VX

=
1.53

0.63

= 2.44 V

3.3.2 Short-Circuit Current

Short-circuit current (known as ISC) is the current between two terminals when they are shorted together.

This is shown for a generic circuit in figure 3.8, if the short-circuit current is to be measured between the

terminals at nodes a and b.

a

b

load
circuit

a

b

ISC

Figure 3.8: To calculate the short circuit current (ISC) of the circuit on the left, short the two terminals to-
gether, as shown on the right.

Once the circuit has been re-drawn to short out the load, any circuit law or theorem can be used to

calculate the short-circuit current.

At this point, it is important to discuss what happens to shorted-out circuit elements, as this becomes a
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source of confusion for students.

If a passive circuit element such as a resistor, capacitor, or inductor is shorted out, the potential difference

over that circuit element becomes 0 V. Because the voltage drop is zero, Ohm’s law dictates that the current

will also be zero. If no current flows through a circuit element, and it contains no voltage drop, then that

element is essentially absent from the circuit. Therefore, a shorted passive element can be removed from a

circuit diagram for the sake of simplicity. This is depicted in figure 3.9.

ISC ISC ISC ISC

Figure 3.9: Each of these circuits is functionally equivalent.

If a current source is shorted out, the current source continues to contribute current to the circuit.

Figure 3.10 shows an example of a shorted current source. Kirchhoff’s current law states that the short-

circuit current is equal to the sum of the current coming from the current source added to the current

supplied by the branch to the left. The current source is providing a useful function and cannot be removed

from the circuit. This is true for all kinds of current sources: AC and DC, independent and dependent.

ISC

Figure 3.10: A shorted current source cannot be removed from a circuit.

If a voltage source is shorted out (depicted in figure 3.11), it is also not accurate to say that the voltage

source is not contributing anything to the circuit. A shorted voltage source will in fact have a very large

impact on a circuit. Any voltage source that is directly connected to a low- (or no-) resistance conductor

will generate massive (or approaching infinite) amounts of current. This would cause the conductor (and

possibly the source itself) to heat up, melt, or start on fire. While it is not a good idea to short a voltage

source, it is possible, and it would not be correct to say that the voltage source acts as if it no longer exists.

−
+

ISC

t

Figure 3.11: While this would be a very bad idea, the voltage source is still contributing much to the circuit,
and cannot be removed.
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A voltage source in series with a resistor can be source transformed to a current source in parallel with a

resistor. Therefore, if a voltage source in series with a resistor is shorted to calculate a short-circuit current,

the source-transformed version is equivalent to a combination of passive element shorted out (the series

resistor becomes a parallel resistor, shorted to calculate ISC) and a current source shorted out.

Example: Calculating short-circuit current

Calculate ISC.

−
+20 V

5 kΩ

2 kΩ

−
+5 V

ISC

Mesh analysis will be used to solve this circuit. (It is also possible to use source transformation or

KCL/KVL). The mesh on the left will contain clockwise mesh current I1. Units have been removed from the

calculations; all values are in mA, V, or kΩ.

−20 + 5I1 + 2(I1 − I2) + 5 = 0

The mesh on the right will contain clockwise mesh current I2 (which is equal to the short-circuit current).

−5 + 2(I2 − I1) = 0

The matrix, in terms of I1, I2, and the constant, is given. 7 −2 15

−2 2 5

 (3.4)

The solution to this matrix gives ISC = I2 = 6.5 mA.

3.4 Thévenin’s Theorem

Thévenin’s theorem provides a very useful way to simplify otherwise complicated circuits. It states that

any linear circuit (regardless of the complexity) can be represented by an equivalent circuit that contains a

voltage source in series with a resistor. This is depicted in figure 3.12.
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a

b

linear
circuit −

+VTH

RTH

a

b

Figure 3.12: Thévenin’s theorem states that these two circuits are equivalent, given the correct value of VTH

and RTH .

The technique to Thévenin’s theorem, then, is to calculate the correct values of the Thévenin equivalent

voltage (VTH) and Thévenin equivalent resistance (RTH). The Thévenin equivalent voltage is simply equal

to the open-circuit voltage between the output terminals (labeled a and b in figure 3.12). The procedure to

calculate the Thévenin equivalent resistance is given below.

• If there are no dependent sources in the circuit, then RTH is equal to the equivalent resistance seen

between the output terminals, with all of the independent sources deactivated.

• If there are dependent sources in the circuit, calculate the short-circuit current (ISC) between the

output terminals. The Thévenin equivalent resistance is equal to VTH/ISC .

Example: Thévenin equivalent circuit

Derive the Thévenin equivalent circuit between nodes a and b.

−
+12 V

21 kΩ

28 kΩ

8 kΩ

15 kΩ

20 kΩ

a

b

Perform a wye-delta transform.
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−
+12 V

35 kΩ

122.5 kΩ 46.67 kΩ

15 kΩ

20 kΩ

a

b

Because the 122.5 kΩ resistor is in parallel with the voltage source, its contribution to the circuit can be

ignored. The 20 kΩ and 35 kΩ resistors can be combined in parallel. The 46.67 kΩ and 15 kΩ resistors can

also be combined in parallel. The circuit can be re-drawn.

−
+12 V

12.73 kΩ

11.35 kΩ

a

b

Use a voltage divider to calculate the Thévenin equivalent voltage.

VTH = 12 V

(
11.35 kΩ

12.73 kΩ + 11.35 kΩ

)
= 5.66 V

To calculate the Thévenin equivalent resistance, deactivate the voltage source and calculate the equivalent

resistance seen between terminals a and b. That will be equal to both resistors combined in parallel.

RTH = 12.73 kΩ//11.35 kΩ = 6 kΩ

−
+5.66 V

6 kΩ
a

b
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3.5 Norton’s Theorem

Norton’s theorem states that any linear circuit, regardless of the level of complexity, can be represented by

an equivalent circuit that contains a current source in parallel with a resistor. This is depicted in figure 3.13.

a

b

linear
circuit

IN RN

a

b

Figure 3.13: Norton’s theorem states that these two circuits are equivalent, given the correct value of IN and
RN .

The technique to Norton’s theorem is in calculating the Norton equivalent current (IN ) and Norton

equivalent resistance (RN ). The Norton equivalent current is equal to the short-circuit current between the

output terminals (labeled a and b in figure 3.13. The procedure to calculate the Norton equivalent resistance

is given below.

• If there are no dependent sources in the circuit, then RN is equal to the equivalent resistance seen

between the output terminals, with all of the independent sources deactivated.

• If there are dependent sources in the circuit, calculate the open-circuit voltage (VOC) between the

output terminals. The Norton equivalent resistance is equal to VOC/IN .

It can be noted that Norton’s theorem and Thévenin’s theorem are identical to each other; one is simply

the source-transformed version of the other. It is therefore possible to find a Thévenin equivalent circuit and

do a source transformation to derive the Norton equivalent circuit.

Example: Norton equivalent circuit

Derive the Norton equivalent circuit between nodes a and b.

−
+16 V

12 Ω

4 Ω

a b

2 Ω

−
+

2IX

4 Ω

4 Ω

IX

− +

16 V

4 Ω

Mesh analysis will be used to solve this circuit. Calculate the open-circuit voltage between nodes a and

b. This is equal to Va − Vb. A voltage divider can be used to solve for Va.

Va = 16 V

(
4 Ω

12 Ω + 4 Ω

)
= 4 V
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The right-side of this circuit is independent from the left side. Therefore, the two meshes on the right can

be used to calculate Vb. I1 is the mesh current defined clockwise through the CCVS and two 4 Ω resistors.

I2 is the mesh current defined clockwise through two 4 Ω resistors and the 16 V source. The third equation

relates the controlling current to the two mesh currents. The matrix, given in form αI1 + βI2 + γIX = δ is

shown. 
8 −4 −2 0

−4 8 0 16

−1 1 1 0

 (3.5)

When solved, this matrix indicates that IX = −1.6 A. Vb is 2IX = −3.2 V. Now VOC can be calculated.

VOC = 4 V + 3.2 V = 7.2 V

Calculate the Norton equivalent current.

−
+16 V

12 Ω

4 Ω

2 Ω IN

−
+

2IX

4 Ω

4 Ω

IX

− +

16 V

4 Ω

Mesh analysis will be used again. This time, all four meshes will be included in the analysis. The matrix,

given in form αI1 + βI2 + γI3 + δI4 + ϵIX = ζ is shown.

16 −4 0 0 0 16

−4 6 0 0 2 0

0 0 8 −4 −2 0

0 0 −4 8 0 16

0 0 −1 1 1 0


(3.6)

The Norton equivalent current is equal to mesh current I2. It is therefore equal to 1.44 A. Finally, the

Norton equivalent resistance can be calculated.

RN =
7.2 V

1.44 A
= 5 Ω
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1.44 A 5 Ω

a

b

3.6 Maximum Power Transfer

The theorem of maximum power transfer states that the maximum amount of power will be delivered to the

load when the resistance of the load is equal to the Thévenin equivalent resistance of the circuit. The circuit

shown in figure 3.14 will be used to demonstrate this theorem.

−
+VTH

RTH I

RLOAD

Figure 3.14: Circuit diagram used to demonstrate the theorem of maximum power transfer.

To determine the resistance of the load (RLOAD) that will lead to maximum power transfer, the power

consumed by the load can be calculated using the power equation P = IV . This is shown in equation 3.7

and derived below.

PLOAD =
RLOADV 2

TH

(RTH +RLOAD)2
(3.7)

DERIVATION

ILOAD = I =
VTH

RTH +RLOAD

VLOAD = VTH

(
RLOAD

RTH +RLOAD

)
PLOAD = ILOADVLOAD

=
RLOADV 2

TH

(RTH +RLOAD)2

The derivative of equation 3.7 can then be taken with respect to RLOAD. This equation can be set equal

to zero to find the maximum of the equation. (The full derivation will not be shown in this book.) The

maximum occurs when RLOAD is equal to RTH .

The maximum power that can be consumed by the load can then be calculated, shown in equation 3.8
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and derived below.

PMAX =
V 2
TH

4RTH
(3.8)

DERIVATION

PMAX =
RTHV 2

TH

(RTH +RTH)2

=
RTHV 2

TH

(2RTH)2

=
RTHV 2

TH

4R2
TH

=
V 2
TH

4RTH

Because a Norton equivalent circuit and a Thévenin equivalent circuit are simply source-transformed

versions of each other, the maximum power transferred to the load in a Norton equivalent circuit would

occur when the load resistance is equal to the Norton resistance.

It is important to note that while the maximum amount of power is transferred when the load resistance

is equal to the Thévenin resistance, this does not equate to the maximum load power efficiency (ratio of

power delivered to the load to the total power). In the case of maximum power transfer, the power efficiency

is limited to 50%.

Example: Maximum power transfer

Calculate the value of the load resistor that is required for maximum power transfer. Then, calculate the

maximum power transferred to that load.

−
+24 V

4 kΩ

2IX

8 kΩ

2 kΩ

IX

RLOAD

Convert the circuit to a Thévenin equivalent circuit. Use source transformation on the 24 V source.
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6 mA 4 kΩ 2IX

8 kΩ

2 kΩ

+

−

VTH

IX

Use the current divider rule to calculate IX. All units have been removed and are in terms of mA, V, and

kΩ.

IX = (6 + 2IX)

(
4//10

10

)
= (6 + 2IX)

(
4

14

)
= 1.71 + 0.57IX

=
1.71

0.43

= 4 mA

Use Ohm’s law to calculate VTH.

VTH = (4 mA)(2 kΩ) = 8 V

Calculate the short circuit current. Because the resistor with the controlling current is shorted, the

controlling current is 0 mA (no current will flow through the 2 kΩ resistor when it can travel through a

zero-resistance short instead), and the dependent source is effectively deactivated.

6 mA 4 kΩ 0

8 kΩ

ISC

Use a current divider to calculate the short-circuit current.

ISC = 6 mA

(
8 kΩ//4 kΩ

8 kΩ

)
= 2 mA
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Use Ohm’s law to calculate the Thévenin equivalent resistance.

RTH =
8 V

2 mA
= 4 kΩ

Therefore, the resistor for maximum power transfer is 4 kΩ. Use equation 3.8 to calculate the maximum

power transferred to this load.

PMAX =
(8 V)2

4(4 kΩ)
= 4 mW
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Example Problems

Superposition

1. Use superposition to calculate VX in the circuit shown in figure 3.15.

−
+13 V

390 Ω

560 Ω

+

−

VX 22 mA

Figure 3.15: Circuit diagram for superposition question 1.

2. Use superposition to calculate VX in the circuit shown in figure 3.16.

−
+20 V

100 Ω
24 mA

400 Ω

200 Ω

600 Ω

700 Ω

+ −
VX

Figure 3.16: Circuit diagram for superposition question 2.

3. Use superposition to calculate IX in the circuit shown in figure 3.17.

6 mA 18 kΩ

12 kΩ

−
+24 V

− +

5 V
1 kΩ

10 kΩ

IX

Figure 3.17: Circuit diagram for superposition question 3.
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4. Use superposition to calculate VX in the circuit shown in figure 3.18.

−
+40 V

10 Ω

0.3VX 10 Ω

10 Ω

10 Ω

+

−

VX 2 A

Figure 3.18: Circuit diagram for superposition question 4.

5. Use superposition to calculate VX in the circuit shown in figure 3.19.

12 mA 1 kΩ

IX

1 kΩ

1 kΩ

−
+18 V

1 kΩ

+ −
VX

1 kΩ 0.4IX

Figure 3.19: Circuit diagram for superposition question 5.

Source Transformation

6. Use source transformation to calculate VX in the circuit shown in figure 3.15 (in the superposition

section).

7. Use source transformation to calculate VX in the circuit shown in figure 3.16 (in the superposition

section).

8. Use source transformation to calculate IX in the circuit shown in figure 3.17 (in the superposition

section).

9. Use source transformation to calculate VX in the circuit shown in figure 3.18 (in the superposition

section).
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10. Use source transformation to calculate VX and VY in the circuit shown in figure 3.20.

−
+

2VX

20 Ω

10 Ω 0.5 A

− +

3VY
40 Ω

+ −
VY

50 Ω

+

−

VX

Figure 3.20: Circuit diagram for source transformation question 10.

Thévenin and Norton’s Theorems

11. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 3.21.

−
+10 V

60 Ω

10 Ω

30 Ω

a b

Figure 3.21: Circuit diagram for Thévenin and Norton’s theorems question 11.

12. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in figure 3.22.

−
+3 V

1.5 kΩ

2.2 kΩ 26 mA

a

b

Figure 3.22: Circuit diagram for Thévenin and Norton’s theorems question 12.
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13. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 3.23.

−
+6 V

3 kΩ

IX

5 kΩ 1 kΩ 4IX

a b

Figure 3.23: Circuit diagram for Thévenin and Norton’s theorems question 13.

14. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 3.24.

−
+2 V

200 Ω

100 Ω

IX

400 Ω

4IX 800 Ω

200 Ω

ab

Figure 3.24: Circuit diagram for Thévenin and Norton’s theorems question 14.

15. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in figure 3.25.

−
+20 V

50 Ω

IX

200 Ω

−
+

10VX 0.5IX 100 Ω

+

−

VX

a

b

Figure 3.25: Circuit diagram for Thévenin and Norton’s theorems question 15.

Maximum Power Transfer

16. Calculate the resistance for maximum power transfer, and the maximum amount of power transferred

to the load under that condition, for the circuit shown in figure 3.21 (in the Thévenin and Norton’s

theorem section).

17. Calculate the resistance for maximum power transfer, and the maximum amount of power transferred

to the load under that condition, for the circuit shown in figure 3.22 (in the Thévenin and Norton’s

theorem section).
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18. Calculate the resistance for maximum power transfer, and the maximum amount of power transferred

to the load under that condition, for the circuit shown in figure 3.23 (in the Thévenin and Norton’s

theorem section).

19. Calculate the resistance for maximum power transfer, and the maximum amount of power transferred

to the load under that condition, for the circuit shown in figure 3.24 (in the Thévenin and Norton’s

theorem section).

20. Calculate the resistance for maximum power transfer, and the maximum amount of power transferred

to the load under that condition, for the circuit shown in figure 3.25 (in the Thévenin and Norton’s

theorem section).
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4 Operational Amplifiers (Op-Amps)

An operational amplifier (henceforth referred to as an op-amp) is a voltage amplifier that typically uses

divided negative feedback to generate a particular gain value. There are a lot of technical details to unpack

in that sentence, so this chapter will start with the premise that the reader has no knowledge of amplifiers

at all, and move slowly up from the concept of amplification to the functioning of op-amps. In addition,

op-amps are the first active circuit element to be discussed in this book. The implications of that quality

will be noted in this chapter.

Commercially available op-amps are integrated circuits that contain all of the transistors and resistive

components needed to create the device. Op-amps will be treated as a whole monolithic entity; as this

textbook does not explore non-linear elements such as transistors, the inner workings of op-amps will not be

discussed.

Note: in this chapter of the textbook, voltages will be noted at single nodes. However, voltage is always

relative. There is no such thing as a voltage at one point. When discussing voltage at a node in this chapter,

it is implied that that voltage is being measured with respect to ground. This will make the circuit diagrams

and discussions of voltage much simpler in this chapter.

4.1 Amplifiers

Amplifiers will be discussed in this section. More specifically, this section will discuss single-ended input

voltage amplifiers. That means that there is one input signal (and one output signal – all of the amplifiers

discussed in this chapter will be single-ended output), and the property of the circuit being amplified is

the voltage. The schematic for an amplifier is shown in figure 4.1. Note the presence of connections for a

supply voltage (both positive: V +, and negative: V −), a consequence of an amplifier being an active circuit

element.

VOUTVIN

V +

V−

Figure 4.1: Circuit schematic for a single-ended input amplifier.

An amplifier takes an input voltage (VIN ) and multiplies it by some value (called the gain) and passes

that voltage to the output (VOUT ). The mathematical relationship between output and input, with gain

equal to A, is shown in equation 4.1.

VOUT = AVIN (4.1)
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This amplification cannot happen indefinitely; the output voltage cannot exceed the supply voltage (in

either the positive or negative direction). In other words: VOUT ≯ V + and VOUT ≮ V −. This is what is

meant by an active circuit element. The amplification does not come out of thin air, it comes from the

presence of a power supply connected to the supply terminals.

The input and output voltages are plotted for a single-ended input amplifier with a gain of A = 10 in

figure 4.2, given a supply voltage of ±15 V. Note how the voltage output saturates at the values of the supply

voltage. The output cannot exceed the supply.

−3 −1.5 0 1.5 3

−15

0

15

VIN (V)

V
O
U
T
(V

)

Figure 4.2: Input / output voltage characteristic of a single-ended input amplifier with gain (A) of 10 and sup-
ply voltage of ±15 V.

There is some important terminology to understand that is used to explain the characteristics of an

amplifier based on the value of the gain. These characteristics are not limited to single-ended input amplifiers

but are relevant to all of the devices discussed in this chapter.

• An amplifier is non-inverting if the gain is positive (A > 0).

• An amplifier is inverting if the gain is negative (A < 0).

• An amplifier is attenuating if the absolute value of the gain is less than one (|A| < 1).

• An amplifier is amplifying (or non-attenuating) if the value of the gain is greater than or equal to

one (|A| ≥ 1).

• An amplifier is saturated when the output voltage is equal to the supply voltage (VOUT = V + or

VOUT = V −).

4.2 Differential Amplifiers

A differential amplifier has two inputs. The output is scaled to the difference of the two inputs (hence the

term differential), multiplied by the gain. This relationship is expressed in equation 4.2. VN is the voltage

at the inverting input of the amplifier, and VP is the voltage at the non-inverting input of the amplifier.

VOUT = A(VP − VN ) (4.2)

The schematic of a differential amplifier is shown in figure 4.3.
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−

+

VOUT

VP

VN

V +

V −

Figure 4.3: Circuit schematic for a differential amplifier.

As the inverting input increases, the output becomes more negative. As the non-inverting input increases,

the output becomes more positive. Regardless, the output voltage cannot exceed the supply in either

direction.

The circuit model for a differential amplifier, that uses only components that have already been discussed

in this book, is shown in figure 4.4. RIN corresponds to the input resistance of the amplifier and ROUT

corresponds to the output resistance of the amplifier. The gain of the circuit is depicted as A. The supply is

not shown. It should be emphasized that this circuit diagram corresponds to a model of how a differential

amplifier works, and does not contain the actual circuit elements (generally, transistors and resistors) that

are used to create one.

VN

RIN

VP

−
+

A(VP − VN )

ROUT

VOUT

Figure 4.4: Circuit model of a differential amplifier.

An operational amplifier (op-amp) is a differential amplifier with three key features: large

gain, large input resistance, and small output resistance. The large gain means that the differential

input is multiplied by a very large number before being passed to the output. This concept will be discussed

in section 4.3. A large input resistance implies that very little (ideally no) current flows in to either the

inverting or non-inverting inputs into the amplifier’s internal circuitry. A low output resistance implies that

the voltage drop over and current through any load circuit will be minimally affected by the op-amp itself.

4.3 Comparator Circuits

A comparator is an op-amp that is built to exploit the high gain and subsequent quick saturation of output

voltage upon any difference between the inverting and non-inverting inputs. To demonstrate this quality,
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consider a differential amplifier (shown in figure 4.5) with a gain of 200,000. (This gain is typical for

commercial comparators such as the LM339.) The supply voltage is limited to ±15 V.

−

+

VOUT

−
+VIN

15 V

−15 V

Figure 4.5: Circuit schematic for a comparator.

With a gain of 200,000, the output voltage will saturate very quickly upon application of an input voltage.

In fact, the input voltage VIN that will cause a saturated output will be 15 V/20000 = 75 × 10−6 V. If a

negative input voltage is applied, saturation will be achieved on the output if a voltage with an amplitude

larger than 75× 10−6 V is applied to the input. A graph of the input and output voltage characteristics is

shown in figure 4.6.

−3 −1.5 0 1.5 3

−15

0

15

VIN (V)

V
O
U
T
(V

)

Figure 4.6: Input / output voltage characteristic of a comparator with gain of 200,000 and supply voltage of
±15 V.

This device saturates any time the voltage drop with respect to ground on the inverting input is greater

than the voltage drop with respect to ground on the non-inverting input. What practical application does a

comparator have? As the name implies, a comparator is used to determine if the voltage on the non-inverting

input is greater than the voltage on the inverting input. By itself, this is a useful circuit element that can

be used to judge the magnitude of two electrical signals. Two other important applications are explained in

the next two subsections of this book.

Before discussing comparator applications, it is important to note what happens to the functioning of a

comparator if all three characteristics of an op-amp are not met. These three characteristics are discussed

in the context of a positive saturation value (i.e. VOUT = V +), but the principles still apply for negative

saturation (VOUT = V −).

First: a comparator with a small gain will create a non-trivial threshold voltage that must be achieved on

the non-inverting input before the output saturates. With a gain of 200,000 (as we assumed in our example
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comparator above) the threshold voltage is 75 µV (assuming a supply of 15 V), which is, from a practical

standpoint, within a rounding error of zero. The relationship between threshold voltage (VTHR), positive

supply voltage (V +) and gain (A) is given in equation 4.3. It is clear to see that as the gain decreases, the

threshold voltage increases. The larger the threshold voltage, the less the comparator is able to compare the

two input voltage magnitudes, especially when the magnitude difference is small.

VTHR =
V +

A
(4.3)

Second: a comparator with a large output resistance will limit the current that flows through the output,

and therefore will reduce the maximum voltage drop of the output to less than the value of the positive supply

voltage. The maximum output voltage (VOUT,MAX) that can be achieved over a load resistor (RLOAD)

given a non-zero output resistance (ROUT ) is shown in equation 4.4. As the output resistance increases, the

maximum output voltage decreases. This equation makes the assumption that there is no current leakage

from other parts of the comparator (such as from the input terminals), which would complicate matters.

VOUT,MAX = V +

(
RLOAD

ROUT +RLOAD

)
(4.4)

Third: a comparator with a small input resistance will lead to a small amount of current entering into the

amplifier internals through the non-inverting and inverting inputs. This current will lead to an error voltage

between the two input voltages VP and VN . This is not a huge issue for comparators, but will become an

important factor in divided feedback op-amp circuits.

Comparators vs. “Op-Amps”

While a comparator is an operational amplifier, they are generally used in circuits that require

specific design parameters that are not adequately addressed by using a generic “op-amp” chip.

When purchasing an integrated circuit (IC) to use in a design, it is important to purchase the correct

chip that is capable of carrying out the required functions. When building a circuit that requires a

comparator, it can be advantageous to seek out a specific IC known as a “comparator” rather than

just purchasing a generic IC known as an “op-amp,” even though, as discussed, comparators are

technically a subset of the op-amp category.

First, comparators are meant to be operated in the saturation region, whereas op-amps are meant

to be operated in the linear region between V − and V +. Therefore, it is important for comparators

to have a quick saturation response. Comparator chips are generally designed to have much faster

switching characteristics than generic op-amps.

Second, noise can become a problem in comparator circuits. If a small amount of noise is present

on the input, it can cause the output to swing between both saturation modes. In order to prevent

that, many comparator chips are designed to incorporate hysteresis on the input signal, which requires

cbna Alyssa J. Pasquale, Ph.D. 101 Last updated: 2023/05/18



4 Operational Amplifiers (Op-Amps) 4.3 Comparator Circuits

a threshold of change to be met on the input before the output will swing between voltages.

4.3.1 Analog to Digital Conversion (ADC)

An analog to digital converter (ADC) takes an analog voltage and turns it into a signal suitable for use

in digital electronics. Generally, digital electronics use a constant voltage of 5 V (sometimes 3.3 V) to

represent a logical HIGH signal, and 0 V to represent a logical LOW signal. The binary number system

and Boolean algebra dictate the functioning of digital systems. (For more information, refer to my Digital

Systems textbook.)

Without getting into the proverbial weeds, it is sufficient to note that an ADC will translate an analog

voltage (capable of representing any value between 0 V and 5 V) into a digital signal (one or more values

that are either HIGH or LOW). There are many types of ADCs that can be designed, most of which contain

one or more comparators. For simplicities sake, only the flash-type ADC will be explored in this textbook.

A flash-type ADC is capable of directly converting an analog voltage into a digital signal (other types of

ADCs may require a finite sampling time followed by some time period to complete the conversion before

the next sample can be taken). It also uses a relatively simple to understand architecture. Of course, these

benefits must indicate a major drawback. Indeed, a flash-type ADC requires 2n − 1 comparators to create

an n-bit ADC (which is capable of generating binary numbers between 0 and 2n − 1).

The schematic of a 3-bit flash-type ADC is given in figure 4.7. Note that the individual supply connections

are not shown for any of the comparators. The positive supplies are connected to V + while the negative

supplies are connected to ground.

V +
R

− +

V7

R

− +

V6

R

− +

V5

R

− +

V4

R

− +

V3

R

− +

V2

R

− +

VIN

V1

R

Figure 4.7: A 3-bit flash-type analog to digital converter (ADC).

The input voltage (VIN ) can be any analog voltage between 0 V and V +. The source voltage (V +) will

typically be 5 V and is connected to one end of a large resistor ladder. The resistor ladder divides the source

voltage into 2n (in this example, eight) steps. (Therefore, each of the resistors needs to have an identical

value, denoted on the circuit diagram as R.) As the input voltage exceeds each one of these voltage steps, the

corresponding comparator output will saturate at V + (logic HIGH). While the output does not correspond

to a binary number (which would require a digital logic device called an encoder), it does result in a digital
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number (values that only use logic LOW and logic HIGH voltage levels).

Simulation: 3-bit flash-type ADC

Play around with a simulation of a 3-bit flash-type ADC on TinkerCAD. (This requires an account, but it

is free to sign up.) https://www.tinkercad.com/things/76pYQH5lgQu

4.3.2 Pulse-Width Modulation (PWM)

Pulse-width modulation (PWM) is a means of changing the average voltage of a signal without changing

the minimum or maximum voltage levels that are used. In this manner, a digital electronic system (which,

as mentioned, only uses 0 V and 5 V signals) can vary the amount of time the signal is HIGH with respect

to the amount of time the signal is LOW to modify the average voltage of the signal. PWM isn’t just used

in digital electronics. It is also an effective way of decreasing the average power supplied to a load while

delivering a large maximum power by sending short pulses instead of a continuous signal. (This method is

used in laser optics when a continuous laser beam would burn a hole in a sample, but repeated short pulses

will not.) In addition, there are devices that specifically require a PWM signal to function properly (such

as some servomotors).

PWM signals have multiple properties. First is the frequency of the pulses, which corresponds to the

number of pulses sent per unit of time. Second is the duty cycle, which corresponds to the fraction of time

the signal is HIGH compared to the period of the waveform. The equation for duty cycle (D) is shown in

equation 4.5. THIGH is the amount of time the waveform is held HIGH every cycle, and TLOW is the amount

of time the waveform is held LOW every cycle. (The period of the wave is equal to THIGH + TLOW and is

equal to the inverse of the frequency.)

D =
THIGH

THIGH + TLOW
(4.5)

The average voltage V̄ of a PWM signal is given in equation 4.6, where D is the duty cycle, VMAX is the
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maximum value of the modulated signal, and VMIN is the minimum value of the modulated signal.

V̄ = DVMAX + (1−D)VMIN (4.6)

While PWM is accomplished using a completely different mechanism in digital electronics such as mi-

crocontrollers, it is possible to create a PWM circuit using a comparator, as shown in figure 4.8. The input

voltage (VIN ) can be a sinusoid or triangle wave. The reference voltage (VREF ) can be tuned to change the

duty-cycle of the output voltage (VOUT ). The output will saturate between V − and V +.

−

+

VOUT

VREF

VIN

V +

V −

Figure 4.8: Circuit schematic of a comparator used to generate a PWM signal.

Example PWM waveforms given three different reference voltages with the same sinusoidal input signal

are shown in figure 4.9. As the reference voltage is increased, the duty cycle of the PWM waveform increases.

— VIN — VREF — VOUT

D
≈

2
0%

D
≈

50
%

t (arbitrary)

D
≈

80
%

Figure 4.9: Three PWM signals (black waveform) with varying duty cycles. The input wave VIN is represented
by a red curve and the reference voltage VREF is represented by a blue line.

In this example, the frequency of the PWM waveform is set by the frequency of VIN . This makes a flexible

PWM circuit where the minimum and maximum voltage values of the output are set by the comparator

supply pins (V + and V −), the frequency is set by the input waveform, and the duty cycle is set by the

reference voltage.
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Simulation: Pulse-width modulation

Play around with a simulation of a pulse-width modulation circuit on TinkerCAD. (This requires an

account, but it is free to sign up.) https://www.tinkercad.com/things/0G4jvHX5J7g

4.4 Feedback Circuits

Feedback is a mechanism used to regulate, or control, the output of an electronic device. There are two

types of feedback: positive and negative.

Positive feedback is what happens when a speaker and microphone come in close proximity to each other.

As sound goes into the microphone, it emits from the speaker. When the speaker is close to the microphone,

the microphone will take that sound emission from the speaker and amplify it, which gets picked up by the

microphone, and so on, until a loud squeal is emitted when the maximum amplification setting (saturation)

is reached. Without the physical limitations to this process, energy could theoretically be amplified infinitely.

This is undesirable.

Negative feedback is a process that regulates itself. The difference between a setpoint and a measured

value is used to change the output value. For example, if a car’s cruise control is set at 50 MPH, and the

car is only traveling at 30 MPH, there is a difference of 20 MPH. This difference then controls how much to

engage the throttle. As the car’s speed increases, the difference between the measured speed and setpoint

decreases, causing the throttle to engage proportionally less. At some point, the setpoint will be achieved, the

difference will be 0 MPH, and no more throttle adjustments need to be made. Because it is self-regulating,

negative feedback forms the basis for modern control systems.

Negative feedback is also used in op-amp circuits. Because the gain of an op-amp is so high, it is

impractical on its own as an amplifier, due to the fact that it saturates so rapidly (which was a feature in

comparator circuits, but a drawback otherwise). However, feedback from the output to the inverting input

can be used to tame the gain to a value that has practical uses.
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Note that the remaining circuit diagrams in this chapter will not necessarily explicitly show the voltage

supply connections. In a real circuit, supply connections must exist to power the op-amps. They are merely

hidden in these diagrams to make them easier to read.

4.4.1 Voltage Follower

A voltage follower circuit is the simplest type of negative feedback op-amp circuit. The output is fed into

the inverting input, creating the relationship given in equation 4.7.

VOUT = A(VP − VOUT ) (4.7)

The schematic of a voltage follower is shown in figure 4.10.

−

+

VOUT

VIN

Figure 4.10: Schematic of a voltage follower circuit.

Assume that an input of 5 V is applied to VIN while VOUT is initially 0 V. The op-amp has a gain of

200,000. Plugging this information into equation 4.7, the voltage difference of 5 V multiplied by 200,000

means that the output will attempt to increase dramatically. Before the output can reach a value of one

million, or even the positive supply voltage, however, it will increase slightly. (The rate at which the voltage

levels increases is known as the slew rate.) Let’s say the output increases to 1 V. Now the voltage difference

is only 4 V, and the output will try to drive to 4 V × 200, 000. Before that happens, the voltage will increase

a bit more, say, to 2 V. The voltage change now is only 3 V, so the output will not drive as high. At a

certain point, the output will reach a stable level as close as possible to the input voltage of 5 V.

This circuit is called a voltage follower because the stability of the negative feedback system causes the

output voltage to follow the input voltage. The effective gain of this circuit is one; the output equals the

input without any multiplicative factor. What is the purpose of a circuit that does not change the value of

the input voltage before passing it to the output? The purpose of a voltage follower is that the output follows

the input while being effectively isolated from it. To understand what this means, consider the following

example.

Let’s say that a 9 V battery needs to be used to create a stable output voltage of 5 V, over which a

resistive load will be placed (but the exact resistance of the load is unknown and might be variable). One

way that a circuit designer could reduce a 9 V source to 5 V would be to create a voltage divider. This

voltage divider is shown in figure 4.11.
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9 V

4 kΩ

5 kΩ

+

−

VOUT

Figure 4.11: Voltage divider to convert a 9 V input into a 5 V output.

Once a load is connected to the output of the voltage divider, however, the equivalent resistance of the

voltage divider circuit changes. The output voltage will never be equal to the desired 5 V value, unless

the resistance of the load is infinite! The output voltage relationship, for this specific circuit, is given in

equation 4.8. Because the load resistance can be variable, it is not possible to engineer the voltage divider

to account for the load resistance.

VOUT = 9 V

(
5RLOAD

9RLOAD + 20

)
(4.8)

There needs to be another way to solve this problem. Fortunately, the voltage follower is the solution.

Because of the negative feedback driving the output to be equal to the input, a load resistor will not affect

the output voltage in any way. The circuit diagram for this solution is shown in figure 4.12.

9 V

4 kΩ

5 kΩ

−

+

RLOAD

+

−

5 V

Figure 4.12: A voltage divider followed by a voltage follower will convert a 9 V input into a 5 V output regard-
less of the load resistance.

When connected as shown in figure 4.12, there will be a 5 V drop over the load resistor. Ohm’s law

states that current will flow through the resistor. That current does not come from the battery, as the input

resistance of an op-amp is very high (ideally infinite). Where does the current come from? It comes from the

internal circuitry of the op-amp, which draws from the supply voltage. Remember: the op-amp is an active

circuit element. (Refer to section 4.6 for more information on op-amp output current. The load resistor will

be ultimately limited by the amount of current the op-amp can source.)
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4.5 Divided Feedback Op-Amp Circuits

The voltage follower has a gain of one. An op-amp without negative feedback has an extremely large gain.

To exploit the shades of gray in between one and infinity, divided feedback can be used. A schematic of a

generic divided feedback circuit is shown in figure 4.13.

−

+

VOUT

VP

V1

R1

VN

R2

Figure 4.13: A divided feedback circuit.

Although the negative feedback path includes a resistor now (denoted as R2 in figure 4.13), the same

property that forced the output voltage to be equal to the input voltage forces the voltage difference between

the inverting and non-inverting inputs to be as close to zero as possible. The voltage at VN will therefore

be driven to be (ideally) exactly equal to VP . This is called a virtual node; the two voltages are identical

without being physically connected.

There are two very important properties of divided feedback op-amp circuits that come from the ideal

op-amp characteristics (infinite gain, infinite input resistance, zero output resistance): the voltage at both

the inverting and non-inverting nodes is equal; and no current enters into either the inverting

or non-inverting inputs of the op-amp. These two properties will enable us to analyze all of the

following op-amp circuits in this textbook.

4.5.1 Inverting Op-Amp

An inverting op-amp modifies the input voltage with the equation VOUT = AVIN , where the gain A is a

negative number. A schematic of an inverting op-amp is shown in figure 4.14.

−

+

VOUT
A

−
+VIN

R1

R2

Figure 4.14: Circuit diagram of an inverting op-amp.

The basic design of an inverting op-amp requires two resistors to create divided feedback. The non-

inverting input is connected to ground. Using the two properties of an ideal op-amp, the gain (A) of this

op-amp can be calculated.
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First, KCL at node A (depicted on the circuit diagram: node A is the point at which both resistors

connect to the inverting input of the op-amp) tells us that the current flowing through resistor R1 must be

equal to the current flowing through resistor R2. This is true because no current enters into the op-amp.

Second, the voltages at each node in the circuit can be determined. At node A, the voltage is 0 V (because

of the virtual node of the circuit; another of the ideal op-amp properties). We can now use Ohm’s law to

determine the relationship between VOUT and VIN , shown in equation 4.9 and derived below.

A = −R2

R1
(4.9)

DERIVATION

IR1
= IR2

VIN − 0

R1
=

0− VOUT

R2

VOUT = −R2

R1
VIN

A = −R2

R1

The gain of an inverting op-amp is therefore equal to −R2/R1. Note that it is possible for an inverting

op-amp to attenuate or amplify a signal. However, the output signal will always be inverted.

Example: Inverting op-amp

Calculate the gain and output voltage of the op-amp circuit. Assume that the supply pins are connected to

a sufficiently high voltage not to saturate the output.

−

+

VOUT

−
+0.5 V

500 Ω

2 kΩ

This circuit is an inverting amplifier. The gain is calculated below.

A =
−2000 Ω

500 Ω
= −4

Multiply the input voltage by the gain to determine the output voltage.

VOUT = (−4)(0.5 V) = −2 V
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4.5.2 Non-Inverting Op-Amp

A non-inverting op-amp also modifies the input voltage with the equation VOUT = AVIN , except this time

we will expect the value of A to be a positive value. The schematic for a non-inverting op-amp circuit is

shown in figure 4.15.

−

+

VOUT
A

−
+VIN

R1

R2

Figure 4.15: Circuit diagram of a non-inverting op-amp.

The same two ideal op-amp properties will be used to determine the gain of this circuit. KCL at node A

indicates that the current through resistor R1 is equal to the current through resistor R2, because no current

enters into the inverting input into the op-amp itself. The voltage at node A is equal to VIN due to the

virtual node between inverting and non-inverting inputs. Ohm’s law can be used to determine the circuit

properties, shown in equation 4.10 and derived below.

A = 1 +
R2

R1
(4.10)

DERIVATION

IR1 = IR2

0− VIN

R1
=

VIN − VOUT

R2

VOUT =

(
1 +

R2

R1

)
VIN

A = 1 +
R2

R1

The gain of a non-inverting op-amp is therefore equal to 1 + R2/R1. Note that it is not possible for an

inverting op-amp to attenuate a signal, only amplify it.

4.5.3 Cascaded Op-Amps

It is possible to cascade op-amps; the output of one op-amp is fed into the input of a second op-amp. Each

op-amp is called a stage. The op-amps can be analyzed independently and multiplied to determine the
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overall circuit gain, or the entire circuit can be analyzed. Consider two cascaded inverting op-amps, shown

in figure 4.16.

−

+

A −

+

VOUT
CB

R3

R4

−
+VIN

R1

R2

Figure 4.16: Two cascaded inverting op-amps.

It is possible to analyze this circuit by using the ideal op-amp properties. The current through R1 is

equal to the current through R2. The current through R3 is equal to the current through R4. (The current

through R2 is not necessarily equal to the current through R3, however!) Additionally, the voltage at nodes

A and C are equal to 0 V due to the virtual nodes with the non-inverting inputs. The circuit output voltage

is shown in equation 4.11 and derived below.

VOUT =

(
−R4

R3

)(
−R2

R1

)
VIN (4.11)

DERIVATION

IR1
= IR2

VIN − 0

R1
=

0− VB

R2

VB = −R2

R1
VIN

IR3
= IR4

VB − 0

R3
=

0− VOUT

R4

VOUT =

(
−R4

R3

)(
−R2

R1

)
VIN

This confirms that the gain of the cascaded circuit is equal to the product of the gains of the individual

stages.

VIN A1 A2 A3 An
... VOUT

Figure 4.17: Block diagram of n cascaded op-amp circuits.
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In general, and assuming that saturation does not occur at any stage, n op-amps cascaded as shown in

the block digram in figure 4.17, with individual gains of A1 through An will have a gain equal to the product

of all of the individual gains, as expressed in equation 4.12.

ATOTAL =

n∏
i=1

Ai (4.12)

Cascading op-amps can be beneficial to increase overall circuit gain. Multiple stages can also be useful

in active filter circuits (which will be discussed in section 9.3 in this book). Realistically, non-idealities in

op-amps may cause compounding issues when op-amps are cascaded together, as non-idealities in the early

stages will be amplified by subsequent stages.

4.5.4 Summing and Difference Amplifiers

A summing amplifier has an output proportional to the sum of multiple input circuits. A schematic of a

summing op-amp circuit is shown in figure 4.18.

−

+

VOUT
A

R

−
+V3

R

−
+V2

R

−
+V1

RF

Figure 4.18: Circuit diagram of a summing amplifier.

Using KCL at node A and Ohm’s law, it is possible to find the output equation of the op-amp circuit,

given in equation 4.13.

VOUT = −RF

R
(V1 + V2 + V3) (4.13)

Note that the inverting configuration of this op-amp circuit means that the output is proportional to

the negative sum of the input voltages. If it’s necessary to have a non-inverting configuration, either a non-

inverting op-amp circuit can be used, or the inverting summing amplifier can be cascaded into an inverting

amplifier, creating a two-stage circuit.

The schematic for a difference amplifier is shown in figure 4.19.
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−

+

VOUT
A

R

−
+V2

R

−
+V1

B

R

R

Figure 4.19: Circuit diagram of a difference amplifier.

It is again possible to use KCL and Ohm’s law to find the output equation of the circuit. The voltage

at node A (VA in equation 4.14) is equal to the voltage at node B due to the virtual node. The solution is

given in equation 4.14 and derived below.

VOUT = −(V1 − V2) (4.14)

DERIVATION

V1 − VA

R
=

VA − VOUT

R
V2 − VA

R
=

VA

R

VOUT = −(V1 − V2)

This is an inverting unity gain difference amplifier. To achieve a different gain value, it is possible to

use different resistor values, but the circuit would need to be re-analyzed. It is also possible to cascade an

inverting unity gain difference amplifier with a second stage to achieve a different gain value.

4.5.5 General Op-Amp Circuits

Not all op-amp circuits fall into the categories discussed above (inverting, non-inverting, summing, etc.).

In those cases, careful analysis can lead to a mathematical understanding of the circuit properties. First:

it must be emphasized that the op-amp properties (virtual node, no current entering the inputs) are only

valid if there is negative feedback present in the circuit. In the absence of negative feedback, then those two

assumptions cannot be used to solve for the circuit properties. However, if the presence of negative feedback

is established, then circuit analysis tools can be used with the virtual node and zero-current input properties

to solve for the circuit characteristics.
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Example: Current-sensing circuit

A photodiode is a circuit device that converts light to electric current. It is used as the input to an op-

amp circuit, as shown. Calculate the output voltage and its relationship to I, the current generated by the

photodiode.

−

+

VOUT

I

R

First, it must be established that there is negative feedback included in this circuit. The presence of the

resistor between the output voltage and the inverting input means that we can use the assumptions of an

op-amp circuit to solve this.

The voltage at the inverting input must be equal to 0 V, as the non-inverting input is connected to ground.

As no current can enter into the inverting input of the op-amp, the amount of current flowing through the

resistor must be equal to I. Therefore a relationship between the output voltage and photodiode current

can be derived.

VOUT = −IR

Example: T-network circuit

In order to generate a large value of circuit gain in an inverting amplifier, either the feedback resistor must

be very large, the input resistor must be very small, or both. A T-network is used to generate a large circuit

gain without this constraint on resistor values.

−

+

VOUT

−
+0.1 V

1 kΩ

5 kΩ

1 kΩ

3 kΩ

Because there is feedback between the output of the circuit and the inverting input, op-amp assumptions
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can be used to solve this circuit.

The voltage at the inverting input must be equal to 0 V. The current through the 1 kΩ input resistor

can therefore be calculated.

I =
0.1 V

1 kΩ
= 0.1 mA

All of this current must run through the 5 kΩ resistor (as no current can enter through the inverting

input on the op-amp). The voltage at the T junction can be calculated using Ohm’s law.

VT = −(0.1 mA)(5 kΩ) = −0.5 V

The current flow through the 1 kΩ resistor in the feedback network can now be calculated. Because the

voltage at VT is negative, we know that current must flow “upward” through the resistor, and we will treat

that as the positive direction.

I1k =
0.5 V

1 kΩ
= 0.5 mA

Using KCL at the T junction, we can calculate that the current flowing through the 3 kΩ resistor must

be the sum of the two currents.

I3k = 0.5 mA + 0.1 mA = 0.6 mA

Now Ohm’s law can be used to calculate the output voltage.

I =
VT − VOUT

R
=
−0.5 V− VOUT

3 kΩ
= 0.6 mA

VOUT = −[(0.6 mA)(3 kΩ) + 0.5 V] = −2.3 V

The gain of this circuit is -23.

4.5.6 Implementing Mathematical Functions with Op-Amps

Op-amps can be used to implement many different mathematical functions. Addition and subtraction can

be accomplished using summing and difference amplifiers, as discussed in section 4.5.4. Simultaneous sets

of addition and subtraction can be solved by using more than one op-amp, as discussed in section 4.5.7.

Multiplication by a constant is accomplished by configuring an inverting (or non-inverting) amplifier

circuit to have an amplifying gain. Division by a constant is accomplished by configuring an amplifier circuit

to have an attenuating gain. (Note: it is very difficult computationally to multiply two variable values

together. This is a constraint not limited to analog computation; it is also difficult in digital computers.)
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Differentiation and integration can be implemented by using capacitors in the amplifier circuit, either in

the feedback or input path. These two circuits will be discussed in section 5.5.

While non-linear functions are outside the scope of this class, a diode has a natural logarithm response

between voltage and current. Therefore a diode in an amplifier circuit can be used to implement either a

ln(x) or ex response.

4.5.7 Solving Linear Equations

It is possible to use op-amps to solve equations. In fact, op-amps were used in analog computers to perform

calculations on many diverse physical quantities including ballistic projectile trajectory, aircraft stability

and control, and even economic models (MONIAC computer). While a detailed history and explanation of

analog computation is outside of the scope of this textbook, it makes for fascinating reading.

This book will consider two scenarios of equation-solving. First, consider a single linear equation, shown

in equation 4.15.

ax+ b = 0 (4.15)

An op-amp circuit can be used to solve this equation for x. Consider the inverting op-amp shown

in figure 4.14. In this circuit, the coefficient a is the ratio of the feedback resistor to the input resistor:

a = R2/R1. The constant term b comes from the value of the voltage source: b = VIN . Finally, the output

voltage contains the value of the variable x.

Simultaneous linear equations can be solved by using more than one op-amp and using the features of a

summing amplifier circuit. To solve two simultaneous linear equations, two op-amps are used. The output

of each op-amp is fed into both inverting inputs after being scaled by a potentiometer. A third input into

each inverting input comes from a voltage source and provides the constant terms. A very simplified circuit

diagram is shown in figure 4.20.
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−

+

xR

b0

R

R

scaled by a1 with a potentiometer (not shown)

−

+

scaled by a2

yR

b1

R

R

scaled by a3

scaled by a4

Figure 4.20: Op-amp circuit that can solve two simultaneous linear equations.

Scaling potentiometers (not shown) are used to scale each output voltage to a coefficient before it is

passed to a resistor (labeled R in figure 4.20). Voltage supplies are used to generate the constant terms.

This circuit can solve the equations shown in equations 4.16–4.17.

0 = a1x+ a2y + b0 (4.16)

0 = a3x+ a4y + b1 (4.17)

In order to generate negative coefficients, it would be necessary to include additional inverting amplifiers

to generate values of −x and −y to use on the scaling potentiometers. It also must be noted that there

are limitations with this circuit. There is a maximum and minimum value of voltage that can occur on

the output, which is limited by the supply voltage. Therefore this equation-solving circuit cannot solve for

arbitrarily large numbers. However, it can solve a scaled version of an equation. The output would then be

multiplied by that scaling factor to obtain the correct output.
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Simulation: Linear equation-solver

Play around with a simulation of a linear equation-solver on CircuitJS: http://www.falstad.com/

circuit/circuitjs.html. Download the simulation file: https://drive.google.com/file/d/

1bRtaGDRFJcZW7cvv-BPm65j89Ihp1env. Then open CircuitJS, and click on File ... Open File. Se-

lect the downloaded file. You can change the values of each coefficient by moving the sliders on each

potentiometer.

It is also possible to solve differential equations using this method. This would require an op-amp building

block that can take the integral of a voltage. Non-linear equations can be solved by designing op-amp building

blocks that are capable of computing the desired function (say, using a diode to calculate natural logarithms).

4.6 Op-Amp Output Current

Up until this point, the discussion about op-amps has mostly been confined to discussions of voltages and

voltage amplification. However, Ohm’s law states that where there is voltage (and a closed path), there is

current. Where does the current flowing through the load of an op-amp circuit come from? Consider the

voltage follower shown in figure 4.21.

−
+VIN

R

R

−

+
0 mA

0 mA

RLOAD

+

−

VOUT

IOUT

Figure 4.21: A voltage follower circuit with current flow into and out of the op-amp labeled.

In an ideal situation, no current flows into the inverting or non-inverting input terminals of an op-amp.

This means that the feedback path of the voltage follower contributes no current to the load. Where does

IOUT come from? It must be sourced from the op-amp itself. The current comes from the power supply

that’s connected to the op-amp supply terminals, and then flows through the output of the op-amp into the

load. This property of an integrated circuit to supply current is called sourcing current. The op-amp of the

voltage follower sources current. The amount of current that an op-amp can source is listed on the device

datasheet.

In an inverting amplifier, the output current flows in the opposite direction, as shown in figure 4.22.
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−

+

ISINK

RLOAD

−

+

VOUT

IOUT

A

−
+VIN

R1

R2 I

Figure 4.22: Circuit diagram of an inverting op-amp with a resistive load, showing the direction of each cur-
rent.

No current flows into the op-amp inputs. Now that the input voltage source is not electrically isolated

from the output (as it was in the voltage follower circuit), the source is able to generate current. The op-amp

will now have to accept current through its output node. This is known as sinking current. The amount of

current the op-amp must sink can be calculated by using KCL at the output node, shown in equation 4.18

and derived below.

ISINK =
VIN

R1

(
1 +

R2

RLOAD

)
(4.18)

DERIVATION

ISINK = I + IOUT

=
VIN

R1
+

R2VIN

R1RLOAD

=
VIN

R1

(
1 +

R2

RLOAD

)

The amount of current that an op-amp can sink is listed on the datasheet of the device. Figure 4.23

shows an example excerpt of the electrical characteristics section of the datasheet for the LM324 op-amp.

It shows the minimum and typical values of output current that can be sourced or sunk under certain test

settings. This particular op-amp is capable of sourcing much more current than it can sink. Paying attention

to these characteristics is very important if particular current sourcing or sinking requirements must be met.
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Figure 4.23: Example excerpt of the electrical characteristics section of the LM324 op-amp datasheet.

Some datasheets list the output current specifications under a section labeled “output short-circuit cur-

rent” rather than “output current” as shown in figure 4.23.

Extra Resources

• Moghimi, Reza. Ask The Applications Engineer–31: Amplifiers as Comparators? April 2003. https:

//www.analog.com/en/analog-dialogue/articles/amplifiers-as-comparators.html

• O’Donnell, Bill. How to Read an Op-Amp Data Sheet. www.physics.unlv.edu/~bill/PHYS483/

op_amp_datasheet.pdf

• Texas Instruments. Understanding Basic Analog – Ideal Op Amps. July 1999. Revised October

2016. https://www.ti.com/lit/an/slaa068b/slaa068b.pdf
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Example Problems

1. Calculate the output voltage and gain of the circuit shown in figure 4.24. (Assume that the supply

voltage is sufficient to generate any output value.)

−

+

VOUT

−
+0.5 V

1 kΩ

6 kΩ

Figure 4.24: Circuit diagram for op-amps question 1.

2. Calculate the output voltage of the circuit shown in figure 4.25. (Assume that the supply voltage is

sufficient to generate any output value.)

−

+

VOUT

−
+5 V

5 kΩ

10 kΩ

−
+3 V

1 kΩ

2 kΩ

Figure 4.25: Circuit diagram for op-amps question 2.
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3. Calculate the output voltage and gain of the circuit shown in figure 4.26. (Assume that the supply

voltage is sufficient to generate any output value.)

−

+

VOUT

−
+0.5 V

5 kΩ

2 kΩ

4 kΩ

1 kΩ

2 kΩ

Figure 4.26: Circuit diagram for op-amps question 3.

4. Calculate the gain of the circuit shown in figure 4.27.

−

+−
+VS

1 kΩ

2 kΩ

3 kΩ

−

+

6 kΩ

2 kΩ

VOUT

6 kΩ

Figure 4.27: Circuit diagram for op-amps question 4.
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5. Calculate the output voltage of the circuit shown in figure 4.28. (Assume that the supply voltage is

sufficient to generate any output value.)

−

+−
+0.5 V

2 kΩ

4 kΩ

2 kΩ

−

+

2 kΩ

3 kΩ

2 kΩ

VOUT− +

1 V

3 kΩ

Figure 4.28: Circuit diagram for op-amps question 5.
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5 Capacitors and RC Circuits

Capacitors are circuit elements that are capable of storing and releasing energy in the form of an electric

field. The simplest model of a capacitor consists of two parallel plates of conducting material separated by

an insulator (dielectric). As voltage is applied to the plates, charge builds up due to the fact that current

cannot pass through the dielectric. This charge build-up creates a static electric field. This is depicted

schematically in figure 5.1.

−
+

+ + +

– – –

Figure 5.1: Two parallel plates of conducting material separated by an insulator will cause a buildup of charge
when voltage is applied. This is called a capacitor.

The generic circuit symbol for a capacitor is shown in figure 5.2. It very closely resembles the parallel

plate model.

Figure 5.2: The circuit symbol for a capacitor.

Using the hydraulic analogy of electric circuits, a capacitor can be thought of as acting like a rubber

membrane sealed in a pipe. When water flows through the pipe, water molecules cannot pass through

the membrane, but the stretching causes current to flow nonetheless. You can think of current as flowing

“through” a capacitor without any electrons passing from cathode to anode. Eventually, with the application

of a high enough voltage (known as the breakdown voltage), electrons will be able to pass through the

insulating layer (this is generally not desirable).

The amount of charge that can be stored in a capacitor depends on the applied voltage and a property

of the capacitor known as capacitance. This relationship is shown in equation 5.1.

q(t) = v(t)C (5.1)

Capacitance depends on the area of the plates (A), the distance between plates (d), and the permittivity

of the dielectric material (ϵ) based on the mathematical relationship given in equation 5.2. The symbol for

capacitance is C and the units are F (Farads).

C =
ϵA

d
(5.2)

Dielectric permittivity describes how well a dielectric material can hold an electric charge. This value is
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mathematically expressed as the product of the vacuum permittivity (ϵ0) multiplied by the relative permit-

tivity (ϵr), described in equation 5.3.

ϵ = ϵ0ϵr (5.3)

The value of the vacuum permittivity is given in equation 5.4.

ϵ0 = 8.85× 10−12 F/m (5.4)

The relative permittivity is the ratio of the permittivity of a dielectric compared to a vacuum; the higher

the value of ϵr, the better the dielectric is at holding an electric charge. The larger the relative dielectric

permittivity, the higher the capacitance will be, based on equation 5.2.

Example: How big is one Farad?

To conceptualize how “big” one Farad is if created with a parallel plate capacitor, it can be calculated how

large an area would be needed to create one Farad of capacitance given a separation of 1 mm between the

two plates, with air being used as the dielectric material (air has a relative permittivity of one).

A =
Cd

ϵ

=
(1 F)(1× 10−3 m)

8.85× 10−12 F/m

= 113, 000, 000 m2

= 113 km2

To put this size into context, a parallel plate capacitor using air as a dielectric with a spacing of 1 mm

would completely engulf the city of Naperville, Illinois. This is clearly not the best way to build a capacitor!

5.1 Types of Capacitors

Capacitors can be categorized as non-polarized or polarized. In each of these groups, there are multiple

different types of capacitors.

5.1.1 Non-Polarized Capacitors

Non-polarized capacitors, which have a circuit symbol shown in figure 5.2, can be connected in any orientation

in a circuit. Generally speaking, there are two metal layers separated by a dielectric. The different types of

non-polarized capacitors are named after the type of dielectric used (vacuum, air, glass, paper, mica, and

ceramic, to name a few).

Ceramic capacitors are very frequently used due to their small size and low cost. Physically, they resemble
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a small pancake with two metallic leads sticking out. Multiple layers of ceramic and metal are stacked up

and placed into a package. The small size and dielectric choice means that while ceramic capacitors may

have a large amount of capacitance per unit volume, their overall capacitance is low compared to other types

of capacitors (namely, electrolytic capacitors). Because ceramic capacitors are non-polarized, they are good

to use in AC circuits, particularly filter circuits.

Ceramic capacitors are stamped with a code that can be used to determine the value of the capacitance.

A diagram of a ceramic capacitor, including code, is shown in figure 5.3.

102

Figure 5.3: A schematic of a ceramic capacitor with numerical code. This particular capacitor would have a
value of 1,000 pF.

The first two numbers act as the first two stripes on a resistor color code; they indicate the value of the

capacitance. The third number represents the number of zeros following the value, in units of picofarads, or

pF. For example, the 102 capacitor is 10 followed by two zeros: 1,000 pF.

Because ceramic capacitors are non-polarized, they are generally benign to use in circuits. The main

hazard that can occur with a ceramic capacitor is to apply more voltage than the capacitor is rated for.

At a certain point, the ceramic dielectric will physically break down. The effect of over-volting a ceramic

capacitor can be cumulative (in other words, the capacitor may not catastrophically break down but will

weaken and become less stable over time). Generally, when a ceramic capacitor is over-volted, it will fail

open, which means that current will stop flowing once the capacitor is destroyed. This is a good thing in

that it removes itself from the circuit when it beaks, but a bad thing in that it will stop working without

necessarily being very obvious that it broke.

5.1.2 Variable Capacitors

Variable capacitors use two sets of parallel metal plates, each of which is connected to one of the leads. One

set of parallel plates is held still, while the other set can rotate. When the moveable set of metal plates is

rotated, the amount of overlap between the two sides of the metal will vary, which changes the value of the

capacitance. A photograph of a rotary-style variable capacitor is shown in figure 5.4. On the left the metal

plates have been rotated to have maximum overlap and capacitance. On the right the metal plates have

been rotated to have minimum overlap and capacitance.
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Figure 5.4: Photograph of a rotary-style variable capacitor with maximum metal plate overlap / capacitance
(left) and minimum overlap / capacitance (right).

The circuit symbol for a variable capacitor is shown in figure 5.5.

Figure 5.5: The circuit symbol for a variable capacitor.

Variable capacitors were used in radio circuits (before they became largely digital) to tune the correct

radio frequency to amplify. The dial on the radio literally moved the rotating metal plates to change the

capacitance and hence the circuit frequency.

5.1.3 Polarized Capacitors

Polarized capacitors are capacitors where one of the leads must be connected to high potential and the other

to low potential. In other words: the capacitor cannot be connected in the circuit any which way. The circuit

symbol for a polarized capacitor is shown in figure 5.6. The round end corresponds to the low potential side

of the capacitor.

Figure 5.6: The circuit symbol for a polarized capacitor.

Polarized capacitors fall into two categories: electrolytic and supercapacitors. Supercapacitors will not
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be discussed in this book except to note that they act as a hybrid between a capacitor and a rechargeable

battery. Electrolytic capacitors are named after the type of metal used in the anode: aluminum, niobium,

or tantalum. Each of the anodes is roughened (which acts to increase the surface area of the capacitor)

and oxidized (creating a very thin dielectric layer, decreasing the distance between cathode and anode). An

electrolyte gel acts as the cathode. Electrolytic capacitors generally have a very large amount of capacitance.

However, because they are polarized, they cannot be used in all circuit applications and are mostly used in

DC circuits.

Aluminum electrolytic capacitors have an aluminum anode. They tend to be inexpensive and easy to

obtain. Aluminum electrolytic capacitors are packaged in a cylinder. In a radial configuration, one of the

leads is shorter than the other and is situated near a stripe on the cylindrical package. The short lead /

stripe indicates the low potential end of the capacitor. This is depicted in figure 5.7.

Figure 5.7: Diagram of an aluminum electrolytic capacitor. The short lead (also has a stripe on the casing)
corresponds to the low potential connection.

The top of the cylindrical packaging is typically scored to allow breakage in case the capacitor is reverse-

biased (plugged in backwards) or over-volted. On top of the hazard of over-volting the capacitor, reverse

biasing the capacitor is also problematic. Aluminum electrolytic capacitors can and will explode under the

right circumstances, and will release anisotropically via the scored top of the cylinder. (Therefore, it is not

a good idea to point the top of an aluminum electrolytic capacitor at anything important, especially your

face, if it is uncertain if it’s connected properly or with the correct amount of voltage). Thankfully, as with

ceramic capacitors, an aluminum electrolytic capacitor will fail open (removing itself from the circuit after

exploding). The amount of capacitance of an aluminum electrolytic capacitor, as well as the voltage rating,

is printed on the packaging.

Tantalum electrolytic capacitors are made of a tantalum anode. They have a very large capacitance per

unit of volume, making them good to use in applications where a small footprint is required. Physically,

tantalum electrolytic capacitors resemble the pancake look of a ceramic capacitor. However, tantalum

electrolytic capacitors are polarized and must be treated accordingly. Usually, the high potential end (anode)

is indicated on the packaging with a plus sign, as shown in figure 5.8.
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+

Figure 5.8: A diagram of a tantalum electrolytic capacitor. The plus sign corresponds to the high potential
lead.

Tantalum capacitors have the property of failing short when over-volted. This can be very dangerous, as

a short exacerbates the problem and can lead to a fire. Therefore it is very important to respect the polarity

and voltage rating of a tantalum electrolytic capacitor.

5.2 Measuring Capacitance

Capacitors can be measured with a digital multimeter or with an LRC meter. A digital multimeter will

charge a capacitor with a known current and measure the voltage to calculate the capacitance. An LRC

meter applies an AC voltage, measures the AC current, and uses the phase and amplitude differences to

calculate the capacitance.

Capacitance must be measured from one end of the capacitor (or equivalent capacitance) to the other,

in parallel, as shown in figure 5.9.

Figure 5.9: A diagram of how capacitance is measured in parallel (across a component or components).

It is important to ensure that the capacitor(s) are completely discharged before making a measurement.

Capacitors can be discharged by shorting the leads with a high value, high-wattage resistor for several

seconds.

5.3 Voltage-Current Relationship in a Capacitor

The relationship between voltage and current in a capacitor can be quantified using the relationship between

capacitance and charge (equation 5.1) as well as the relationship between current and charge (equation 1.1).

This relationship is shown in terms of current in equation 5.5 and derived below.

i(t) = C
dv(t)

dt
(5.5)
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DERIVATION

i(t) =
dq(t)

dt

=
d(v(t)C)

dt

= C
dv(t)

dt

Based on equation 5.5, if the voltage remains unchanging through time, there will be no current flowing

through the branch that contains a capacitor. Therefore, in DC conditions, a capacitor can be replaced by

an open circuit. This analysis technique will be used frequently in this book to explore the transient response

of capacitor circuits.

This equation can be refigured to solve for the voltage drop over a capacitor, shown in equation 5.6.

v(t) =
1

C

∫ t

−∞
i(τ) dτ (5.6)

Although calculus is required to fully analyze the relationship between voltage and current in a capacitor,

the relationship between the two variables is linear. This means that capacitors are linear circuit elements,

and all of the techniques discussed in this book (such as superposition and Thévenin equivalence, for example)

are still relevant with capacitive circuits.

5.4 Equivalent Capacitance

Just as it was possible to combine resistors together to find an equivalent resistance, it is possible to com-

bine capacitors together to find an equivalent capacitance. The rules (and mathematical relationships) for

calculating series and parallel combinations of capacitors are explained below.

5.4.1 Series Combinations of Capacitors

Capacitors in series all share a common branch, as shown in figure 5.10. Each individual voltage drop is

shown (numbered with subscripts), as well as the total voltage drop over the combination of capacitors (v(t)).

The current flow through all of the capacitors is the same and is labeled i(t).

+ −
v1(t)

+ −
v2(t)

+ −
v3(t)

+ −
v4(t)

+ −
v5(t)

i(t)

+ −v(t)

Figure 5.10: Five capacitors in series in a circuit.

As v(t) is equal to the sum of each individual voltage drop, the current-voltage relationship in capacitors
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(equation 5.6) can be used to determine the equivalent capacitance of series combinations of capacitors. This

is shown in equation 5.7 and derived below.

1

CEQ
=

1

C1
+

1

C2
+

1

C3
+ ...+

1

Cn
(5.7)

DERIVATION

v(t) = v1(t) + v2(t) + v3(t) + ...+ vn(t)∫ t

−∞

1

CEQ
i(τ) dτ =

∫ t

−∞

1

C1
i(τ) dτ +

∫ t

−∞

1

C2
i(τ) dτ +

∫ t

−∞

1

C3
i(τ) dτ + ...+

∫ t

−∞

1

Cn
i(τ) dτ

1

CEQ
=

1

C1
+

1

C2
+

1

C3
+ ...+

1

Cn

Capacitors in series therefore combine similarly to resistors in parallel. The equivalent capacitance cannot

be larger than the smallest capacitor in the series combination.

5.4.2 Parallel Combinations of Capacitors

Capacitors in parallel all share two nodes, as shown in figure 5.11. Each individual current flow is shown

(numbered with subscripts), as well as the total current flow through the combination of capacitors (i(t)).

The voltage drop over all of the capacitors is the same and is labeled v(t).

−

+

v(t)

i1(t) i2(t) i3(t)

i(t)

i4(t) i5(t)

Figure 5.11: Five capacitors in parallel in a circuit.

As i(t) is equal to the sum of each individual current flow, the current-voltage relationship in capacitors

(equation 5.5) can be used to determine the equivalent capacitance of parallel combinations of capacitors.

This is shown in equation 5.8 and derived below.

CEQ = C1 + C2 + C3 + ...+ Cn (5.8)
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DERIVATION

i(t) = i1(t) + i2(t) + i3(t) + ...+ in(t)

CEQ
dv(t)

dt
= C1

dv(t)

dt
+ C2

dv(t)

dt
+ C3

dv(t)

dt
+ ...+ C4

dv(t)

dt

CEQ = C1 + C2 + C3 + ...+ Cn

Capacitors in parallel therefore combine similarly to resistors in series. The equivalent capacitance cannot

be smaller than the largest capacitor in the parallel combination.

Example: Calculating equivalent capacitance

Calculate the equivalent capacitance between nodes a and b.

3 µF

6 µF 5 µF

3 µF

8 µF

2 µF

6 µF

a

b

The 2 µF and 6 µF are in series and can be combined together. This combination is 1.5 µF. Similarly,

the 3 µF is in series with the 8 µF with an equivalent capacitance of of 2.18 µF. Last, the 6 µF and 5 µF

capacitors are in series with an equivalent capacitance of 2.72 µF. The circuit can now be re-drawn.

3 µF

2.72 µF

2.18 µF 1.5 µF

a

b

At this point the 1.5 µF and 2.18 µF capacitors can be combined in parallel to obtain. 3.681 µF. The

circuit can again be re-drawn.
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3 µF

2.72 µF

3.681 µF

a

b

The 2.72 µF capacitor is in series with the 3.681 µF capacitor. Combined, their equivalent capacitance

is 1.57 µF. The circuit can be re-drawn again.

3 µF 1.57 µF

a

b

The equivalent capacitance can now be calculated by summing together the two capacitances. CEQ is

4.57 µF.

5.5 Differentiator and Integrator Circuits

The current-voltage relationship in a capacitor can be used to create circuits capable of calculating the

derivative or integral of a signal.

First, consider the circuit shown in figure 5.12. This is a differentiator circuit. The output voltage is

directly proportional to the derivative of the input voltage.

−

+

vout(t)
vin(t)

C

R

Figure 5.12: Op-amp differentiator circuit.

The current flowing through the capacitor can be described by equation 5.5. Assume the direction of

current is from left to right in both the resistor and the capacitor. The voltage drop over the capacitor

is therefore vin(t). The output voltage of the circuit can then be described in equation 5.9, which is also
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derived below.

vout(t) = −RC
d

dt
vin(t) (5.9)

DERIVATION

C
d

dt
vin(t) = −

vout(t)

R

−RC
d

dt
vin(t) = vout(t)

Next, consider the circuit shown in figure 5.13. This is an integrator circuit. The output voltage is

directly proportional to the integral of the input voltage.

−

+

vout(t)
vin(t)

R

C

Figure 5.13: Op-amp integrator circuit.

The current flowing through the capacitor can be described by equation 5.5. Assume the direction of

current is from left to right in both the resistor and the capacitor. The voltage drop over the capacitor is

therefore −vout(t). The output voltage of the circuit can then be described in equation 5.10, which is also

derived below.

vout(t) = −
1

RC

∫
vin(t) dt (5.10)

DERIVATION

vin(t)

R
= C

d

dt
[−vout(t)]∫

vin(t)

R
dt =

∫
C

d

dt
[−vout(t)] dt

1

R

∫
vin(t) dt = −Cvout(t)

− 1

CR

∫
vin(t) dt = vout(t)
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5.6 Resistor-Capacitor (RC) Circuits

Resistor-capacitor (RC) circuits are circuits that contain one capacitor (or combinations of capacitors that

can be reduced down to one equivalent capacitance) as well as at least one resistive element. In this chapter,

the analysis of these circuits will be performed when DC conditions are changed suddenly to another set of

DC conditions. For example: a capacitor will have been subjected to a constant initial voltage for a long

period of time, and then suddenly disconnected from a circuit. Or: a capacitor will have been discharged

for a long period of time before suddenly being connected to a circuit with a DC voltage. This short-term

change in voltage and current is known as a transient analysis.

Resistors, by themselves, are incapable of having a transient change. This is because they do not store

energy. Because a capacitor stores energy, it is able to experience a transient change in response to changing

DC conditions of the circuit.

An important property of capacitors that will aid in the analysis of the transient response is that the

voltage over a capacitor cannot change instantaneously. That is: v(0−) = v(0+). In an ideal analysis

(which is what this book will use) where capacitors have no parasitic effects (stray inductance, for example),

the current through a capacitor can change instantaneously and therefore be discontinuous in time.

5.6.1 Discharging Transient Response

The discharging response is a special case of the transient response that specifically looks at what happens

when a capacitor is initially connected to a DC voltage that is suddenly removed from a circuit. In other

words: the capacitor, after being disconnected from the power supply, discharges its stored energy through

the resistive element(s) of the circuit. The circuit diagram shown in figure 5.14 will be used to analyze this

discharging response. The switch is in position a for a long time before suddenly moving to position b at

time t = 0.

−
+VIN R

iR(t)

C
+

−
v(t)

i(t)

a b

Figure 5.14: An RC circuit used to analyze the discharging transient response.

Kirchhoff’s laws can be used to analyze the circuit in the initial condition. Because the only two elements

are the voltage source and the capacitor, and they are in parallel, the initial voltage drop over the capacitor

must be equal to the source voltage. In other words: v(0) = VIN .

Kirchhoff’s laws are also used to analyze the circuit in the discharging condition, once the switch has

been flipped to position b. The current flowing through the capacitor (i(t)) is equal to iR(t) as shown
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in figure 5.14. The voltage-current relationship in a capacitor (equation 5.5), as well as Ohm’s law over

the resistor (iR(t) = −v(t)/R), can be used to determine the discharging transient response, shown in

equation 5.11.

0 =
dv(t)

dt
+

1

RC
v(t) (5.11)

The equation for the voltage drop in a transient discharging analysis is a first order, linear, ordinary

differential equation. This is consistent with the fact that the circuit itself is a first order, linear circuit! The

solution to the differential equation will not be derived in this book but is given in equation 5.12.

v(t) = v(0+)e−
t

RC u(t) + v(0−)u(−t) (5.12)

Using equation 5.5, the transient response of current flowing through the discharging circuit can also be

determined. This is derived in equation 5.13. Note that as the capacitor acts as an open in DC steady-state

conditions, the current through the circuit will be zero until t = 0+.

i(t) =
−v(0+)

R
e−

t
RC u(t) (5.13)

The quantity RC defines the quickness that the circuit discharges to zero and is known as the RC time

constant. The mathematical symbol for the RC time constant is τ . Specifically, τ defines the amount of time

it takes the voltage to decay to 36.8% of its maximum value.

If there is more than one resistive element in the discharging circuit, then the value of R in the time

constant is equal to the equivalent resistance as seen by the capacitor.

Example: Discharging transient response

Calculate v(t) and i(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+20 V

10 kΩ

10 kΩ 500 nF

+

−

v(t)

i(t)

10 kΩ

10 kΩ

The initial conditions can be calculated. Re-draw the circuit to represent the time before the switch

opens. Because the circuit is under DC conditions, the capacitor can be represented as an open. The two

10 kΩ resistors can be combined in series.
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−
+20 V

10 kΩ

10 kΩ

+

−

v(0-)

i(0-)

20 kΩ

The initial current i(0-) is zero due to the presence of an open circuit. The 20 kΩ and 10 kΩ resistors

are in parallel with each other. The circuit can be re-drawn.

−
+20 V

10 kΩ

6.67 kΩ

+

−

v(0-)

Use a voltage divider to calculate v(0-).

v(0−) = 20 V

(
6.67 kΩ

16.67 kΩ

)
= 8 V

Analyze the discharging circuit. Re-draw for time t ≥ 0. The two 10 kΩ resistors that are in series have

been combined to make the circuit simpler.

10 kΩ 500 nF

+

−

v(t)

i(t)

20 kΩ

The equivalent resistance seen by the capacitor is 10 kΩ in parallel with 20 kΩ, or 6.67 kΩ. This can be

used to calculate the RC time constant.

τ = (500 nF)(6.67 kΩ)

= 0.003 s
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The equations for v(t) and i(t) can now be derived using equations 5.12 and 5.13.

v(t) = 8 V e−300t u(t) + 8 V u(−t)

i(t) = −1.2 mA e−300t u(t)

These two signals are plotted below as functions of time.

0
2
4
6
8

v
(t
)
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)
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5.6.2 Charging Transient (Step) Response

The charging transient (step) response of a circuit corresponds to how the voltage and/or current changes

with respect to a sudden application of voltage to the circuit components. This is another specific case of the

general RC transient response, which will be discussed in section 5.6.3. Specifically, the charging transient

response refers to a fully discharged capacitor suddenly being connected to a circuit containing at least one

resistive element and a power supply. The circuit diagram shown in figure 5.15 will be used to analyze the

charging response. The switch is in position b for a long time before suddenly moving to position a at time

t = 0.

−
+VIN RD

C
+

−
v(t)

i(t)

a

R

b

Figure 5.15: An RC circuit used to analyze the charging transient (step) response.

In the initial state of the circuit, all of the energy that may have been stored in the capacitor has

completely discharged through the discharging resistor (RD) giving an initial voltage drop of 0 V.

In the charging condition (when the switch has been moved to position a), Kirchhoff’s voltage law can

be used to analyze the voltage drop over each circuit element. From this, the differential equation for v(t)
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can be derived. This is shown in equation 5.14 and is derived below. The term v(∞) corresponds to the

final, long-term value of the voltage dropped over the capacitor. It will be equal to VIN in the case of the

circuit shown in figure 5.15.

0 =
dv(t)

dt
+

v(t)− v(∞)

RC
(5.14)

DERIVATION

0 = −v(∞) +Ri(t) + v(t)

= −v(∞) +RC
dv(t)

dt
+ v(t)

=
dv(t)

dt
+

v(t)− v(∞)

RC

The solution to this differential equation (assuming that the initial voltage drop over the capacitor is

0 V) is given in equation 5.15.

v(t) = v(∞)
[
1− e−

t
RC

]
u(t) (5.15)

The value of the RC time constant, τ , is still equal to the product of equivalent capacitance and equivalent

resistance as seen by the capacitor. The time constant in a charging circuit dictates how much time it takes

the circuit to charge up to 63.2% of the maximum voltage value.

Equation 5.5 can be used to find the current through the capacitor during the transient charging process.

The result is shown in equation 5.16.

i(t) =
v(∞)

R
e−

t
RC u(t) (5.16)

Example: Charging transient response

Calculate v(t) and i(t) for the circuit below. The switch closes at a time of 0 seconds.

800 µA 40 kΩ

10 kΩ

30 kΩ

5 kΩ

20 nF

+

−

v(t)

i(t)

The final (steady-state) conditions can be calculated. Re-draw the circuit to represent the time well after

the switch closes. Because the circuit is under DC conditions, the capacitor can be represented as an open.
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The final value of the current will be 0 mA.

800 µA 40 kΩ

10 kΩ

30 kΩ

5 kΩ

+

−

v(∞)

Source transformation can be used to calculate the steady-state value of the voltage. The 40 kΩ resistor

can also be added to the 10 kΩ resistor, as they will be in series after the source transformation.

−
+32 V

50 kΩ

30 kΩ

5 kΩ

+

−

v(∞)

Use a voltage divider to calculate v(∞).

v(∞) = 32 V

(
30 kΩ

80 kΩ

)
= 12 V

Analyze the charging circuit. Re-draw for time t ≥ 0. Deactivate the current source by replacing it with

an open to calculate the equivalent resistance as seen by the capacitor.

40 kΩ

10 kΩ

30 kΩ

5 kΩ

20 nF

+

−

v(t)

i(t)
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The equivalent resistance is calculated below.

REQ = (40 kΩ + 10 kΩ)//30 kΩ + 5 kΩ

= 50 kΩ//30 kΩ + 5 kΩ

= 18.75 kΩ + 5 kΩ

= 23.75 kΩ

Calculate the RC time constant.

τ = (20 nF)(23.75 kΩ)

= 4.64× 10−4 s

The equations for v(t) and i(t) can now be derived using equations 5.15 and 5.16.

v(t) =
[
12 V− 12 V e−2105t

]
u(t)

i(t) = 0.51 mA e−2105t u(t)

These two signals are plotted below as functions of time.

0

5

10

v
(t
)
(V

)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

t (ms)

i(
t)

(m
A
)

5.6.3 General Transient Response

Two special cases of the RC transient response have been analyzed: the discharging response (v(∞) = 0)

and the step response (v(0) = 0). In general, the initial voltage drop over a capacitor and the final value of

the capacitor can be any arbitrary values. The most general form of the equation for the transient response

of an RC circuit is therefore given in equation 5.17.

v(t) =
[
v(∞) +

(
v(0+)− v(∞)

)
e−

t
RC

]
u(t) + v(0−)u(−t) (5.17)

Current flow through the capacitor can be calculated by using equation 5.5. This is shown in equa-
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tion 5.18. Note that initial current flow will be zero due to the DC steady-state. This will not change until

t = 0+.

i(t) =
v(∞)− v(0+)

R
e−

t
RC u(t) (5.18)

In the general transient response, the RC time constant refers to how much time it takes for the voltage

drop over the capacitor to reach a value given by equation 5.19.

v(τ) = 0.632v(∞) + 0.368v(0+) (5.19)

Example: General transient response

Calculate v(t) and i(t) for the circuit below. The switch closes at a time of 0 seconds.

−
+12 V

1 kΩ

1 kΩ 40 µF

+

−

v(t)

i(t)

1 kΩ

−
+24 V

Analyze the initial conditions of the circuit. The initial value of the current i(0-) is zero.

−
+12 V

1 kΩ

1 kΩ

+

−

v(0)

Use a voltage divider to find the initial voltage drop over the capacitor.

v(0) = 12 V

(
1 kΩ

2 kΩ

)
= 6 V

Analyze the final (steady-state) conditions of the circuit. The steady-state value of the current will be

zero.
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−
+12 V

1 kΩ

1 kΩ

+

−

v(∞)

1 kΩ

−
+ 24 V

Source transformation can be used to simplify this circuit.

12 mA 500 Ω

+

−

v(∞) 1 kΩ 24 mA

Use Ohm’s law to calculate v(∞).

v(∞) = 36 mA(0.5 kΩ//1 kΩ)

= 12 V

Analyze the circuit for time t ≥ 0 and deactivate all power sources to determine the equivalent resistance

as seen by the capacitor. The circuit is re-drawn below.

1 kΩ

1 kΩ 40 µF

+

−

v(t)

i(t)

1 kΩ

The equivalent resistance is calculated below.

REQ = 1 kΩ//1 kΩ//1 kΩ

= 333.33 Ω

Calculate the RC time constant.

τ = (40 µF)(333.33 Ω)

= 0.013 s
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The equations for v(t) and i(t) can now be derived using equations 5.17 and 5.18.

v(t) =
[
12 V− 6 V e−75t

]
u(t) + 6 V u(−t)

i(t) = 18 mA e−75t u(t)

These two signals are plotted below as functions of time.
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All of the equations in this section of the text have discussed finding the voltage drop over the capacitor.

It is also possible to derive a first order equation to find voltage over or current through any arbitrary

component in a circuit. It is important to note that the initial conditions may be discontinuous. This is

because only the voltage dropped over a capacitor is going to be necessarily the same at time t = 0− and

t = 0+. All other quantities must be analyzed at t = 0− (steady state initial conditions), and again at

exactly t = 0 to determine the response at t = 0+. Then, final steady-state conditions can be analyzed to

find the response at t → ∞. If the initial condition is discontinuous, the value at t = 0+ should be used in

the equation.

The steps for deriving an equation for the general transient response for an RC circuit follow. To reiterate,

because the discharging and charging responses are just special cases of the general transient response, these

steps can be followed to complete any RC circuit transient analysis.

1. Calculate the initial condition(s) of the circuit (any voltage(s) or current(s) that you are asked to find).

2. If necessary, calculate any needed circuit properties at time t = 0+.

3. Calculate the final condition(s) of the circuit.

4. Use the final configuration of the circuit to calculate the equivalent resistance as seen by the capacitor

to calculate the RC time constant.
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Example: General transient response

Calculate v(t) and i(t) for the circuit below. The switch closes at a time of 0 seconds.

10 mA 200 Ω 100 µF 400 Ω

+

−

v(t)

i(t)

200 Ω

−
+8 V

Analyze the initial conditions of the circuit. These are valid up until t = 0-. It is also useful to note

that the initial voltage drop over the capacitor (which must be continuous at 0 seconds) will be 2 V (10 mA

times 200 Ω).

400 Ω

+

−

v(0-)

i(0-)

200 Ω

−
+8 V

Use a voltage divider to find the initial voltage drop over the resistor.

v(0−) = 8 V

(
400 Ω

600 Ω

)
= 5.33 V

Ohm’s law can be used to calculate the initial current flow through the resistor.

i(0−) =
5.33 V

0.4 kΩ

= 13.33 mA

Because the voltage drop over and current flow through the resistor will not be continuous when the

switch closes, the circuit needs to be analyzed at t = 0+. Because the resistor will be in parallel with the

capacitor, the voltage drop at that moment will be the same as the initial voltage drop over the capacitor:

2 V. Ohm’s law can be used to calculate i(0+) which is 5 mA.

Next, the steady-state conditions of the circuit should be found to determine v(∞) and i(∞). The

capacitor can be replaced by an open.
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10 mA 200 Ω 400 Ω

+

−

v(∞)

i(∞)

200 Ω

−
+8 V

Superposition can be used to solve this circuit.

10 mA 200 Ω 400 Ω

+

−

v1(∞)

200 Ω

Use Ohm’s law to calculate v1(∞).

v1(∞) = (10 mA)(0.2 kΩ//0.2 kΩ//0.4 kΩ)

= (10 mA)(0.08 kΩ)

= 0.8 V

200 Ω 400 Ω

+

−

v2(∞)

200 Ω

−
+8 V

Use a voltage divider to find v2(∞).

v2(∞) = 8 V

(
133.3 Ω

333.3 Ω

)
= 3.2 V

The total voltage drop over the resistor in steady-state is therefore 4 V. Using Ohm’s law, i(∞) is 10 mA.

Analyze the circuit for time t ≥ 0 and deactivate all power sources to determine the equivalent resistance

as seen by the capacitor. This is to find the RC time constant τ . The circuit is re-drawn below.
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200 Ω 100 µF 400 Ω

200 Ω

The equivalent resistance is calculated below.

REQ = 0.2 kΩ//0.2 kΩ//0.4 kΩ

= 80 Ω

Calculate the RC time constant.

τ = (100 µF)(80 Ω)

= 0.008 s

The equations for v(t) and i(t) can now be derived using equations 5.17 and Ohm’s law.

v(t) =
[
4 V− 2 V e−125t

]
u(t) + 5.33 V u(−t)

i(t) =
[
10 mA− 5 mA e−125t

]
u(t) + 13.33 mA u(−t)

These two signals are plotted below as functions of time.
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Example Problems

Capacitance and Equivalent Capacitance

1. The current flowing through a 25 nF capacitor is i(t) = e−500tu(t) mA. Derive equations for the voltage

dropped over the capacitor and the instantaneous power consumed by the capacitor.

2. The voltage dropped over a 330 µF capacitor is v(t) = 100t u(t) V. Derive equations for the current

flowing through the capacitor and the instantaneous power consumed by the capacitor.

3. Calculate the equivalent capacitance of the circuit shown in figure 5.16.

240 pF 120 pF

100 pF 320 pF

Figure 5.16: Circuit diagram for capacitance and equivalent capacitance question 3.

4. Calculate the equivalent capacitance of the circuit shown in figure 5.17.

10 nF

47 nF 33 nF

10 nF

33 nF

22 nF

Figure 5.17: Circuit diagram for capacitance and equivalent capacitance question 4.

5. Determine the value of the capacitor CX given that the circuit shown in figure 5.18 has an equivalent

capacitance of 10 µF.

9 µF

CX

2 µF

Figure 5.18: Circuit diagram for capacitance and equivalent capacitance question 5.
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Resistor-Capacitor Circuits

6. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.19. The switch moves from

position a to b at time of zero seconds.

10 mA 20 kΩ

a

10 kΩ

400 nF
+

−
v(t)

i(t)

b

10 kΩ

50 kΩ 75 kΩ

Figure 5.19: Circuit diagram for resistor-capacitor circuits question 6.

7. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.20. The switch opens at a

time of zero seconds.

−
+18 V

10 kΩ

36 kΩ

15 kΩ

9 µF

+

−

v(t)

i(t)

30 kΩ

Figure 5.20: Circuit diagram for resistor-capacitor circuits question 7.

8. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.21. The switch closes at a

time of zero seconds.

−
+20 V

2 kΩ

2 kΩ

4 kΩ

5 µF

+

−

v(t)

i(t)

4 kΩ

Figure 5.21: Circuit diagram for resistor-capacitor circuits question 8.
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9. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.22. The switch closes at a

time of zero seconds.

−
+24 V

6 kΩ

1.4 kΩ

40 µF
+

−
v(t)

i(t)

6 kΩ 9 kΩ 3.5 mA

Figure 5.22: Circuit diagram for resistor-capacitor circuits question 9.

10. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.23. The switch opens at a

time of zero seconds.

−
+18 V

10 kΩ

50 kΩ 40 nF

+

−

v(t)

i(t)

25 kΩ

50 kΩ

50 kΩ

−
+16 V

Figure 5.23: Circuit diagram for resistor-capacitor circuits question 10.
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Practical Application: The 555 Timer

Now that comparators and capacitors are well-understood, the 555 timer can be analyzed. The 555 timer is

an integrated circuit chip that is capable of performing many functions. Two of those functions are as an

astable oscillator (clock) and a monostable pulse generator. The pinout diagram of a 555 timer integrated

circuit chip is shown in figure PA.1. A pinout diagram is used to determine which pins on a chip correspond

to each of the input and output signals of a functioning device. Each of these control signals will be explained

as the functionality of the 555 timer is outlined below.

4 5

3 6

2 7

1 8

555

GND

TRIG

OUT

RST CTRL

THR

DIS

VCC

Figure PA.1: Pinout diagram of a 555 timer integrated circuit chip.

A 555 timer is composed of transistors, resistors, and other components. However the nature of each

discrete component will be ignored and the device will be analyzed functionally. Functionally, the 555 timer

consists of a voltage divider, two comparators, a digital device called an SR latch, a transistor, and an

output driver. A schematic representation of this functional diagram is shown in figure PA.2. Each of the

labeled connections corresponds to a pin on the integrated circuit chip (missing from the labeled connections

is GROUND). Note the use of the term VCC which corresponds to the logical HIGH voltage value (usually

5 V). Each of the comparator power connections are not shown, but are VCC for the positive supply and

ground for the negative supply.

VCC

−

+THRESHOLD

CONTROL

−

+

TRIGGER S

R
RESET

RESET

OUT

DISCHARGE

Figure PA.2: Functional schematic of a 555 timer.

On the left-hand side of the schematic are three resistors acting as a voltage divider. The reference
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voltage for the upper comparator (the threshold comparator) is therefore 2/3 VCC (which would be 3.3 V

given a VCC of 5 V). As soon as the voltage on the THRESHOLD pin exceeds 3.3 V, the output of the

threshold comparator will saturate at VCC. The threshold comparator output is connected to the R input of

an SR latch. The R stands for reset. That will cause the output of the latch to be LOW; however, since the

latch output is inverted (which is the meaning of the bubble), the latch output will be HIGH. Two things

happen with this signal. First, the transistor will be activated, causing a short between the DISCHARGE

pin and ground. Second, the output driver will invert the HIGH value and cause the output to be LOW

(0 V). If the THRESHOLD voltage is less than 3.3 V, then the output of the comparator will saturate LOW.

The reset input of the latch will not be activated.

The reference voltage for the lower comparator (the trigger comparator) is 1/3 VCC (1.7 V given a VCC

of 5 V). If the voltage on the TRIGGER pin becomes less than 1.7 V, the output of the trigger comparator

will saturate HIGH, causing the S input to be activated. This input stands for set. This will cause the output

of the latch to be HIGH; however, since the latch output is inverted, the latch output will be LOW. This will

cause the transistor to be deactivated, electrically disconnecting the DISCHARGE pin from ground. Second,

the output driver will invert the LOW value and cause the output to be HIGH (5 V). If the TRIGGER voltage

is greater than 1.7 V, then the output of the comparator will saturate LOW. The set input of the latch will

not be activated.

If both the set and reset inputs (S and R) on the SR latch are LOW, the output of the latch will continue

to be whatever value was previously stored on that output. (For more information about latches, please

refer to my Digital Systems textbook.)

The other two input pins are CONTROL and RESET. The CONTROL pin can be used to change the

value of the voltage divider at the threshold comparator. It will not be discussed in this book. When unused,

it should be connected to ground via a 10 nF capacitor that will remove any noise from the voltage divider.

The RESET pin can be used to manually force the output of the timer to be LOW. When unused, it should

be connected to VCC.

Astable Mode

An astable oscillator is simply a name for a circuit whose output oscillates between two different values. This

is particularly important for digital logic circuits that require clock signals. A clock signal is simply a square

wave that oscillates between LOW and HIGH voltage values. An example of a clock signal is depicted in

figure PA.3.
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0 T 2T
LOW

HIGH

t (arbitrary)

Figure PA.3: Graphical depiction of a digital clock signal.

The idea is to connect the TRIGGER and THRESHOLD pins and connect them to an RC circuit such

that the voltage drop over the capacitor continuously changes. As it changes from 1/3 VCC to 2/3 VCC,

the output will oscillate between HIGH and LOW. The 555 timer in astable mode is connected as shown

in figure PA.4. (The CONTROL pin is connected to a noise-reducing capacitor and the RESET pin is

connected to VCC.)

VCC

−

+THRESHOLD

10 nF

−

+

TRIGGER S

R
RESET

VCC

OUT

DISCHARGE

C

+−
vC(t)

R2

R1

VCC

Figure PA.4: Functional schematic of a 555 timer connected in astable mode.

In the beginning, the capacitor will have no voltage drop. Because TRIGGER will be less than 1/3 VCC,

the output will be HIGH, and the transistor will be deactivated. A pathway between VCC and ground exists

through the capacitor, and it will begin to charge up. This is depicted in figure PA.5.
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VCC

−

+THRESHOLD

10 nF

−

+

TRIGGER S

R
RESET

VCC

OUT

DISCHARGE

C

+−
vC(t)

R2

R1

VCC

Figure PA.5: Functional schematic of a 555 timer connected in astable mode. When the output is HIGH
(TRIGGER is less than 1/3 VCC), the transistor is deactivated and current will flow as shown to charge the
capacitor.

As soon as vC(t) reaches 1/3 VCC, the trigger comparator will saturate LOW, disabling the set pin on

the latch. Once vC(t) exceeds 2/3 VCC, the threshold comparator will saturate HIGH, causing the latch

to reset. This will activate the transistor and cause the capacitor to discharge through R2, as shown in

figure PA.6.
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VCC

−

+THRESHOLD

10 nF

−

+

TRIGGER S

R
RESET

VCC

OUT

DISCHARGE

C

+−
vC(t)

R2

R1

VCC

Figure PA.6: Functional schematic of a 555 timer connected in astable mode. When the output is LOW
(THRESHOLD is greater than 2/3 VCC), the transistor is activated and current will flow as shown to discharge
the capacitor.

Once the voltage drop over the capacitor decreases below 1/3 VCC, the trigger comparator will then

saturate HIGH. This cycle will repeat itself where the capacitor charges from 1/3 VCC to 2/3 VCC and

then discharges back to 1/3 VCC. Meanwhile, the digital nature of the comparators and the output driver

creates a square wave output signal.

Because the capacitor charges through R1 and R2 and discharges only through R2, the capacitor will

spend more time charging than discharging. The output therefore does not have an equal amount of time

spent HIGH and LOW. (In other words, the duty cycle will be greater than 50%.) An example waveform

that shows vC(t) as well as the output signal is shown in figure PA.7. In this example, R1 = R2 = 1 kΩ

and C = 10 µF. (Note also that the first waveform has an even higher duty cycle due to the fact that the

capacitor must charge from 0 rather than from 1/3 VCC.)
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Figure PA.7: Voltage drop over the capacitor (top graph) and output voltage (bottom graph) in astable
mode. R1 = R2 = 1 kΩ and C = 10 µF.

Equations 5.12 and 5.15 can be used to determine the amount of time the output signal is HIGH (THIGH)

as well as the amount of time the output signal is LOW (TLOW ). These values are expressed in equations PA.1

and PA.2.

THIGH = C(R1 +R2) ln 2 (PA.1)

TLOW = CR2 ln 2 (PA.2)

Monostable Mode

In monostable mode, the 555 timer is capable of creating a single pulse upon a trigger event. The pulse-

width will be related to the value of the resistor and capacitor used in the external circuitry. In this case, the

TRIGGER pin will be connected to an external trigger (perhaps a pushbutton or another electronic signal).

When the value on the TRIGGER pin is less than 1/3 VCC, it will cause the capacitor to charge up a single

time, creating one pulse. The 555 timer connected in monostable mode is shown in figure PA.8.
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VCC

−

+THRESHOLD

10 nF

−

+

TRIGGER S

R
RESET

VCC

OUT

DISCHARGE

C

+−
vC(t)

R

VCC

Figure PA.8: Functional schematic of a 555 timer connected in monostable mode.

In the beginning, vC will be zero. The THRESHOLD value will be less than 2/3 VCC, and as long as

TRIGGER is held at a voltage higher than 1/3 VCC, the OUTPUT will be LOW and the capacitor will be

connected to ground via the transistor. This will continue to be the case as long as the TRIGGER input does

not change. As soon as a voltage less than 1/3 VCC is presented on the TRIGGER pin, the OUTPUT signal

will become HIGH. This will cause current to flow and the capacitor to charge, as shown in figure PA.9.

VCC

−

+THRESHOLD

10 nF

−

+

TRIGGER S

R
RESET

VCC

OUT

DISCHARGE

C

+−
vC(t)

R

VCC

Figure PA.9: Functional schematic of a 555 timer connected in monostable mode. When a voltage of less
than 1/3 VCC is present on TRIGGER, the capacitor will charge, as shown.
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Because the TRIGGER pulse was short-lived, the trigger comparator will saturate LOW as soon as the

TRIGGER signal returns HIGH. This will cause the SR latch output to remain unchanged. As soon as the

voltage drop over the capacitor reaches 2/3 VCC, the threshold comparator will saturate HIGH, causing the

SR latch to reset (OUTPUT will be LOW gain). The capacitor will discharge directly to ground through

the transistor without going through any resistance, causing an abrupt discharge to zero. The output will

remain in equilibrium unless the TRIGGER pin is sent LOW again.

A graph of the TRIGGER pulse and the resulting values of vC(t) and the OUTPUT signal are shown in

figure PA.10.
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Figure PA.10: Trigger input (top graph), voltage drop over the capacitor (center graph), and output voltage
(bottom graph) in monostable mode. R = 1 kΩ and C = 10 µF.

Equation 5.15 can be used to determine the amount of time the output signal is HIGH (THIGH). This

value is expressed in equation PA.3.

THIGH = CR ln 3 (PA.3)

Because the TRIGGER pin is connected externally, there are two important consequences. First, the

output will remain HIGH for the entire time that the TRIGGER pin voltage is lower than 1/3 VCC, which

may be longer than the amount of time described in equation PA.3. Therefore it is important to ensure that

the TRIGGER pulse-width is shorter than the amount of time given in equation PA.3.

Second, any subsequent TRIGGER event needs to occur after the capacitor has charged to 2/3 VCC and

then discharged back to zero again. Otherwise, the second event will not generate an output pulse.
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6 Inductors and RL Circuits

Inductors are circuit elements that are capable of storing and releasing energy in the form of a magnetic

field. Most inductors are comprised of a coil of wire, possibly coiled around a ferrite core. (Even a straight

wire can create a magnetic field, but the effect is very small when compared to coiled wire inductors.) As

current flows through the inductor, a magnetic field is generated.

The property of an inductor that relates to its ability to store magnetic field energy is known as inductance

(L) which is measured in units of H (henrys). The construction of inductors takes on many forms, and the

equation for inductance in a device depends on the construction and geometry of that particular inductor.

For a cylindrical coil of wire, the inductance depends on the permeability of the core material (µ), the number

of turns of wire (N), the area of the coil (A), and the length of the coil (l), as shown in equation 6.1.

L =
µN2A

l
(6.1)

Many geometries can be used for inductors, and they can contain an air core or a ferrite core depending

on how high the inductance requirements are. Straight coils of wire (known as solenoids) are relatively simple

to construct but are not as efficient as toroidal designs that are able to keep more magnetic flux isolated

inside of the inductor.

The permeability of a material refers to how much an object magnetizes in response to an applied

magnetic field. It is equal to the permeability of free space multiplied by the relative permeability of a

particular material, defined by equation 6.2.

µ = µ0µr (6.2)

The relative permeability of materials can be looked up, but is equal to one for free space and ap-

proximately 200,000 for ferromagnetic materials such as iron. The permeability of free space is given in

equation 6.3.

µ0 = 4π × 10−7 H/m (6.3)

The circuit symbol for an inductor is shown in figure 6.1. Just as the capacitor symbol looks like parallel

plates, the inductor symbol resembles a coil of wire.

Figure 6.1: The circuit symbol for an inductor.

Variable inductors are not common but do exist. One type of variable inductor construction is to have a

straight coil of wire with a moveable ferrite core. As the ferrite core is moved into the coil, the inductance

increases. As the ferrite core is moved out of the coil, the inductance decreases.
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6.1 Parasitic Effects

Inductors are made of coils of wire. To create a high inductance device, a lot of wire is required. This

generates parasitic side-effects. Wire contains resistance which, while it can be safely ignored when small

amounts are used, can no longer be ignored when large amounts are used. To create physically small

inductors, wire with a smaller surface area (high gauge) are used, which increases the resistance of the wire.

The resistance of an inductor is known as parasitic resistance. In addition, there can be parasitic capacitance

in an inductor due to the presence of charge in many parallel wires. These parasitic effects may vary with

the frequency of the applied signal. A model of an inductor, including parasitic resistance and capacitance,

is shown in figure 6.2.

L RP

CP

Figure 6.2: An inductor model including parasitic resistance (RP ) and parasitic capacitance (CP ).

This textbook will ignore the presence of parasitic effects for the most part. However, it is important to

understand that the parasitic effects of an inductor are non-trivial in real-world applications. Some sections

in this textbook will therefore consider examples that include parasitic resistance (while parasitic capacitance

will be ignored).

6.2 Measuring Inductance

Inductors generally cannot be measured with a digital multimeter, as the inclusion of the necessary compo-

nents to measure inductance would increase the cost prohibitively. They can, however, be measured with

LRC meters. Much like with a capacitor, an LRC meter applies an AC voltage, measures the AC current,

and uses the phase and amplitude differences to calculate the inductance.

Inductance must be measured from one end of the inductor (or equivalent inductance) to the other, in

parallel, as shown in figure 6.3.

Figure 6.3: A diagram of how inductance is measured in parallel (across a component or components).
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6.3 Voltage-Current Relationship in an Inductor

The relationship between voltage and current in an inductor can be derived using Faraday’s law of induction.

The full derivation will not be shown in this text. The voltage drop over an inductor is given by equation 6.4.

v(t) = L
di(t)

dt
(6.4)

Based equation 6.4, if the current remains unchanging through time, there will be no voltage drop over

an inductor. Therefore, in DC conditions, an inductor can be replaced by a short circuit. This analysis

technique will be used frequently in this book to explore the transient response of resistor-inductor circuits.

The current flowing through an inductor can be found by integrating both sides of equation 6.4. The

result is given in equation 6.5.

i(t) =
1

L

∫ t

−∞
v(τ) dτ (6.5)

Although calculus is required to fully analyze the relationship between voltage and current in an inductor,

the relationship between the two variables is linear. This means that inductors are linear circuit elements,

and all of the techniques discussed in this book (such as superposition and Thévenin equivalence, for example)

are still relevant with inductive circuits.

6.4 Equivalent Inductance

Just as it was possible to combine resistors together to find an equivalent resistance, and capacitors to find

an equivalent capacitance, it is possible to combine inductors together to find an equivalent inductance.

The rules (and mathematical relationships) for calculating series and parallel combinations of inductors are

explained below.

6.4.1 Series Combinations of Inductors

Inductors in series all share a common branch, as shown in figure 6.4. Each individual voltage drop is shown

(numbered with subscripts), as well as the total voltage drop over the combination of inductors (v(t)). The

current flow through all of the inductors is the same and is labeled i(t).

+ −
v1(t)

+ −
v2(t)

+ −
v3(t)

+ −
v4(t)

+ −
v5(t)

i(t)

+ −v(t)

Figure 6.4: Five inductors in series in a circuit.

As v(t) is equal to the sum of each individual voltage drop, the current-voltage relationship in inductors
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(equation 6.4) can be used to determine the equivalent inductance of series combinations of inductors. This

is shown in equation 6.6 and derived below.

LEQ = L1 + L2 + L3 + ...+ Ln (6.6)

DERIVATION

v(t) = v1(t) + v2(t) + v3(t) + ...+ vn(t)

LEQ
di(t)

dt
= L1

di(t)

dt
+ L2

di(t)

dt
+ L3

di(t)

dt
+ ...+ Ln

di(t)

dt

LEQ = L1 + L2 + L3 + ...+ Ln

Inductors in series therefore combine similarly to resistors in series. The equivalent inductance cannot

be smaller than the largest inductor in the series combination.

6.4.2 Parallel Combinations of Inductors

Inductors in parallel all share two nodes, as shown in figure 6.5. Each individual current flow is shown

(numbered with subscripts), as well as the total current flow through the combination of inductors (i(t)).

The voltage drop over all of the inductors is the same and is labeled v(t).

−

+

v(t)

i1(t) i2(t) i3(t)

i(t)

i4(t) i5(t)

Figure 6.5: Five inductors in parallel in a circuit.

As i(t) is equal to the sum of each individual current flow, the current flow through an inductor (equa-

tion 6.5) can be used to determine the equivalent inductance of parallel combinations of inductors. This is

shown in equation 6.7 and derived below.

1

LEQ
=

1

L1
+

1

L2
+

1

L3
+ ...+

1

Ln
(6.7)
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DERIVATION

i(t) = i1(t) + i2(t) + i3(t) + ...+ in(t)

1

LEQ

∫ t

−∞
v(τ) dτ =

1

L1

∫ t

−∞
v(τ) dτ +

1

L2

∫ t

−∞
v(τ) dτ +

1

L3

∫ t

−∞
v(τ) dτ + ...+

1

Ln

∫ t

−∞
v(τ) dτ

1

LEQ
=

1

L1
+

1

L2
+

1

L3
+ ...+

1

Ln

Inductors in parallel therefore combine similarly to resistors in parallel. The equivalent inductance cannot

be larger than the smallest inductor in the parallel combination.

Example: Calculating equivalent inductance

Calculate the equivalent inductance between nodes a and b.

10 mH

40 mH

10 mH

20 mH 30 mH

a

b

20 mH

Combine both parallel combinations of inductors. The 10 mH and 40 mH pair have an equivalent

inductance of 8 mH. The 20 mH and 30 mH pair have an equivalent inductance of 12 mH. The circuit can

now be re-drawn.

8 mH 10 mH

12 mH

a

b

20 mH

The equivalent inductance can be calculated by summing together the four inductances. LEQ is equal to

50 mH.

6.5 Resistor-Inductor (RL) Circuits

Resistor-inductor (RL) circuits are circuits that contain one inductor (or combinations of inductors that can

be reduced down to one equivalent inductance) as well as at least one resistive element. In this chapter, these

circuits will be analyzed given an abrupt change from one set of DC conditions to another. The short-term

difference in output that occurs as a result of this change in DC conditions is known as a transient analysis.
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An important property of inductors that will aid in the analysis of the transient response is that the

current through an inductor cannot change instantaneously. That is: i(0−) = i(0+). In an ideal

analysis where inductors have no parasitic capacitance (which is what this textbook will assume), the voltage

dropped over an inductor can change instantaneously and therefore be discontinuous in time.

6.5.1 Discharging Transient Response

The discharging response is a special case of the transient response that specifically looks at what happens

when an inductor is initially connected to a DC current that is suddenly removed from a circuit. In other

words: the inductor, after being disconnected from the power supply, discharges its stored energy through

the resistive element(s) of the circuit. The circuit diagram shown in figure 6.6 will be used to analyze this

discharging response. The switch is in position a for a long time before suddenly moving to position b at

time t = 0.

IIN R

L

+

−

v(t)

i(t)

a b

Figure 6.6: An RL circuit used to analyze the discharging transient response.

Kirchhoff’s laws can be used to analyze the circuit in the initial condition. Because the only two elements

are the current source and the inductor, and they are in series, the initial current flow through the inductor

must be equal to the source current. In other words: i(0) = IIN .

Kirchhoff’s laws are also used to analyze the circuit in the discharging condition, once the switch has

been flipped to position b. The voltage drop over the inductor (v(t), defined in equation 6.4) is equal to the

voltage drop over the resistor. Because the two components are in series they share a current flow of i(t).

The discharging transient response is derived from these properties in equation 6.8 and derived below.

0 =
di(t)

dt
+

R

L
i(t) (6.8)
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DERIVATION

0 =
v(t)

R
+ i(t)

=
L

R

di(t)

dt
+ i(t)

=
di(t)

dt
+

R

L
i(t)

The equation for the current flow in this transient discharging analysis is a first order, linear, ordinary

differential equation. This is consistent with the fact that the circuit itself is a first order, linear circuit! The

solution to the differential equation will not be derived in this book but is given in equation 6.9. Note the

similarities with the RC transient equation.

i(t) = i(0+)e−
t

L/Ru(t) + i(0−)u(−t) (6.9)

Using equation 6.4, the transient response of the voltage drop over the discharging circuit can also be

determined. This is shown in equation 6.10. Note that initial voltage drop over an inductor will be zero, as

an inductor acts like a short in DC steady-state conditions.

v(t) = −Ri(0+)e−
t

L/Ru(t) (6.10)

The quantity L/R defines the quickness that the circuit discharges to zero and is known as the RL time

constant. The mathematical symbol for the RL time constant is τ . Specifically, τ defines the amount of time

it takes the current flow to decay to 36.8% of its maximum value.

If there is more than one resistive element in the discharging circuit, then the value of R in the time

constant is equal to the equivalent resistance as seen by the inductor.

Example: Discharging transient response

Calculate i(t) and v(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+8 V

2.4 kΩ

6 kΩ

0.3 H

+

−
v(t)

i(t)

9 kΩ

The initial conditions can be calculated. Re-draw the circuit to represent the time before the switch

opens. Because the circuit is under DC conditions, the inductor can be represented as a short.
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−
+8 V

2.4 kΩ

6 kΩ

+

−
v(0)i(0)

9 kΩ

The initial voltage drop will be zero. Source transformation can be used to calculate the initial current.

3.33 mA 2.4 kΩ 6 kΩ

i(0)

9 kΩ

Use a current divider to calculate i(0).

i(0−) = 3.33 mA

(
1.44 kΩ

6 kΩ

)
= 0.8 mA

Analyze the discharging circuit. Re-draw for time t ≥ 0.

6 kΩ

0.3 H

+

−
v(t)

i(t)

9 kΩ

The equivalent resistance seen by the inductor is 15 kΩ. This can be used to calculate the RL time

constant.

τ =
0.3 H

15 kΩ

= 2× 10−5 s

The equations for i(t) and v(t) can now be derived using equations 6.9 and 6.10.

i(t) = 0.8 mA e−50000t u(t) + 0.8 mA u(−t)

v(t) = −12 V e−50000t u(t)
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These two signals are plotted below as functions of time.
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6.5.2 Charging Transient (Step) Response

The charging transient (step) response of a circuit corresponds to how the voltage and/or current changes

with respect to a sudden application of current to the circuit components. This is another specific case of the

general RL transient response, which will be discussed in section 6.5.3. Specifically, the charging transient

response refers to a fully discharged inductor suddenly being connected to a circuit containing at least one

resistive element and a power supply. The circuit diagram shown in figure 6.7 will be used to analyze the

charging response. The switch is in position b for a long time before suddenly moving to position a at time

t = 0.

IIN R RD

L

+

−

v(t)

i(t)

a b

Figure 6.7: An RL circuit used to analyze the charging transient (step) response.

In the initial state of the circuit, all of the energy that may have been stored in the inductor has completely

discharged through the discharging resistor (RD) giving an initial current flow of 0 mA.

In the charging condition (when the switch has been moved to position a), Kirchhoff’s current law can

be used to analyze the current flow through each circuit element. From this, the differential equation for i(t)

can be derived. This solution is shown in equation 6.11, and the derivation is given below. The term i(∞)

corresponds to the final, long-term value of the current flow through the inductor. It will be equal to IIN in
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the case of the circuit shown in figure 6.7.

0 =
di(t)

dt
+

i(t)− i(∞)

L/R
(6.11)

DERIVATION

0 = −i(∞) +
v(t)

R
+ i(t)

= −i(∞) +
L

R

di(t)

dt
+ i(t)

=
di(t)

dt
+

i(t)− i(∞)

L/R

The solution to this differential equation (assuming that the initial current flow through the inductor is

0 mA) is given in equation 6.12. Again, note the similarities with the RC circuit step response.

i(t) = i(∞)
[
1− e−

t
L/R

]
u(t) (6.12)

The value of the RL time constant, τ , is still equal to the equivalent inductance divided by the equivalent

resistance as seen by the inductor. The time constant in a charging circuit dictates how much time it takes

the circuit to charge up to 63.2% of the maximum current value.

Equation 6.4 can be used to find the voltage drop over the inductor during the transient charging process.

The result is shown in equation 6.13.

v(t) = Ri(∞)e−
t

L/Ru(t) (6.13)

Example: Charging transient response

Calculate i(t) and v(t) for the circuit below. The switch closes at a time of 0 seconds.

6 mA 10 Ω

10 Ω

50 mH

+

−

v(t)

i(t)

12 Ω

The final (steady-state) conditions can be calculated. Re-draw the circuit to represent the time well after

the switch closes. Because the circuit is under DC conditions, the inductor can be represented as a short.

The final voltage is 0 V.
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6 mA 10 Ω

10 Ω

+

−
v(∞)i(∞) 12 Ω

Use a current divider to calculate i(∞).

i(∞) = 6 mA

(
5 Ω

10 Ω

)
= 3 mA

Analyze the charging circuit. Re-draw for time t ≥ 0. Deactivate the current source by replacing it with

an open to calculate the equivalent resistance as seen by the inductor.

10 Ω

10 Ω

50 mH

+

−

v(t)

i(t)

12 Ω

The equivalent resistance is calculated below.

REQ = (10 Ω + 10 Ω)//12 Ω

= 20 Ω//12 Ω

= 7.5 Ω

Calculate the RL time constant.

τ =
0.05 H

7.5 Ω

= 0.0067 s

The equations for i(t) and v(t) can now be derived using equations 6.12 and 6.13.

i(t) = 3 mA
[
1− e−150t

]
u(t)

v(t) = 22.5 mV e−150t u(t)
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These two signals are plotted below as functions of time.
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6.5.3 General Transient Response

Two special cases of the RL transient response have been analyzed: the discharging response (i(∞) = 0)

and the step response (i(0) = 0). In general, the initial current flow through an inductor and the final value

of the current flow through the inductor can be any arbitrary values. The most general form of the equation

for the transient response of an RL circuit is therefore given in equation 6.14.

i(t) =
[
i(∞) +

(
i(0+)− i(∞)

)
e−

t
L/R

]
u(t) + i(0−)u(−t) (6.14)

The voltage drop over the inductor can be calculated using equation 6.4. This is shown in equation 6.15.

v(t) = R
[
i(∞)− i(0+)

]
e−

t
L/Ru(t) (6.15)

In the general transient response, the RL time constant refers to how much time it takes for the current

flow through the inductor to reach a value given by equation 6.16.

i(τ) = 0.632i(∞) + 0.368i(0+) (6.16)

Example: General transient response

Calculate i(t) and v(t) for the circuit below. Switch S1 opens at a time of 0 seconds and switch S2 closes

at a time of 0.005 seconds.
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−
+8 V

12 Ω

S1

12 Ω 20 mH

+

−

v(t)

i(t)

12 Ω

S2

12 Ω

−
+12 V

Analyze the initial conditions of the circuit. Because the inductor acts as a short in the DC conditions,

the initial value of the voltage v(0-) is zero.

−
+8 V

12 Ω

i(0-)

Using Ohm’s law, the initial current flow through the inductor is 666.67 mA.

The RL time constant that dictates the discharge rate can be calculated by looking at the circuit with

both switches open.

12 Ω 20 mH

+

−

v(t)

i(t)

12 Ω

The equivalent resistance seen by the inductor is 6 Ω. The RL time constant is therefore 0.003 s. For

the first 5 ms, the circuit will be acting as a discharging circuit with an equation given below.

i(t) = 666.67 mA e−300t [u(t)− u(t− 0.005)] + 666.67 mA u(−t)

The voltage during this time period can be found by using equation 6.15.

v(t) = −4 V e−300t [u(t)− u(t− 0.005)]

To analyze the situation when switch S2 closes, the current at 5 ms should be calculated using the

equation above. This will act as the initial condition for this time period.

i(0.005) = 666.67 e−(300)(0.005) mA = 148.75 mA
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The final conditions should be analyzed to calculate i(∞). The inductor can be replaced by a short in

steady-state DC conditions. The steady-state value of the voltage will be zero.

i(∞)

12 Ω

−
+ 12 V

The steady-state current flow through the inductor is 1000 mA.

The time period after 5 ms should be analyzed to find the equivalent resistance seen by the inductor to

calculate the new RL time constant. The voltage source has been deactivated.

12 Ω 20 mH

+

−

v(t)

i(t)

12 Ω

12 Ω

The equivalent resistance as seen by the inductor is now 4 Ω. The new RL time constant is 0.005 s. For

the remaining period of time after switch S2 closes, the circuit will act as a charging circuit with an equation

given below.

i(t) =
[
1000 mA− 851.25 mA e−200(t−0.005)

]
u(t− 0.005)

The voltage during this time period can be found by using equation 6.15.

v(t) = 3.405 V e−200(t−0.005) u(t− 0.005)

The full equations for current and voltage can be found by summing the two different signals together.

i(t) = 666.67 mA e−300t [u(t)− u(t− 0.005)]

+
[
1000 mA− 851.25 mA e−200(t−0.005)

]
u(t− 0.005)

+ 666.67 mA u(−t)

v(t) = −4 V e−300t [u(t)− u(t− 0.005)] + 3.405 V e−200(t−0.005) u(t− 0.005)

These two signals are plotted below as functions of time.
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All of the equations in this section of the text have discussed finding the current flow through the

inductor. It is also possible to derive a first order equation to find voltage over or current through any

arbitrary component in a circuit. It is important to note that the initial conditions may be discontinuous.

This is because only the current flowing through an inductor is going to be necessarily the same at time

t = 0− and t = 0+. All other quantities must be analyzed at t = 0− (steady state initial conditions), and

again at exactly t = 0 to determine the response at t = 0+. Then, final steady-state conditions can be

analyzed to find the response at t→∞. If the initial condition is discontinuous, the value at t = 0+ should

be used in the equation.

The steps for deriving an equation for the general transient response for an RL circuit follow. To reiterate,

because the discharging and charging responses are just special cases of the general transient response, these

steps can be followed to complete any RL circuit transient analysis.

1. Calculate the initial condition(s) of the circuit (any voltage(s) or current(s) that you are asked to find).

2. If necessary, calculate any needed circuit properties at time t = 0+.

3. Calculate the final condition(s) of the circuit.

4. Use the final configuration of the circuit to calculate the equivalent resistance as seen by the inductor

to calculate the RL time constant.

Example: General transient response of a resistor in an RL circuit

Calculate i(t) and v(t) for the circuit below. The switch closes at a time of 0 seconds and re-opens at a time

of 0.04 seconds.

−
+30 V

12 Ω

36 Ω

6 Ω

30 Ω

+

−

v(t)

i(t)

5 Ω

100 mH 10 mA
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Analyze the initial conditions of the circuit, before the switch closes at 0 seconds. At this time, the

switch is open and the inductor acts as a short. The current through the inductor will be 10 mA and the

current through the resistor will be 0 mA. Because the current through the resistor is discontinuous at the

moment the switch closes, it will be important to analyze the circuit at exactly t = 0 s.

−
+30 V

12 Ω

36 Ω

6 Ω

30 Ω

+

−

v(0+)

i(0+)

5 Ω

100 mH

10 mA

10 mA

Source transformation can be used to simplify the circuit. The intermediate steps are not shown to save

space.

1.5 A 15 Ω 30 Ω

+

−

v(0+)

i(0+)

5 Ω

100 mH

10 mA

10 mA

Analyzing the node between the 5 Ω resistor, the inductor, and the 10 mA current source, no current

flows through the 5 Ω resistor. This makes the calculation of i(0+) a current divider using only the 1.5 A

source.

i(0+) = 1500 mA

(
30 Ω//15 Ω

30 Ω

)
= 500 mA

The same source-transformed circuit can be used to analyze the circuit as the time approaches 40 ms.

In this steady-state, the inductor acts as a short.

1.5 A 15 Ω 30 Ω

+

−

v(0.04-)

i(0.04-)

5 Ω

10 mA

The 10 mA source does not contribute any current to the 30 Ω resistor (as all of the resistors in that

configuration are shorted by the inductor). Therefore, a current divider can be used to determine the current
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through the resistor that is contributed by the 1.5 A source.

i(0.04−) = 1500 mA

(
30 Ω//15 Ω//5 Ω

30 Ω

)
= 166.67 mA

It will be useful to determine the current flow through the inductor at this time, as this will be helpful in

determining the current at t = 40+ ms through the resistor. Using superposition, we can see that a current

divider can be used for the 1.5 A source, and all of the 10 mA source will be flowing through the inductor.

iL(0.04) = 1500 mA

(
30 Ω//15 Ω//5 Ω

5 Ω

)
+ 10 mA = 1010 mA

The time period between 0 and 40 ms can be analyzed to find the equivalent resistance to calculate the

RL time constant. All current sources can be deactivated.

REQ = 15 Ω//30 Ω + 5 Ω = 15 Ω

The RL time constant can now be calculated.

τ =
0.1 H

15 Ω
= 0.007 s

The current and voltage signals can be calculated during this time period using equation 6.14 and Ohm’s

law.

i(t) =
(
166.67 mA + 333.33 mA e−150t

)
(u(t)− u(t− 0.04))

v(t) =
(
5 V + 10 V e−150t

)
(u(t)− u(t− 0.04))

The circuit must be analyzed at the instant the switch re-opens at a time of 40 ms.

36 Ω

6 Ω

30 Ω

+

−

v(0.04+)

i(0.04+)

5 Ω

100 mH

1010 mA

10 mA

Analyzing the node between the 5 Ω resistor, the inductor, and the 10 mA current source, the 5 Ω resistor

must be supplying 1 A of current to the inductor for KCL to hold. A current divider can therefore be used

to calculate i(0.04+).

i(0.04+) = −1000 mA

(
42 Ω//30 Ω

30 Ω

)
= −583.33 mA
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As time approaches infinity, and the circuit reaches a new steady-state, all current will flow through the

inductor, and none will flow through the resistor.

The new RL time constant must be calculated. The new equivalent resistance is calculated below.

REQ = (36 Ω + 6 Ω)//30 Ω + 5 Ω = 22.5 Ω

The RL time constant can now be calculated.

τ =
0.1 H

22.5 Ω
= 0.004 s

This is a discharging scenario, so equation 6.9 can be used to find an equation for the current through

the resistor. Ohm’s law can be used to determine the voltage drop over the resistor during the same time

period.

i(t) =
(
−583.33 mA e−225(t−0.04)

)
u(t− 0.04)

v(t) =
(
−17.5 V e−225(t−0.04)

)
u(t− 0.04)

Both signals can be summed together to find the total current and voltage characteristics of the resistor.

i(t) =
(
166.67 mA + 333.33 mA e−150t

)
(u(t)− u(t− 0.04))

+
(
−583.33 mA e−225(t−0.04)

)
u(t− 0.04)

v(t) =
(
5 V + 10 V e−150t

)
(u(t)− u(t− 0.04))

+
(
−17.5 V e−225(t−0.04)

)
u(t− 0.04)

These two signals are plotted below as functions of time.
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Example Problems

Inductance and Equivalent Inductance

1. The current flowing through a 20 mH inductor is i(t) = 50t u(t) mA. Derive equations for the voltage

dropped over the inductor and the instantaneous power consumed by the inductor.

2. The voltage dropped over a 15 µH inductor is v(t) = cos(5000t)u(t) V. Derive equations for the current

flowing through the inductor and the instantaneous power consumed by the inductor.

3. Calculate the equivalent inductance of the circuit shown in figure 6.8.

10 mH

30 mH

20 mH

50 mH

40 mH 60 mH

Figure 6.8: Circuit diagram for inductance and equivalent inductance question 3.

4. Calculate the equivalent inductance of the circuit shown in figure 6.9.

80 µH

50 µH 90 µH

30 µH

50 µH 40 µH

20 mH

Figure 6.9: Circuit diagram for inductance and equivalent inductance question 4.

5. Determine the value of the inductor LX given that the circuit shown in figure 6.10 has an equivalent

inductance of 250 µH.

100 µH

200 µH

LX

300 µH

Figure 6.10: Circuit diagram for inductance and equivalent inductance question 5.
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Resistor-Inductor Circuits

6. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.11. The switch moves from

position a to b at time of zero seconds.

−
+6 V

300 Ω
a

b

700 Ω

900 Ω

320 mH

+

−

v(t)

i(t)

Figure 6.11: Circuit diagram for resistor-inductor circuits question 6.

7. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.12. The switch opens at a

time of zero seconds.

−
+5 V

200 Ω

750 Ω

500 Ω

20 mH

+

−

v(t)

i(t)

30 Ω

600 Ω 150 Ω

Figure 6.12: Circuit diagram for resistor-inductor circuits question 7.

8. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.13. The switch closes at a

time of zero seconds.

−
+8 V

4 kΩ

5 kΩ

6 kΩ

100 mH

+

−
v(t)

i(t)

20 kΩ

Figure 6.13: Circuit diagram for resistor-inductor circuits question 8.

cbna Alyssa J. Pasquale, Ph.D. 178 Last updated: 2023/05/18



6 Inductors and RL Circuits Example Problems

9. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.14. The switch closes at a

time of zero seconds.

15 mA 2 kΩ

4 kΩ

6 kΩ

240 mH

+

−
v(t)

i(t)

4 kΩ

−
+24 V

Figure 6.14: Circuit diagram for resistor-inductor circuits question 9.

10. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.14. Switch S1 opens at a

time of zero seconds, and switch S2 closes at a time of zero seconds.

−
+8 V

4 kΩ

S1

5 kΩ 100 mH

+

−

v(t)

i(t)

20 kΩ

S2

4 kΩ

−
+20 V

Figure 6.15: Circuit diagram for resistor-inductor circuits question 10.
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7 Second Order Circuits

7 Second Order Circuits

Second order circuits contain two equivalent energy storage elements (which could be two capacitors that

cannot be combined to an equivalent capacitance, two inductors that cannot be combined to an equivalent

inductance, or one equivalent capacitance and one equivalent inductance).

7.1 Homogeneous Second Order Circuit Responses

The analysis of the voltage or current in a second order circuit will be a second order, linear differential

equation. The homogeneous case solves for voltage or current when all sources have been disconnected from

the energy storage elements. Equation 7.1 shows the form of the second order equation for voltage. An

identical equation could be solved for current. Note that the highest order term has a coefficient of one.

0 =
d2v(t)

dt2
+ a1

dv(t)

dt
+ a0v(t) (7.1)

The values of a1 and a0 can be used to solve for important circuit parameters. The damping parameter

is known as α and is given by equation 7.2. The units of α are Np/s (Nepers per second). Nepers are a

dimensionless quantity similar to radians. The damping parameter corresponds to how quickly the value of

the voltage or current decays after the circuit elements have been removed from the power supply.

α =
a1
2

(7.2)

The resonant frequency of the circuit is known as ω0 and is given by equation 7.3. The units of ω0 are

rad/s (radians per second).

ω0 =
√
a0 (7.3)

To solve a homogeneous second order circuit, the characteristic equation needs to be solved. The solution

depends on the roots of the equation. The equations of the roots are shown in equation 7.4 and 7.5. The

roots are not usually expressed with units. However, because they are multiplied by time in the exponent of

an exponential function, it is important to understand that they are not dimensionless quantities.

s1 = −α+
√
α2 − ω2

0 (7.4)

s2 = −α−
√
α2 − ω2

0 (7.5)

Based on the value of the roots, there are three different possible output responses that a homogeneous

second order circuit can have. These are: overdamped, underdamped, and critically damped. Each will be

explored in its own subsection below.
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7 Second Order Circuits 7.1 Homogeneous Second Order Circuit Responses

7.1.1 Overdamped

An overdamped circuit response occurs when α > ω0. In an overdamped scenario, the circuit takes a long

time to respond to changes in the circuit conditions. Both of the roots of the characteristic equation (s1 and

s2) are real and unequal.

The form of the solution to an overdamped circuit is shown in equation 7.6 for voltage, but an identical

form could be found for current (substituting v(t) terms for i(t) terms).

v(t) =
(
A1e

s1t +A2e
s2t
)
u(t) + v(0−)u(−t) (7.6)

All second order circuits with a positive resistance will have negative roots, indicating a stable response to

a change in conditions (all exponential terms will converge rather than diverge over time). (Circuit stability

is discussed in section 9.4.2.)

The coefficients A1 and A2 (which have units of voltage or current, depending on what is being solved)

can be derived by solving equation 7.6 for v(0+) and v′(0+). This derivation will not be shown, but the

solution for both coefficients is given in equation 7.7 and 7.8. Again, if current is being solved for, all of the

voltage terms will be replaced with current terms.

A1 =
v(0+)s2 − v′(0+)

s2 − s1
(7.7)

A2 =
v′(0+)− v(0+)s1

s2 − s1
(7.8)

A graph depicting the voltage response of an overdamped circuit is shown in figure 7.1. A similar graph

could be made for a current response.

−10 −5 0 5 10 15 20 25 30 35 40 45 50
0

2

4

t (arbitrary)

vo
lt
ag
e
(V

)

VIN

v(t)

Figure 7.1: Voltage response of an overdamped second order circuit to an abrupt removal of input voltage.

7.1.2 Critically Damped

A critically damped circuit response occurs when α = ω0. The critically damped circuit has the quickest

approach to the steady-state value without oscillating. (In other words, it is the boundary condition between

an overdamped and an underdamped circuit.) Both of the roots of the characteristic equation (s1 and s2)

are real and equal.
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7 Second Order Circuits 7.1 Homogeneous Second Order Circuit Responses

The form of the solution to a critically damped circuit is shown in equation 7.9 for voltage. An identical

form could be found for current.

v(t) =
(
A1e

−αt +A2te
−αt
)
u(t) + v(0−)u(−t) (7.9)

The coefficient A1 has units of V (or A) and the coefficient A2 has units of V/s (or A/s). Both coefficients

can be derived by solving equation 7.9 for v(0) and v′(0). This derivation will not be shown. The solution

for both coefficients is given in equation 7.10 and 7.11. To find the coefficients for current, all voltage terms

should be replaced with current terms.

A1 = v(0+) (7.10)

A2 = v′(0+) + αv(0+) (7.11)

A graph depicting the voltage response of a critically damped circuit is shown in figure 7.2. A similar

graph could be made for a current response.

−10 −5 0 5 10 15 20 25 30 35 40 45 50
0

2

4

t (arbitrary)

vo
lt
ag
e
(V

)

VIN

v(t)

Figure 7.2: Voltage response of a critically damped second order circuit to an abrupt removal of input voltage.

7.1.3 Underdamped

An underdamped circuit response occurs when α < ω0. In an underdamped scenario, the circuit responds

so quickly to changes in the circuit conditions that the output oscillates around the final value, eventually

being attenuated to zero. The roots of the characteristic equation (s1 and s2) are complex conjugates.

The form of the solution to an underdamped circuit is shown in equation 7.12 for voltage. An identical

form could be found for current.

v(t) = e−αt [B1 cosβt+B2 sinβt]u(t) + v(0−)u(−t) (7.12)

Note a new parameter, β, which is equal to the oscillation frequency and has units of rad/s. The equation

for the oscillation frequency is given in equation 7.13.

β =
√
ω2
0 − α2 (7.13)
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7 Second Order Circuits 7.2 Homogeneous Series RLC Circuit

The coefficients B1 and B2 have units of V (or A) and can be derived by solving equation 7.12 for v(0)

and v′(0). This derivation will not be shown in this textbook. The solution for the coefficients is given in

equation 7.14 and 7.15. To find the coefficients for current, all voltage terms should be replaced with current

terms.

B1 = v(0+) (7.14)

B2 =
v′(0+) + αv(0+)

β
(7.15)

A graph depicting the voltage response of an underdamped circuit is shown in figure 7.3. A similar graph

could be made for a current response.

−10 −5 0 5 10 15 20 25 30 35 40 45 50
−5

0

5

t (arbitrary)

vo
lt
ag
e
(V

)

VIN

v(t)

Figure 7.3: Voltage response of an underdamped second order circuit to an abrupt removal of input voltage.

7.2 Homogeneous Series RLC Circuit

A homogeneous series RLC circuit is configured such that, when the input voltage is removed, the circuit

components contain one or more resistor, capacitor, and inductor, all in series with each other. An example

of a series RLC circuit is shown in figure 7.4. The switch is in position a for a long time before moving to

position b at time t = 0.

−
+VIN

R L i(t)

C

+

−
v(t)

a

b

Figure 7.4: A series RLC circuit.

First, the initial conditions of the circuit should be found. In this particular circuit, v(0) = VIN .

Equation 5.5 can be solved for t = 0+ to find the initial first derivative of the voltage. Because this is a

second order circuit, both the initial voltage and the initial first derivative of voltage must be calculated to

obtain a complete solution to the equation. For series RLC circuits, equation 5.5 can be rewritten as shown

in equation 7.16. (The circuit in figure 7.4 has v′(0+) = 0, but that is not necessarily true for all series RLC
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7 Second Order Circuits 7.2 Homogeneous Series RLC Circuit

circuits.)

v′(0+) =
i(0+)

C
(7.16)

Kirchhoff’s laws can then be used to solve for the voltage drop over the capacitor (v(t)) once the switch

has been moved to position b. The KVL equation is shown in equation 7.17.

0 = Ri(t) + L
di(t)

dt
+ v(t) (7.17)

Equation 5.5 relating the current through a capacitor to the voltage drop over a capacitor can then be

plugged into equation 7.17 to find the second order equation. This derivation is shown in equation 7.18.

0 =
d2v(t)

dt2
+

R

L

dv(t)

dt
+

1

LC
v(t) (7.18)

Now that the equation is configured to have the second order derivative term with a coefficient of one, it

is easy to determine the values of a1 (R/L) and a0 (1/LC). The damping parameter α is obtained by using

equation 7.2 and is shown in equation 7.19.

α =
R

2L
(7.19)

The resonant frequency ω0 is obtained using equation 7.3 and is shown in equation 7.20.

ω0 =
1√
LC

(7.20)

Example: Homogeneous RLC series circuit

Calculate v(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+20 V

100 Ω

50 mH

i(t)

220 Ω

47 Ω

470 nF 470 nF

+

−

v(t)

Analyze the initial conditions of the circuit, before the switch opens at 0 seconds. The inductor can be

treated as a short and the capacitors can be treated as open circuits. The voltage over the capacitor and

current through the inductor are continuous at time t = 0 and do not need to be separately analyzed at
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7 Second Order Circuits 7.2 Homogeneous Series RLC Circuit

t = 0+.

−
+20 V

100 Ω

220 Ω

i(0)

47 Ω

+

−

v(0)

Use Ohm’s law to calculate the initial current flow.

i(0) =
−20V
320 Ω

= −62.5 mA

Use a voltage divider to calculate the initial voltage drop.

v(0) = 20 V

(
220 Ω

320 Ω

)
= 13.75 V

Use equation 7.16 to determine the initial derivative of the voltage.

v′(0+) =
−0.0625 A

940× 10−9 F
= −66489.36 V/s

At this point, the circuit can be analyzed with the switch open to determine the values of R, L, and C

to use to determine the damping parameter and resonant frequency.

50 mH

i(t)

220 Ω

47 Ω

470 nF 470 nF

+

−

v(t)

The total resistance is equal to 267 Ω, the inductance is 50 mH, and the capacitance is 940 nF. Use

equation 7.19 to calculate the damping parameter.

α =
267 Ω

2× 0.05 H
= 2670 Np/s

Use equation 7.20 to calculate the resonant frequency.

ω0 =
1√

(0.05 H)(940× 10−9 F)
= 4612.66 rad/s
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7 Second Order Circuits 7.3 Homogeneous Parallel RLC Circuit

This circuit is underdamped. Use equation 7.13 to calculate the oscillation frequency of the circuit.

β =
√
4612.662 − 26702 = 3761.35 rad/s

Use equations 7.14 and 7.15 to calculate the coefficients.

B1 = 13.75 V

B2 =
−66489.36 + (2670)(13.75)

3761.35
= −7.92 V

Plug all of these quantities into equation 7.12 to calculate the equation for v(t).

v(t) = e−2670t [13.75 V cos(3761.35t)− 7.92 V sin(3761.35t)] u(t) + 13.75 V u(−t)

The voltage is plotted below as a function of time.
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7.3 Homogeneous Parallel RLC Circuit

A homogeneous parallel RLC circuit is configured such that, when the input current is removed, the circuit

components contain resistance, inductance, and capacitance in parallel with each other. An example of a

parallel RLC circuit is shown in figure 7.5. The switch is in position a for a long time before moving to

position b at time t = 0.

IIN R L

i(t)

C

+

−
v(t)

a

b

Figure 7.5: A parallel RLC circuit.

First, the initial conditions of the circuit should be found. In this particular circuit, i(0) = IIN . The

equation for voltage in equation 6.4 can be solved for t = 0+ to find the initial first derivative of the current.

This is shown in equation 7.21 for RLC parallel circuits. (The circuit in figure 7.5 has i′(0+) = 0, but that
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is not necessarily true for all parallel RLC circuits, particularly those that have a capacitor that is not fully

discharged.)

i′(0+) =
v(0+)

L
(7.21)

Kirchhoff’s laws can then be used to solve for the current flow through the inductor (i(t)) once the switch

has been moved to position b. The KCL equation is shown in equation 7.22.

0 =
v(t)

R
+ i(t) + C

dv(t)

dt
(7.22)

Equation 6.4 relating the voltage drop over an inductor to the current can then be plugged into equa-

tion 7.22 to find the second order equation. This derivation is shown in equation 7.23.

0 =
d2i(t)

dt2
+

1

RC

di(t)

dt
+

1

LC
i(t) (7.23)

Now that the equation is configured to have the second order term with a coefficient of one, it is easy

to determine the values of a1 (1/RC) and a0 (1/LC). The damping parameter α is obtained by using

equation 7.2 and is shown in equation 7.24.

α =
1

2RC
(7.24)

The resonant frequency ω0 is obtained using equation 7.3. Because a0 in the parallel RLC circuit is the

same as a0 in the series RLC circuit, they will have the same resonant frequency, given by equation 7.20.

Example: Homogeneous RLC parallel circuit

Calculate i(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+6 V

10 Ω

30 mH

i(t)

300 µF 5 Ω

+

−

v(t)

Analyze the initial conditions of the circuit, before the switch opens at 0 seconds. The inductor can

be treated as a short and the capacitor can be treated as an open circuit. The voltage dropped over the

capacitor and current flowing through the inductor are both continuous at t = 0.
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−
+6 V

10 Ω

i(0) 5 Ω

+

−

v(0)

Use Ohm’s law to calculate the initial current flow.

i(0) =
6V

10 Ω
= 0.6 A

Because there is no voltage dropped over the 5 Ω resistor (it is shorted out by the inductor), the initial

voltage drop will be zero, and the value of i’(0+) will also be zero.

At this point, the circuit can be analyzed with the switch open to determine the values of R, L, and C

to use to determine the damping parameter and resonant frequency.

30 mH

i(t)

300 µF 5 Ω

+

−

v(t)

The total resistance is equal to 5 Ω, the inductance is 30 mH, and the capacitance is 300 µF. Use

equation 7.24 to calculate the damping parameter.

α =
1

2(5 Ω)(300× 10−6 F)
= 333.33 Np/s

Use equation 7.20 to calculate the resonant frequency.

ω0 =
1√

(0.03 H)(300× 10−6 F)
= 333.33 rad/s

This circuit is critically damped with both roots equal to −333.33. Use equations 7.10 and 7.11 to

calculate the coefficients.

A1 = 0.6 A

A2 = (333.33)(0.6) = 200 A/s
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Plug all of these quantities into equation 7.9 to calculate the equation for i(t).

i(t) =
(
0.6 A e−333.33t + 200 A/s t e−333.33t

)
u(t) + 0.6 A u(−t)

The current is plotted below as a function of time.

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

t (ms)

i(
t)

(A
)

7.3.1 Analysis with Parasitic Resistance

The analysis above ignores the parasitic resistance that exists in real inductors. A realistic circuit, which

explicitly includes the parasitic resistance in series with the inductor, can be analyzed. The corresponding

circuit diagram is shown in figure 7.6.

IIN R

L

i(t)

RP

C

+

−

v(t)

a

b

Figure 7.6: A parallel RLC circuit including parasitic resistance RP that comes from the inductor.

As will be discussed in section 7.4, second order circuits in general are analyzed by determining initial

conditions, and then using Kirchhoff’s laws to find a second order equation for the quantity of interest. That

is what will be done in this circuit.

KCL can be used to find the first equation, which is identical to that of the non-parasitic RLC circuit,

given in equation 7.22. KVL around the loop containing the inductor, parasitic resistance, and capacitor is

given in equation 7.25.

v(t) = L
di(t)

dt
+RP i(t) (7.25)

Equation 7.25 can be plugged into equation 7.22 to solve for the second order equation in terms of current.
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The full derivation will not be shown. The final result is given in equation 7.26.

0 =
d2i(t)

dt2
+

[
1

RC
+

RP

L

]
di(t)

dt
+

[
1

LC
+

RP

RLC

]
i(t) (7.26)

Now that the equation is configured to have the second order term with a coefficient of one, it is easy to

determine the values of a1 and a0. The damping parameter α can be solved using equation 7.2 and is shown

in equation 7.27.

α =
1

2RC
+

RP

2L
(7.27)

The resonant frequency ω0 can be solved using equation 7.3 and is shown in equation 7.28.

ω0 =

√
1

LC
+

RP

RLC
(7.28)

Equation 7.25 can also be solved at time t = 0 to find the initial condition of the first derivative of the

current, shown in equation 7.29.

i′(0+) =
v(0+)−RP i(0

+)

L
(7.29)

Example: Homogeneous RLC parallel circuit with parasitic resistance

Calculate i(t) for the circuit below. The switch opens at a time of 0 seconds. The inductor has a parasitic

resistance of 60 Ω (not shown).

200 mA 100 mH

i(t)

22 nF 47 Ω

+

−

v(t)

Analyze the initial conditions of the circuit, before the switch opens at 0 seconds. The voltage dropped

over the capacitor and current flowing through the inductor will both be continuous at t = 0. The inductor

can be treated as a short and the capacitor can be treated as an open circuit. The parasitic resistance is

shown in this diagram to make it clear that the inductor is not shorting out the 47 Ω resistor.

200 mA 60 Ω

i(0)

47 Ω

+

−

v(0)
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Use a current divider to calculate the initial current flow.

i(0) = 200 mA

(
60 Ω//47 Ω

60 Ω

)
= 87.85 mA

The initial voltage drop will not be zero. Use Ohm’s law to calculate v(0).

v(0) = (0.2 A)(60 Ω//47 Ω) = 5.27 V

Use equation 7.29 to calculate the initial first derivative of the current. It is equal to zero. Use equa-

tion 7.27 to calculate the damping parameter.

α =
1

2(47 Ω)(22× 10−9F)
+

60 Ω

2(0.1 H)
= 483858.99 Np/s

Use equation 7.28 to calculate the resonant frequency.

ω0 =

√
1

(0.1 H)(22× 10−9 F)
+

60 Ω

(47 Ω)(0.1 H)(22× 10−9F)
= 32168.56 rad/s

This circuit is overdamped. Use equations 7.4 and 7.5 to calculate the roots of the characteristic equation.

s1 = −483858.99 +
√
483858.992 − 32168.562 = −1070.52

s2 = −483858.99−
√
483858.992 − 32168.562 = −966647.46

Use equations 7.7 and 7.8 to calculate the coefficients of the equation.

A1 =
(87.85)(−966647.46)
−966647.46 + 1070.52

= 87.95 mA

A2 =
−(87.85)(−1070.52)
−966647.46 + 1070.52

= −0.10 mA

Plug all of these quantities into equation 7.6 to calculate the equation for i(t).

i(t) =
(
87.95 mA e−1070.52t − 0.10 mA e−966647.46t

)
u(t) + 87.85 mA u(−t)

The current is plotted below as a function of time.
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7.4 General Homogeneous Second Order Circuits

The procedure for solving second order circuits that do not follow the exact format of parallel RLC or series

RLC follows.

1. Use KCL and KVL to find a second order differential equation in terms of the desired quantity.

2. The equations from step one can be solved for v′(0+) or i′(0+).

3. Solve the circuit for the initial conditions.

4. Use the differential equation from step one to calculate α and ω0.

5. Calculate the coefficients.

6. Find the equation for v(t) or i(t).

All of the equations in this section of the text have discussed finding the voltage drop over the capacitor

or current flow through an inductor. It is also possible to derive a second order equation to find voltage over

or current through any arbitrary component in a circuit. It is important to note that the initial conditions

may be discontinuous. All other quantities must be analyzed at t = 0− (steady state initial conditions),

and again at exactly t = 0 to determine the response at t = 0+. Then, final steady-state conditions can be

analyzed to find the response at t→∞. If the initial condition is discontinuous, the value at t = 0+ should

be used as the value of v(0) or i(0).

Example: Homogeneous general second order circuit in symbolic form

Calculate v(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+VS

RS

C R1

L

R2

+

−

v(t)

First, analyze the initial conditions of the circuit, before the switch opens at 0 seconds. The inductor

can be treated as a short and the capacitor can be treated as an open circuit.

−
+VS

RS

R1 R2

+

−

v(0)
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Use a voltage divider to calculate the initial voltage. This value will be continuous at time t = 0 s due

to the inductor current and capacitor voltage drop being continuous at that moment.

v(0) = VS

(
R2//R1

RS +R2//R1

)

Analyze the circuit with the switch open to determine the second order equation. Some other intermediate

terms (i(t) and v2(t)) will be introduced to assist in the analysis.

C

+

−

v2(t) R1

L

R2

+

−

v(t)

i(t)

Perform KVL around the loop consisting of the capacitor, inductor, and resistor R2.

v2(t) = L
di(t)

dt
+ v(t)

The current flowing through the inductor (i(t)) is equal to v(t)/R2. (Note that this equation will be used

below to find v’(0).)

v2(t) =
L

R2

dv(t)

dt
+ v(t)

Perform KCL at the node connecting the capacitor, resistor R1, and the inductor.

v(t)

R2
= C

dv2(t)

dt
+

v2(t)

R1

Solve the last two equations for v(t) and ensure that the highest order term has a coefficient of one.

0 =
d2v(t)

dt2
+

[
R2

L
+

1

CR1

]
dv(t)

dt
+

[
R2

R1LC
+

1

LC

]
v(t)

Solve for alpha and omega.

α =
R2

2L
+

1

2CR1

ω0 =

√
R2

R1LC
+

1

LC
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Find an equation for the initial derivative of the voltage drop.

v′(0+) =
R2

L
(v2(0)− v(0))

Because the initial voltage drops v(0) and v2(0) are equal, this value will be equal to zero, regardless of

the value of any individual components.

This circuit can now be solved given any values of VS, RS, L, C, R1 and R2.

Example: Homogeneous general second order circuit in numeric form

Calculate i(t) for the circuit below. The switch opens at a time of 0 seconds.

−
+10 V

20 Ω

20 Ω

500 mH

30 Ω

30 Ω

400 mH

i(t)

Analyze the initial conditions of the circuit, before the switch opens at 0 seconds. Both inductors can be

treated as short circuits. Because the 500 mH inductor acts as a short, the 20 Ω and 30 Ω resistors are in

parallel and have been reduced to an equivalent resistance.

−
+10 V

20 Ω

12 Ω

30 Ω

i(0)

Use a current divider to calculate the initial current. Because this is the current through an inductor, it

will be continuous at time t = 0 s.

i(0) =
10 V

20 Ω

(
20 Ω//12 Ω//30 Ω

30 Ω

)
= 0.1 A

It will also be useful to determine the initial voltage drop over the 12 Ω resistor. Use a voltage divider to

calculate this quantity. This quantity will also be continuous at time t = 0 s. If it weren’t, the circuit would

need to be analyzed at exactly the moment the switch was opened to determine the value at t = 0+.

v12 Ω(0) = 10 V

(
12 Ω//30 Ω

20 Ω + 12 Ω//30 Ω

)
= 3 V
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Analyze the circuit with the switch open to determine the second order equation. Some other intermediate

terms (v(t) and i2(t)) will be introduced to assist in the analysis.

20 Ω

i2(t)

500 mH

30 Ω

+

−

v(t)

30 Ω

400 mH

i(t)

Perform KVL around the loop consisting of both 30 Ω resistors and the 400 mH inductor. At this point,

all units will be removed from equations. All quantities will be in terms of Ω, V, A, and H.

v(t) = 30i(t) + 0.4
di(t)

dt

Perform KCL at the node connecting the 500 mH inductor and both 30 Ω resistors.

i2(t) = −
v(t)

30
− i(t)

One last equation is required. Perform KVL around the loop consisting of the 20 Ω resistor, the 500 mH

inductor, and the 30 Ω resistor.

v(t) = 20i2(t) + 0.5
di2(t)

dt

There are now three equations and three unknowns. Solve each equation to find a second order equation

in terms of i(t). Ensure that the highest order term has a coefficient of one.

0 =
d2i(t)

dt2
+ 250

di(t)

dt
+ 10500i(t)

Calculate alpha and omega.

α =
250

2
= 125 Np/s

ω0 =
√
10500 = 102.47 rad/s

This circuit is overdamped.

Find an equation for the initial derivative of the current. v(0) is equal to the initial voltage drop over the
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12 Ω resistor that was calculated in a previous step to be 3 V.

i′(0+) =
v(0)− 30i(0)

0.4

=
3− 30(0.1)

0.4

= 0 A/s

Use equations 7.4 and 7.5 to calculate the roots of the characteristic equation.

s1 = −125 +
√

1252 − 102.472 = −53.41

s2 = −125−
√
1252 − 102.472 = −196.59

Use equations 7.7 and 7.8 to calculate the coefficients of the equation.

A1 =
(0.1)(−196.59)
−196.59 + 53.41

= 0.14 A

A2 =
−(0.1)(−53.41)
−196.59 + 53.41

= −0.04 A

Plug all of these quantities into equation 7.6 to obtain the equation for i(t).

i(t) =
(
0.14 A e−53.41t − 0.04 A e−196.59t

)
u(t) + 0.1 A u(−t)

The current is plotted below as a function of time.
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7.5 Non-Homogeneous Second Order Circuits

A non-homogeneous second order circuit contains a source in the final configuration of the circuit. The

differential equation, which was shown in equation 7.1 for a homogeneous circuit, will no longer be equal to

zero. The new form of the second order equation is shown in equation 7.30.

y(t) =
d2v(t)

dt2
+ a1

dv(t)

dt
+ a0v(t) (7.30)

To solve a non-homogeneous second order equation, first find the general solution. Then, find the par-

cbna Alyssa J. Pasquale, Ph.D. 196 Last updated: 2023/05/18



7 Second Order Circuits 7.5 Non-Homogeneous Second Order Circuits

ticular solution. These two solutions are added together to find the overall circuit response. The general

solution is the response of the homogeneous equation, which was discussed in the previous sections of this

chapter. The particular solution vp(t) is the only new aspect to solving a non-homogeneous second order

circuit.

The other change that happens is that the form of each circuit response equation (overdamped, under-

damped, and critically damped) will be modified. Note that the resulting equations are the general form of

an equation. The homogenous response is simply the specific case where vp(t) or ip(t) is equal to zero. The

non-homogeneous equations can therefore be used to analyze any second order circuit. All of the equations

given below will be in terms of voltage. To modify the equations to solve for current, simply replace all

voltage terms with current terms.

The overdamped circuit will be characterized by the equation shown in equation 7.31.

v(t) =
(
vp(t) +A1e

s1t +A2e
s2t
)
u(t) + v(0−) u(−t) (7.31)

The critically damped circuit will be characterized by the equation shown in equation 7.32.

v(t) =
(
vp(t) +A1e

−αt +A2te
−αt
)
u(t) + v(0−) u(−t) (7.32)

The underdamped circuit will be characterized by the equation shown in equation 7.33.

v(t) =
(
vp(t) + e−αt [B1 cosβt+B2 sinβt]

)
u(t) + v(0−) u(−t) (7.33)

7.5.1 Constant Input Non-Homogeneous Second Order Circuits

A constant input second order circuit will have a DC source connected in the final circuit configuration. In

this case, the particular solution will simply be equal to the final steady-state voltage (or current), shown in

equation 7.34.

vp(t) = v(∞) (7.34)

The coefficients for each type of circuit response can now be solved in terms of the initial conditions and

final conditions of the circuit. The overdamped coefficients are given in equations 7.35 and 7.36.

A1 =
s2(v(0

+)− v(∞))− v′(0+)

s2 − s1
(7.35)

A2 =
v′(0+)− s1(v(0

+)− v(∞))

s2 − s1
(7.36)
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The critically damped coefficients are given in equations 7.37 and 7.38.

A1 = v(0+)− v(∞) (7.37)

A2 = v′(0+)− s1(v(0
+)− v(∞)) (7.38)

The underdamped coefficients are given in equations 7.39 and 7.40.

B1 = v(0+)− v(∞) (7.39)

B2 =
v′(0+) + α(v(0+)− v(∞))

β
(7.40)

Example: Constant input non-homogeneous general second order circuit in symbolic form

Calculate v(t) for the circuit below. The switch closes at a time of 0 seconds.

IS RS

R

L

C

+

−

v(t)

The initial conditions are straightforward to determine. The voltage drop will be zero as it will be

disconnected from the current source and all energy will have discharged through the resistor and inductor.

The voltage dropped over the capacitor and the current flowing through the inductor will both be continuous

at t = 0.

Analyze the circuit with the switch closed to find a second order differential equation. An intermediate

term i(t) will be introduced to assist in the analysis.

IS RS

R

L

i(t)

C

+

−

v(t)

Perform KVL around the loop consisting of the resistor R, inductor, and capacitor.

v(t) = Ri(t) + L
di(t)

dt
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Solve KCL at the node connecting the power supply, both resistors, and the capacitor.

IS =
v(t)

Rs
+ i(t) + C

dv(t)

dt

Solve the latter equation for i(t) and plug into the former to find the differential equation. Ensure that

the highest order term has a coefficient of one.

R

LC
IS =

d2v(t)

dt2
+

[
1

RSC
+

R

L

]
dv(t)

dt
+

[
1

LC
+

R

RSLC

]
v(t)

The latter equation can also be used to find an equation for the initial derivative of the voltage drop.

v′(0+) =
IS − v(0)

RS
− i(0)

C

Calculate alpha and omega.

α =
R

2L
+

1

2CRS

ω0 =

√
R

RSLC
+

1

LC

The final value of the voltage drop over the capacitor will be used to determine the particular solution

vp(t). The inductor can be replaced with a short and the capacitor can be replaced with an open.

IS RS R

+

−

v(∞)

Use Ohm’s law to calculate this value.

v(∞) = Is

(
RSR

RS +R

)

This circuit can now be solved given any values of IS, RS, L, C, and R.

Example: Constant input non-homogeneous general second order circuit in numeric form

Calculate v(t) for the circuit below. The switch closes at a time of 0 seconds.
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−
+20 V

10 Ω 20 mH

1 kΩ

10 Ω

100 nF

+

−

v(t)

The initial voltage drop will be zero due to the lack of connection to the voltage source. The voltage

dropped over the capacitor will be continuous at t = 0.

The final value of the voltage can be determined by analyzing the circuit in the steady-state condition.

The inductor can be replaced with a short and the capacitor can be replaced with an open.

−
+20 V

10 Ω

1 kΩ

10 Ω

+

−

v(∞)

Use a voltage divider to calculate v(∞), which is equal to the value of the particular solution.

v(∞) = 20 V

(
1000 Ω

1010 Ω

)
= 19.80 V

Analyze the circuit with the switch closed to determine the second order equation. Some other interme-

diate terms (i(t) and i2(t)) will be introduced to assist in the analysis.

−
+20 V

10 Ω i2(t)
20 mH

1 kΩ

i(t)

10 Ω

100 nF

+

−

v(t)

Perform KVL around the loop consisting of the voltage source, both 10 Ω resistors, the inductor, and

the capacitor. All quantities will be in terms of Ω, V, A, and H.

20 = 10i2(t) + 0.02
di2(t)

dt
+
(
1× 10−6

) dv(t)
dt

+ v(t)

Perform KCL at the node connecting the inductor, the 1 kΩ resistor, and the 10 Ω resistor. (This equation
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will be used below to calculate the value of the initial derivative of the voltage.)

i2(t) = i(t) +
(
100× 10−9

) dv(t)
dt

One last equation is required. Perform KVL around the loop consisting of the 1 kΩ resistor, the 10 Ω

resistor, and the capacitor. Divide by 1 kΩ.

i(t) =
(
1× 10−9

) dv(t)
dt

+ 0.001v(t)

There are now three equations and three unknowns. Solve each equation to find a second order equation

in terms of v(t). Then, ensure that the highest order term has a coefficient of one.

9.9× 109 =
d2v(t)

dt2
+ 10896.04

dv(t)

dt
+
(
5× 108

)
v(t)

Calculate alpha and omega.

α =
10896.04

2
= 5448.02 Np/s

ω0 =
√
5× 108 = 22360.68 rad/s

This circuit is underdamped.

Calculate the initial derivative of the voltage. Because i(t) and i2(t) will both be zero at t = 0 s (and

are continuous when the switch closes), v’(0) will be zero.

Use equation 7.13 to calculate the oscillation frequency of the circuit.

β =
√
22360.682 − 5448.022 = 21686.84 rad/s

Use equations 7.39 and 7.40 to calculate the coefficients of the equation.

B1 = −19.80 V

B2 =
−(5448.02)(19.80)

21686.84
= −4.97 V

Plug all of these quantities into equation 7.33 to obtain the equation for i(t).

v(t) =
(
19.80 V + e−5448.02t [−19.80 V cos(21686.84t)− 4.97 V sin(21686.84t)]

)
u(t)

The current is plotted below as a function of time.

cbna Alyssa J. Pasquale, Ph.D. 201 Last updated: 2023/05/18



7 Second Order Circuits 7.5 Non-Homogeneous Second Order Circuits

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

t (ms)

v
(t
)
(V

)

7.5.2 Variable Input Non-Homogeneous Second Order Circuits

It is possible for a second order circuit to be connected to a variable input source (rather than a DC source)

in the final circuit configuration. In this case, the particular solution will no longer be equal to that given

in equation 7.34. The particular solution for commonly used sources is given in table 7.1.

Source Type Equation Particular Solution Notes

Polynomial A2t
2 +A1t+A0 K2t

2 +K1t+K0
If 0 is not a root of the characteristic
equation.

K2t
3 +K1t

2 +K0t
If 0 is a single root of the characteristic
equation.

K2t
4 +K1t

3 +K0t
2 If 0 is a double root of the characteristic

equation.

Exponential Ae−at Ke−at If a is not a root of the characteristic
equation.

Kte−at If a is a single root of the characteristic
equation.

Kt2e−at If a is a double root of the characteristic
equation.

Cosine A cosωt K1 cosωt+K2 sinωt
Sine A sinωt K1 cosωt+K2 sinωt

Table 7.1: Particular solutions for commonly used variable sources.

To solve for the coefficients of the solution, solve the equation for v(0) and v′(0) and use linear algebra

to determine the coefficients. These calculations will not be derived for all variable input sources in this

textbook.

Example: Variable input non-homogeneous general second order circuit in symbolic form

Calculate i(t) for the circuit below. The switch closes at a time of 0 seconds.

IS t u(t) R C L

i(t)

The initial current flow will be zero, due to the lack of connection to the voltage source. It is no longer

relevant to discuss steady-state values as the input is a ramp function and will not lead to a constant output
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value.

Analyze the circuit with the switch closed to determine the second order equation. The voltage drop

over the inductor v(t) will also be used to assist in the analysis.

IS t u(t) R C

+

−

v(t) L

i(t)

Perform KCL.

ISt =
v(t)

R
+ i(t) + C

dv(t)

dt

Use equation 6.4 to replace v(t) terms with i(t) terms. Divide all terms until the second order term has

a coefficient of one. Note that this is simply a non-homogeneous parallel RLC circuit, so the equation looks

very similar to equation 7.23.

IS
LC

t =
d2i(t)

dt2
+

1

RC

di(t)

dt
+

1

LC
i(t)

The particular form of the solution will need to be obtained. Consult table 7.1

ip(t) = K1t+K2

Plug the particular solution into the second order equation to calculate the values of the coefficients K1

and K2.

IS
LC

t =
d2

dt2
[K1t+K2] +

1

RC

d

dt
[K1t+K2] +

1

LC
[K1t+K2]

Perform all of the derivatives. Then, combine all of the constant terms together in one equation and all

of the t terms together in another equation.

0 =
1

RC
K1 +K2

IS
LC

=
1

LC
K1
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These two equations and two unknowns can be put into a matrix to solve for the coefficients.

K1 = IS

K2 = − IS
RC

The particular solution is now known.

ip(t) = ISt−
IS
RC

At this point, it is not possible to go any farther in the calculations due to the symbolic form of the

solution. The circuit could be overdamped, underdamped, or critically damped. The general solution of the

equation cannot be solved without specific component values.

Example: Variable input non-homogeneous general second order circuit in numeric form

Calculate i(t) for the circuit below. The switch closes at a time of 0 seconds.

5 V sin(2π100t)

50 Ω

100 Ω

1 µF

100 mH

i(t)

The initial current flow will be zero, due to the lack of connection to the voltage source. This current

flow will be continuous at time t = 0. It is no longer relevant to discuss steady-state values as the input is

a sinusoidal function and will not lead to a constant output value.

Analyze the circuit with the switch closed to determine the second order equation. Some other interme-

diate terms (v(t) and i2(t)) will be introduced to assist in the analysis.

5 V sin(2π100t)

50 Ω

i2(t)

100 Ω

+

−

v(t)

1 µF

100 mH

i(t)

Perform KVL around the loop consisting of the voltage source, the 50 Ω resistors, the capacitor, and the
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inductor. All quantities will be in terms of Ω, V, A, and H.

5 sin(2π100t) = 50i2(t) +
(
1× 106

) ∫ t

−∞
i(τ) dτ + 0.1

di(t)

dt

Perform KCL at the node connecting both resistors and the capacitor.

i2(t) = 0.01v(t) + i(t)

This latter equation can be plugged into the former to obtain an equation only in terms of v(t) and i(t).

5 sin(2π100t) = 0.5v(t) + 50i(t) +
(
1× 106

) ∫ t

−∞
i(τ) dτ + 0.1

di(t)

dt

One last equation is required. Perform KVL around the loop consisting of the 100 Ω resistor, the inductor,

and the capacitor.

v(t) =
(
1× 106

) ∫ t

−∞
i(τ) dτ + 0.1

di(t)

dt

Plug the latter expression into the former to obtain a second order equation that is only in terms of i(t).

6666.67π cos(2π100t) =
d2i(t)

dt2
+ 333.33

di(t)

dt
+
(
1× 107

)
i(t)

Calculate alpha and omega.

α =
333.33

2
= 166.67 Np/s

ω0 =
√

1× 107 = 3162.28 rad/s

This circuit is underdamped.

Use equation 7.13 to calculate the oscillation frequency of the circuit.

β =
√
3162.282 − 166.672 = 3157.88 rad/s

Calculate the value of the particular solution. Because the input is a sine wave, the particular solution

will take the form given below.

ip(t) = K1 cos(2π100t) +K2 sin(2π100t)

Plug the particular solution into the second order equation as shown to calculate the values of the
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coefficients K1 and K2.

6666.67π cos(2π100t) =
d2

dt2
[K1 cos(2π100t) +K2 sin(2π100t)]

+ 333.33
d

dt
[K1 cos(2π100t) +K2 sin(2π100t)]

+
(
1× 107

)
[K1 cos(2π100t) +K2 sin(2π100t)]

Perform all of the derivatives. Then, combine all of the sine terms together in one equation and all of

the cosine terms together in another equation.

0 = −40000π2K2 − 66666.67πK1 +
(
1× 107

)
K2

6666.67π = −40000π2K1 + 66666.67πK2 +
(
1× 107

)
K1

These two equations and two unknowns can be put into a matrix to solve for the coefficients.

K1 = 2.18× 10−3 A

K2 = 4.75× 10−5 A

The particular solution is now known.

ip(t) =
(
2.18× 10−3

)
cos(2π100t) +

(
4.75× 10−5

)
sin(2π100t)

Because the equation is underdamped, equation 7.33 can be used to find an equation for i(t).

i(t) =
(
2.18× 10−3

)
cos(2π100t) +

(
4.75× 10−5

)
sin(2π100t)

+ e−166.67t [B1 cos(3157.88t) +B2 sin(3157.88t)]

The last step is to calculate the values of coefficients B1 and B2. This is where the initial conditions i(0)

and i’(0+) are used. Both of these values are zero. The first equation to be used to calculate the coefficients

is to solve i(t) for t = 0 s.

i(0) = 0 =
(
2.18× 10−3

)
+B1

The second equation to be used is to take the first derivative of i(t) and solve for when t = 0 s.

i′(0+) = 0 = 3157.88B2 − 166.67B1 + 0.0298451
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Both coefficients can now be calculated.

B1 = −2.18× 10−3 A

B2 = −1.25× 10−4 A

Put everything together to find an equation for i(t).

i(t) =
[(
2.18× 10−3

)
A cos(2π100t) +

(
4.75× 10−5

)
A sin(2π100t)

+ e−166.67t
[(
−2.18× 10−3

)
A cos(3157.88t)−

(
1.25× 10−4

)
A sin(3157.88t)

]]
u(t)

The current is plotted below as a function of time.

−6 −4 −2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−2
0

2

4

t (ms)

i(
t)

(m
A
)
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Example Problems

Homogeneous Second Order Circuits

1. Calculate an expression for v(t) given the circuit shown in figure 7.7. The switch opens at a time of

zero seconds.

−
+10 V

4 kΩ

500 mH

i(t)

200 Ω

50 µF

+

−

v(t)

Figure 7.7: Circuit diagram for homogeneous second order circuits question 1.

2. Calculate an expression for i(t) given the circuit shown in figure 7.8. The switch opens at a time of

zero seconds.

−
+20 V

200 Ω

150 Ω 20 mH

i(t)

100 nF

+

−

v(t)

Figure 7.8: Circuit diagram for homogeneous second order circuits question 2.

3. Calculate an expression for v(t) given the circuit shown in figure 7.9. The switch opens at a time of

zero seconds.

40 mA 20 Ω 5 mF

+

−

v(t)

0.1 H

i(t)

10 Ω

35 Ω

Figure 7.9: Circuit diagram for homogeneous second order circuits question 3.
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4. Calculate an expression for v(t) given the circuit shown in figure 7.10. The switch moves from position

a to position b at a time of zero seconds.

−
+5 V

100 Ω
a

b

5 mHi(t)

60 Ω

40 Ω

2 µF

+

−
v(t)

Figure 7.10: Circuit diagram for homogeneous second order circuits question 4.

5. Derive a second order differential equation in terms of i(t) given the circuit shown in figure 7.11. The

switch opens at a time of zero seconds.

IS RS R1

L1

R2

L2

R3

i(t)

Figure 7.11: Circuit diagram for homogeneous second order circuits question 5.

Non-Homogeneous Second Order Circuits

6. Calculate an expression for v(t) given the circuit shown in figure 7.12. The switch moves from position

a to b at a time of zero seconds.

−
+28 V

160 Ω

a

b

960 Ω

480 Ω

12.5 nF

+

−

v(t)

500 µH

−
+20 V

Figure 7.12: Circuit diagram for non-homogeneous second order circuits question 6.

cbna Alyssa J. Pasquale, Ph.D. 209 Last updated: 2023/05/18



7 Second Order Circuits Example Problems

7. Calculate an expression for i(t) given the circuit shown in figure 7.13. The switch closes at a time of

zero seconds.

−
+25 V

125 Ω

6.25 µF 250 mH

i(t)

Figure 7.13: Circuit diagram for non-homogeneous second order circuits question 7.

8. Calculate an expression for v(t) given the circuit shown in figure 7.14. The switch moves from position

a to b at a time of zero seconds.

200 mA 100 Ω

b

a

20 Ω

500 nF

40 Ω

200 nF

+

−
v(t)

Figure 7.14: Circuit diagram for non-homogeneous second order circuits question 8.

9. Calculate an expression for i(t) given the circuit shown in figure 7.15. Switch S1 opens at a time of

zero seconds and switch S2 closes at a time of zero seconds.

−
+6 V

5 Ω

S1

50 mH

i(t)

10 Ω

20 µF

20 Ω

S2

−
+15 V

Figure 7.15: Circuit diagram for non-homogeneous second order circuits question 9.
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10. Calculate an expression for v(t) given the circuit shown in figure 7.16. The switch closes at a time of

zero seconds.

10 sin(2π40t) V

10 Ω

10 Ω

0.5 H

2 mF

+

−

v(t)

Figure 7.16: Circuit diagram for non-homogeneous second order circuits question 10.
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8 Phasors and Impedances

A phasor is a mathematical construct that uses complex numbers (and Euler’s equation) to analyze the

AC steady-state behavior of circuits. While it might initially seem scary to use complex numbers to an-

alyze circuits, it removes all of the calculus from the analysis and replaces it with addition, subtraction,

multiplication, and division.

Euler’s equation (shown in equation 8.1) provides a relationship between the argument of a cosine wave

and exponent of the base of the natural logarithm. The variables in the expression correspond to the

amplitude of the wave (A), the phase of the wave (ϕ), the frequency of the wave (ω), and the square root of

negative one (j).

A cos(ωt+ ϕ) = Aej(ωt+ϕ) (8.1)

When a circuit contains a sinusoidal source, all of the voltages and currents of the circuit will have

a sinusoidal behavior. None of the circuit elements discussed in this book are capable of changing the

frequency of the response. Therefore, the only truly important properties of each sinusoid are the amplitude

and phase. (The frequency is important, but does not need to be included in calculations because it is

constant throughout a circuit, and because the amplitude and phase of sinusoidal quantities will not be

affected by the frequency in any calculations.) The review of sinusoidal waves in section 1.5.2 of this book

should be consulted if there is any question about what is meant by the amplitude or phase of a wave.

Euler’s equation reduces to ejϕ when angular frequency is omitted. This phasor quantity can be expressed

in either Cartesian form (expressed with real and imaginary components) or polar form (expressed with

magnitude and phase). These two phasor forms (and how to convert between the two) are discussed in

sections 8.1.1 and 8.1.2.

All of the phasors that are constructed in circuit analysis take the form of a cosine wave with positive

amplitude. Any waveforms that are described in terms of a sine wave or that contain a negative amplitude will

require conversion before analysis can take place. The angular argument of the phasor is usually expressed

in degrees between −180◦ and +180◦.

Waveforms with a negative amplitude can be converted to a waveform with a positive amplitude by

phase-shifting the wave by either positive or negative 180◦. A sine wave can be converted into a positive-

amplitude cosine wave by subtracting 90◦ from the phase. Conversions from non-standard to standard form

are shown in equations 8.2–8.4.

− cos(ωt+ ϕ) = cos(ωt+ ϕ± 180π/180) (8.2)

sin(ωt+ ϕ) = cos(ωt+ ϕ− 90π/180) (8.3)

− sin(ωt+ ϕ) = cos(ωt+ ϕ+ 90π/180) (8.4)
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Example: Converting negative amplitude cosine to phasor form

Convert the following expression to standard phasor form.

v(t) = −110 cos(2π60t+ 210π/180) V

Use equation 8.2 to convert to standard phasor form. It is desirable to keep the value of the angular

component between ±180◦, so it is best to subtract 180◦ rather than add 180◦.

v(t) = 110 cos(2π60t+ (210− 180)π/180) V

= 110 cos(2π60t+ 30π/180) V

Example: Converting negative amplitude sine to phasor form

Convert the following expression to standard phasor form.

i(t) = −20 sin(2π60t+ 120π/180) A

Use equation 8.4 to convert to standard phasor form. Subtract 360◦ to keep the angle within ±180◦.

i(t) = 20 cos(2π60t+ (120 + 90)π/180) A

= 20 cos(2π60t+ 210π/180) A

= 20 cos(2π60t− 150π/180) A

8.1 Phasor Arithmetic

The major benefit of using phasors is the ability to solve complicated circuit analysis by simply adding,

subtracting, multiplying, and dividing. No calculus is required. Before discussing how to perform these

operations with phasors, a review of Cartesian and polar forms will be conducted.

Cartesian coordinates are used to explain the location of a point on the imaginary axes using two quanti-

ties: the real part and the imaginary part. This is similar to (x,y) coordinates; the x-coordinate corresponds

to the real part, and the y-coordinate corresponds to the imaginary part. Polar coordinates are used to

explain the location of a point using the magnitude of the vector (distance from the origin) and the angle

from the positive real axis. These two forms are shown graphically in figure 8.1.
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real

imaginary

x+ jy

x

y

real

imaginary

r

r∠ϕ

ϕ

Figure 8.1: A complex number can be described in two ways: Cartesian form (left) and polar form (right).

Note that the symbol j is used to represent the imaginary quantity
√
−1. This is because I and i are

reserved in electrical engineering to discuss current. (How can you tell the difference between an electrical

engineer and a physicist? Ask them how they represent the square root of negative one!)

8.1.1 Cartesian to Polar Conversion

If the Cartesian form (x+ jy) of a phasor is known, it is possible to use trigonometry to represent the phasor

in polar form as r∠ϕ. The magnitude r is found using the Pythagorean theorem, shown in equation 8.5.

r =
√
x2 + y2 (8.5)

To precisely find the angle of a point given Cartesian coordinates, the two-argument arctan function

(atan2) should be used, as arctan alone is unable to determine in which quadrant a point is located. The

atan2 function is defined in equation 8.6.

atan2(y, x) =



atan( yx ) if x > 0,

atan( yx ) + π if x < 0 and y ≥ 0,

atan( yx )− π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0

(8.6)
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The angle ϕ is found using the atan2 function, shown in equation 8.7.

ϕ = atan2(y, x) (8.7)

8.1.2 Polar to Cartesian Conversion

If the polar form (r∠ϕ) of a phasor is known, it is possible to use trigonometry to express it in Cartesian

form as x+ jy. The real part of the phasor, expressed as x, is found using the cosine of the angle, shown in

equation 8.8.

x = r cosϕ (8.8)

The imaginary part of the phasor, expressed as y, is found using the sine of the angle, shown in equa-

tion 8.9.

y = r sinϕ (8.9)

8.1.3 Phasor Addition and Subtraction

Phasor addition and subtraction is simplest to complete when the phasors are in Cartesian form. To add two

phasors together, simply add the real parts together to find the real part of the sum and add the imaginary

parts together to find the imaginary part of the sum. The solution to Z1 + Z2 is shown in equation 8.10.

Z1 + Z2 = (x1 + x2) + j(y1 + y2) (8.10)

Subtraction is much the same. Remember that subtraction, unlike addition, is not commutative. The

solution to Z1 − Z2 is shown in equation 8.11.

Z1 − Z2 = (x1 − x2) + j(y1 − y2) (8.11)

Example: Addition of two sinusoids

Add together v1(t) and v2(t), defined below, and express the answer in cosine form.

v1(t) = 10 V cos(2π100t+ 30π/180)

v2(t) = −5 V sin(2π100t− 45π/180)
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Use equation 8.4 to convert v2(t) to correct form to be converted into a phasor.

v2(t) = 5 V cos(2π100t+ 45π/180)

Both of the terms can be expressed as phasors. Cartesian form will lead to easier addition.

V1 = 10 V∠30◦ = 8.66 + j5 V

V2 = 5 V∠45◦ = 3.54 + j3.54 V

Add both of the vectors together.

V1 +V2 = 12.20 + j8.54 V

Use equations 8.5 and 8.7 to convert to polar form and express as a cosine.

v1(t) + v2(t) = 14.89 V cos(2π100t+ 34.99π/180)

Example: Subtraction of two sinusoids

Subtract i2(t) from i1(t), defined below, and express the answer in cosine form.

i1(t) = 120 mA cos(2π60t+ 60π/180)

i2(t) = 110 mA cos(2π60t− 135π/180)

Both of the terms can be expressed as phasors. Cartesian form will lead to easier subtraction.

I1 = 120 mA∠60◦ = 60 + j103.92 mA

I2 = 110 mA∠− 135◦ = −77.78− j77.78 mA

Perform the subtraction.

I1 − I2 = 137.78 + j181.70 mA

Use equations 8.5 and 8.7 to convert to polar form and express as a cosine.

i1(t)− i2(t) = 228.04 mA cos(2π60t+ 52.83π/180)
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8.1.4 Phasor Multiplication and Division

Phasor multiplication and division is simplest to compute when phasors are in polar form. Recall that

polar form (r∠ϕ) is shorthand for rejϕ. Multiplication and division in exponentials turns into addition and

subtraction.

Two phasors Z1 and Z2 are multiplied together in equation 8.12.

Z1Z2 = r1r2∠(ϕ1 + ϕ2) (8.12)

Two phasors in polar form are divided in equation 8.13. Recall that division, unlike multiplication, is

not commutative.

Z1

Z2
=

r1
r2

∠(ϕ1 − ϕ2) (8.13)

Example: Multiplication of two sinusoids

Multiply i(t) and z(t), defined below, and express the answer in cosine form.

i(t) = 4 mA cos(2π50t+ 120π/180)

z(t) = 20 kΩ cos(2π50t− 90π/180)

Both of the terms can be expressed as phasors. Polar form will lead to easier multiplication.

I = 4 mA∠120◦

Z = 20 kΩ∠− 90◦

Perform the multiplication.

IZ = 80 V∠30◦

It is now possible to express this phasor as a cosine.

v(t) = 80 V cos(2π50t+ 30π/180)
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Example: Division of two sinusoids

Divide v(t) by i(t), defined below, and express the answer in cosine form.

v(t) = 110 V cos(2π60t+ 60π/180)

i(t) = 5 mA cos(2π60t+ 30π/180)

Both of the terms can be expressed as phasors. Polar form will lead to easier division.

V = 110 V∠60◦

I = 5 mA∠30◦

Perform the division.

V

I
= 22 kΩ∠30◦

It is now possible to express this phasor as a cosine.

z(t) = 22 kΩ cos(2π60t+ 30π/180)

8.2 Impedance

Impedance is the equivalent of resistance that exists in AC circuits. It relates to the measure of opposition

to current flow based on a given voltage rise or drop. Using time-varying signals, z(t) = v(t)/i(t). Using

phasors, the relationship between voltage, current, and impedance is given in equation 8.14. The units of

impedance is the same as that of resistance, Ω (ohms).

Z =
V

I
(8.14)

As impedance is a complex quantity, it can be represented in cartesian form, shown in equation 8.15.

The quantity R is the resistance of the circuit element, and X is the reactance of the circuit element.

Z = R+ jX (8.15)

Impedance can be calculated for each circuit element (resistor, capacitor, and inductor) by using the

relationship between voltage and current through that circuit element to find v(t) and i(t).
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8.2.1 Resistors

In a resistor, voltage and current are related via Ohm’s law (equations 2.21). If the voltage drop over a

resistor is given as Vm cos(ωt+ ϕ), then Ohm’s law states that the current flowing through the resistor will

be equal to (Vm/R) cos(ωt+ ϕ). The conversion of v(t) and i(t) to phasor form, as well as the calculation of

the impedance of a resistor, is shown in equation 8.16 and derived below.

Z = R (8.16)

DERIVATION

V = Vm∠ϕ

I =
Vm

R
∠ϕ

Z =
V

I

=
Vm∠ϕ

(Vm/R)∠ϕ

= R

The impedance of a resistor is therefore a real quantity and is equal to the resistance. There is no change

in the way we express resistance in AC circuits as compared to DC circuits.

8.2.2 Capacitors

In a capacitor, the relationship between voltage and current is given by equation 5.5. If the voltage drop

over a capacitor is given as Vm cos(ωt + ϕ), then equation 5.5 states that the current flowing through the

capacitor will be equal to ωCVm cos(ωt+ ϕ+ 90π/180). The conversion of v(t) and i(t) to phasor form, as

well as the calculation of the impedance of a capacitor, is shown in equation 8.17 and derived below.

Z =
−j
ωC

(8.17)
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DERIVATION

V = Vm∠ϕ

I = ωCVm∠(ϕ+ 90◦)

Z =
V

I

=
Vm∠ϕ

ωCVm∠(ϕ+ 90◦)

=
1

ωC
∠− 90◦

=
−j
ωC

The impedance of a capacitor is purely imaginary (from a mathematical point of view) and is frequency

dependent. As the frequency of a circuit approaches zero, the impedance of a capacitor approaches infinity.

This explains why we were able to analyze capacitors in steady-state DC conditions as open circuits. As

the frequency of a circuit approaches infinity, the impedance of a capacitor becomes zero, making it act as

a short circuit.

8.2.3 Inductors

In an inductor, the relationship between voltage and current is given by equations 6.4 and 6.5. If the current

flowing through an inductor is given as Im cos(ωt + ϕ), then equation 6.4 states that the voltage drop over

the inductor will be equal to ωLIm cos(ωt + ϕ + 90π/180). The conversion of v(t) and i(t) to phasor form,

as well as the calculation of the impedance of an inductor, is shown in equation 8.18 and derived below.

Z = jωL (8.18)

DERIVATION

V = ωLIm∠(ϕ+ 90◦)

I = Im∠ϕ

Z =
V

I

=
ωLIm∠(ϕ+ 90◦)

Im∠ϕ

= ωL∠90◦

= jωL

The impedance of an inductor is purely imaginary (from a mathematical point of view) and is frequency
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dependent. As the frequency of a circuit approaches zero, the impedance of an inductor also approaches zero.

This explains why we were able to analyze inductors in steady-state DC conditions as short circuits. As the

frequency of a circuit approaches infinity, the impedance of an inductor also approaches infinity, making it

act as an open circuit.

8.2.4 Equivalent Impedance

Impedance takes a lot of confusion out of reducing circuits. Impedances in series always add together, as

shown in equation 8.19.

ZEQ = Z1 + Z2 + Z3 + ...+ Zn (8.19)

The reciprocal sum is used to calculate parallel impedances, as shown in equation 8.20.

1

ZEQ
=

1

Z1
+

1

Z2
+

1

Z3
+ ...+

1

Zn
(8.20)

Finding equivalent impedance enables us to reduce to one circuit element the parallel and series combi-

nations of different types of passive elements (resistors, capacitors, and inductors), which we were unable to

do in previous chapters.

Example: Equivalent impedance

Calculate the equivalent impedance of the circuit below, and express as individual components. The frequency

of the circuit is 100 Hz.

20 Ω
70 µF

65 mH

50 Ω

65 µF

ZEQ →

Convert each of the values into impedances. The resistor values will remain unchanged.

Z70µF = − j

2π100(70× 10−6)
= −j22.74 Ω

Z65mH = j2π100(0.065) = j40.94 Ω

Z65µF = − j

2π100(65× 10−6)
= −j24.49 Ω

Re-draw the circuit.
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20−j22.74 Ω

j40.84 Ω 50−j24.49 Ω
ZEQ →

Two of the impedances (j40.84 Ω and 50−j24.49 Ω) are connected in parallel and can be reduced to an

equivalent impedance of 30.13+j30.98 Ω. The circuit can be re-drawn.

20−j22.74 Ω

30.13+j30.98 Ω
ZEQ →

The last two impedances can be combined in series to an equivalent impedance of 50.13+j8.25 Ω. This

impedance consists of a resistor (50.13 Ω) and an inductor. The value of that inductor can be calculated.

L =
8.25

2π100
= 13.13 mH

50.13 Ω

13.13 mH

8.3 Delta-Wye and Wye-Delta Transforms

The concept of delta-wye and wye-delta transforms was discussed in section 2.3. These transforms can be

used to find the equivalent impedance of circuit elements that are neither in parallel nor in series with each

other.

A delta circuit arrangement of impedances is shown in figure 8.2.
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b

Z1

Z2

a

Z3

c

Figure 8.2: A delta circuit with impedance rather than resistance.

The impedance between any two nodes in a delta circuit are parallel and series combinations of those

impedances, shown in equations 8.21–8.23.

Zab = Z1//(Z2 + Z3) (8.21)

Zbc = Z2//(Z1 + Z3) (8.22)

Zac = Z3//(Z1 + Z2) (8.23)

A wye circuit arrangement of impedances is shown in figure 8.3.

Za

a

Zb

b

Zc

c

Figure 8.3: A wye circuit with impedance rather than resistance.

The impedance between any two nodes in a wye circuit are series combinations of those impedances,

shown in equations 8.24–8.26.

Zab = Za + Zb (8.24)

Zbc = Zb + Zc (8.25)

Zac = Za + Zc (8.26)

A delta-wye transform modifies a delta arrangement of impedances (figure 8.2) and turns it into a wye

arrangement (figure 8.3). The equivalent impedance between any two nodes of the wye circuit must be

identical to the corresponding equivalent impedance of the delta circuit in order to make this transformation

valid. Equation 8.21 is set equal to equation 8.24; equation 8.22 is set equal to equation 8.25; and equa-

tion 8.23 is set equal to equation 8.26. The quantities Za, Zb, and Zc are solved for. (The algebraic details

of these derivations will not be shown in this book.) The results are given in equations 8.27–8.29. These
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equations govern the delta-wye transform.

Za =
Z1Z3

Z1 + Z2 + Z3
(8.27)

Zb =
Z1Z2

Z1 + Z2 + Z3
(8.28)

Zc =
Z2Z3

Z1 + Z2 + Z3
(8.29)

Example: Using a delta-wye transformation to calculate equivalent impedance

Calculate the equivalent impedance of the circuit as shown, and express as individual components. The

frequency of the circuit is 1 kHz.

400 Ω

500 Ω

20 mH

500 nF

1000 Ω

ZEQ →

None of these elements shares a branch, therefore none are in series. None of these elements shares two

nodes, therefore none are in parallel. A delta-wye transform is required. (Note that a wye-delta transform

could be accomplished as well.) Calculate the impedance of the capacitor and the inductor.

ZL = j2π1000(0.02) = j125.66 Ω

ZC = − j

2π1000(500× 10−9)
= −j318.31 Ω

The circuit has been re-drawn. The impedances in the delta-arrangement are highlighted in thick outlines.

Each of the nodes is labeled.
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400 Ω

A

500 Ω

C

j125.66 Ω

B

-j318.31 Ω

1000 Ω

ZEQ →

Use equations 8.27–8.29 to solve for ZA, ZB, and ZC.

ZA =
(j125.66 Ω)(1000 Ω)

(j125.66 Ω) + (1000 Ω) + (500 Ω)
= 3.48 + j41.60 Ω

ZB =
(j125.66 Ω)(500 Ω)

(j125.66 Ω) + (1000 Ω) + (500 Ω)
= 6.97 + j83.19 Ω

ZC =
(1000 Ω)(500 Ω)

(j125.66 Ω) + (1000 Ω) + (500 Ω)
= 331.01− j27.73 Ω

Re-draw the circuit.

400 Ω

A

3.48+j41.60 Ω 6.97+j83.19 Ω

B

-j318.31 Ω

331.01–j27.73 Ω
C

ZEQ →

Combine all series impedances and re-draw.

403.48+j41.60 Ω

331.01–j27.73 Ω

6.97–j235.12 Ω

ZEQ →
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Calculate the equivalent impedances of the two upper circuit elements in parallel with each other.

Z =
(403.48 + j41.60 Ω)(331.01− j27.73 Ω)

(403.48 + j41.60 Ω) + (331.01− j27.73 Ω)
= 113.98− j176.68 Ω

The overall equivalent impedance is equal to the above impedance added to 331.01-j27.73 Ω.

ZEQ = 444.99− j204.41 Ω

This impedance is consistent of a resistor in series with a capacitor. The capacitor value is calculated

below.

C =
1

2π1000(204.41)
= 778.60 nF

The circuit can be re-drawn one last time.

444.99 Ω

778.60 nF

A wye-delta transform modifies a wye arrangement of impedances (figure 8.3) and turns it into a delta

arrangement (figure 8.2). Just as with the delta-wye transforms, the circuits must be equivalent to each other.

Equation 8.21 is set equal to equation 8.24; equation 8.22 is set equal to equation 8.25; and equation 8.23

is set equal to equation 8.26. The quantities Z1, Z2, and Z3 are solved for. (The algebraic details of these

derivations will not be shown in this book.) The results are given in equation 8.30– 8.32. These equations

govern the wye-delta transform.

Z1 =
ZaZb + ZbZc + ZaZc

Zc
(8.30)

Z2 =
ZaZb + ZbZc + ZaZc

Za
(8.31)

Z3 =
ZaZb + ZbZc + ZaZc

Zb
(8.32)

Example: Using a wye-delta transformation to calculate equivalent impedance

Calculate the equivalent impedance of the circuit as shown, and express as individual components. The

frequency of the circuit is 200 Hz.
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400 Ω 200 mH

2 µF

600 Ω

800 ΩZEQ →

None of these elements shares a branch, therefore none are in series. None of these elements shares two

nodes, therefore none are in parallel. A wye-delta transform is required. (Note that a delta-wye transform

could be accomplished as well, but it is probably more obvious to do a wye-delta transform.) Calculate the

impedance of the capacitor and the inductor.

ZL = j2π200(0.2) = j251.33 Ω

ZC = − j

2π200(2× 10−6)
= −j397.89 Ω

The circuit has been re-drawn. The impedances in the wye-arrangement are highlighted in thick outlines.

Each of the nodes is labeled.

A
400 Ω j251.33 Ω

B

–j397.89 Ω

C

600 Ω

800 ΩZEQ →

Use equations 8.30–8.32 to solve for Z1, Z2, and Z3.

Z1 =
100000− j58623.98 Ω2

−j397.89 Ω
= 147.34 + j251.33 Ω

Z2 =
100000− j58623.98 Ω2

400 Ω
= 250− j146.56 Ω

Z3 =
100000− j58623.98 Ω2

j251.33 Ω
= −233.26− j397.89 Ω

Re-draw the circuit.
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A
147.34+j251.33 Ω

B

250-j146.56 Ω

-233.26–j397.89 Ω

C

600 Ω

800 ΩZEQ →

Calculate the equivalent impedances of the 600 Ω resistor in parallel with the 147.34 + j251.33 Ω

impedance.

Z =
(600 Ω)(147.34 + j251.33 Ω)

(600 Ω) + (147.34 + j251.33 Ω)
= 167.23 + j145.54 Ω

Calculate the equivalent impedances of the 800 Ω resistor in parallel with the 250 − j146.56 Ω impedance.

Z =
(800 Ω)(250− j146.56 Ω)

(800 Ω) + (250− j146.56 Ω)
= 202.12− j83.45 Ω

Re-draw the circuit.

167.23+j145.54 Ω

-233.26-j397.89 Ω 202.12-j83.45 ΩZEQ →

The equivalent impedance is calculated below.

ZEQ =
(167.23 + j145.54 Ω + 202.12− j83.45 Ω)(−233.26− j397.89 Ω)

(167.23 + j145.54 Ω) + (202.12− j83.45 Ω) + (−233.26− j397.89 Ω)

= 349.23− j324.55 Ω

This impedance is consistent of a resistor in series with a capacitor. The capacitor value is calculated

below.

C =
1

2π200(324.55)
= 2.45 µF

The circuit can be re-drawn one last time.
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349.23 Ω

2.45 µF
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Example Problems

Phasor Arithmetic

1. Convert −200− j100 to polar form.

2. Convert 5∠− 120◦ to Cartesian form.

3. Calculate the value of (10 + j20)(−30 + j50) + (−15− j40) and express the answer in both Cartesian

and polar forms.

4. Calculate the value of (10∠60◦ − 4∠ − 140◦)(20∠20◦) and express the answer in both Cartesian and

polar forms.

5. Calculate the value of (10 + j14)(60∠− 140◦) + (38∠20◦)/(−5− j18) and express the answer in both

Cartesian and polar forms.

Impedance and Equivalent Impedance

6. Calculate the impedance of a 25 mH inductor at a frequency of 60 Hz.

7. Calculate the impedance of a 470 nF capacitor at a frequency of 2 kHz.

8. Calculate the equivalent impedance of the circuit shown in figure 8.4. The frequency of operation is

200 Hz.

65 Ω

85 mH 45 Ω

Figure 8.4: Circuit diagram for impedance and equivalent impedance question 8.

9. Calculate the equivalent impedance of the circuit shown in figure 8.5. The frequency of operation is

450 Hz.

100 mH

330 nF 24 Ω

460 mH

86 Ω

Figure 8.5: Circuit diagram for impedance and equivalent impedance question 9.
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10. Calculate the equivalent impedance of the circuit shown in figure 8.6. The frequency of operation is

6 kHz.

50 µF

2 Ω

6 Ω

68 µF

5 Ω

33 µH

Figure 8.6: Circuit diagram for impedance and equivalent impedance question 10.

Delta-Wye and Wye-Delta Transforms

11. Convert the circuit shown in figure 8.7 to a delta circuit.

a

j8 Ω

–j10 Ω

b

30 Ω

c

Figure 8.7: Circuit diagram for delta-wye and wye-delta transforms question 11.

12. Convert the circuit shown in figure 8.8 to a wye circuit.

a

–j6.2 Ω

b

20 Ω
–j3.9 Ω

c

j13.4 Ω

Figure 8.8: Circuit diagram for delta-wye and wye-delta transforms question 12.
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13. Calculate the equivalent impedance of the circuit shown in figure 8.9.

4 Ω

–j3 Ω

j5 Ω

9 Ω

6 Ω

Figure 8.9: Circuit diagram for delta-wye and wye-delta transforms question 13.

14. Calculate the equivalent impedance of the circuit shown in figure 8.10. The frequency of operation is

10 kHz.

220 Ω

470 Ω

5 mH

100 nF

150 Ω

Figure 8.10: Circuit diagram for delta-wye and wye-delta transforms question 14.
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15. Calculate the equivalent impedance of the circuit shown in figure 8.11. The frequency of operation is

50 Hz.

10 Ω

60 µF

20 Ω

60 mH

50 µF

80 mH

40 Ω

Figure 8.11: Circuit diagram for delta-wye and wye-delta transforms question 15.
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9 Analysis of Phasor Transformed Circuits

Now that the concepts of phasors and impedances have been explained, it is possible to use those quantities

to analyze the AC characteristics of circuits.

9.1 Complex Circuit Analysis Techniques

All linear circuits can be analyzed using the following circuit analysis techniques. All of them have been

covered earlier in this textbook in the context of DC circuits. Phasors and impedances will be used to

implement these tools to solve AC circuits. All sources will be converted into phasor quantities, and all

passive circuit elements will be converted into impedances.

Because all of these concepts have already been covered, the discussions that follow will not be exhaustive

as those that were included in chapters 2 and 3 in this textbook.

9.1.1 Voltage Divider

The voltage divider uses the complex form of Ohm’s law (V = IZ) to calculate the voltage dropped over

any series impedance without having to calculate the current flowing through the series circuit. Given n

impedances in series and a source voltage of VS, the voltage drop over the kth impedance (where k < n) is

shown in equation 9.1.

Vk = VS

(
Zk

Z1 + Z2 + Z3 + ...+ Zk + ...+ Zn

)
(9.1)

Example: Complex voltage divider

Calculate vout(t) in the circuit below.

150 V cos(2π60t + 60π/180)

55 Ω 65 mH

25 µF

105 Ω

210 mH

+

−

vout(t)

Calculate the impedance Z1 containing the 55 Ω resistor and 65 mH inductor.

Z1 = 55 + j2π60(0.065) Ω = 55 + j24.50 Ω
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Calculate the impedance of the capacitor.

ZC =
−j

2π60(25× 10−6)
= −j106.10 Ω

Calculate the impedance of the 105 Ω resistor and 210 mH inductor branch.

ZRL = 105 + j2π60(.210) Ω = 105 + j79.17 Ω

The capacitor is in parallel with the resistor/inductor branch. Calculate the parallel impedance.

Z2 =
(−j106.10 Ω)(105 + j79.17 Ω)

(−j106.10 Ω) + (105 + j79.17 Ω)
= 100.60− j80.30 Ω

Convert the voltage source into a phasor quantity.

V = 150 cos 60 + j150 sin 60 V = 75 + j129.90 V

The circuit can now be re-drawn.

75+j129.90 V

55+j24.50 Ω

100.60-j80.30 Ω

+

−

Vout

Apply the voltage divider equation to find Vout in phasor form.

Vout = VS

(
Z2

Z1 + Z2

)
= (75 + j129.90 V)

(
100.60− j80.30 Ω

(55 + j24.50 Ω) + (100.60− j80.30 Ω)

)
= 87.98 + j76.83 V

= 116.80 V∠41.13◦

Convert the output to a time-varying signal.

vout(t) = 116.80 V cos (2π60t+ 41.13π/180)
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9.1.2 Current Divider

The current divider uses the complex form of Ohm’s law to calculate the current flowing through any parallel

impedance without having to calculate the voltage dropped over the parallel circuit. Given n impedances in

parallel and a source current of IS, the current flow through the kth impedance (where k < n) is shown in

equation 9.2.

Ik = IS

(
ZEQ

Zk

)
(9.2)

Example: Complex current divider

Use a current divider to calculate each of the currents as shown.

10 A cos(2π50t+120π/180) 8 Ω

i1(t)

3 Ω i2(t)

470 µF

i3(t)

i4(t)

5 Ω

25 mH

Calculate the impedances of the inductor and the capacitor.

ZL = j2π50(0.025) = j7.85 Ω

ZC = − j

2π50(470× 10−6
= −j6.77 Ω

Convert the current source to phasor form.

I = 10 cos 120◦ + j10 sin 120◦ A = −5 + j8.66 A

Calculate an equivalent impedance consisting of the 3 Ω resistor, the capacitor, the 5 Ω resistor, and the

inductor

Z = (5 Ω) + (j7.85 Ω)//(−j6.77 Ω) + 3 Ω = 11.76− j8.67 Ω

Re-draw the circuit
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−5+j8.66 A 8 Ω

I1

11.76-j8.67 Ω

I2

Use the current divider rule to calculate I1 and I2.

I1 = (−5 + j8.66 A)
(8 Ω)//(11.76− j8.67 Ω)

8 Ω
= −2.01 + j6.46 A

I2 = (−5 + j8.66 A)
(8 Ω)//(11.76− j8.67 Ω)

11.76− j8.67 Ω
= −2.99 + j2.20 A

Convert both of these values into time-varying signals.

i1(t) = 6.77 A cos(2π50t+ 107.30π/180)

i2(t) = 3.71 A cos(2π50t+ 143.68π/180)

Re-draw the circuit. Current i2(t) can be used to represent a source current supplying the capacitor, 5 Ω

resistor and inductor.

−2.99+j2.20 A -j6.77 Ω

I3

5+j7.85 Ω

I4

Use the current divider rule to calculate I1 and I2.

I3 = (−2.99 + j2.20 A)
(−j6.77 Ω)//(5 + j7.85 Ω)

−j6.77 Ω
= −6.66− j1.05 A

I4 = (−2.99 + j2.20 A)
(−j6.77 Ω)//(5 + j7.85 Ω)

5 + j7.85 Ω
= 3.68 + j3.25 A

Convert both of these values into time-varying signals.

i3(t) = 6.75 A cos(2π50t− 171.00π/180)

i4(t) = 4.91 A cos(2π50t+ 41.48π/180)

9.1.3 KCL and KVL Analysis

Kirchhoff’s current and voltage laws still hold in a phasor transformed circuit. KCL states that the sum of

all branch currents entering a node is equal to zero. KVL states that the sum of all voltage drops in a loop
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is equal to zero.

Together, KCL and KVL can be used to solve for every branch current in a circuit. Those branch currents

can be multiplied by impedance to find voltage drops over every circuit element. By analyzing nodes and

loops in a circuit, a number of equations (using KCL, KVL, and Ohm’s law) can be found. If there are n

unknown branch currents in the circuit, n linearly independent equations will be needed. A matrix can then

be used to solve for the unknowns.

The equations that are derived to determine the matrix defining the circuit will now contain complex

coefficients. Not all graphing calculators are capable of solving a matrix with complex coefficients. The TI-89

is capable of solving complex matrices. Otherwise, programs such as Matlab or websites such as Wolfram

Alpha are capable of doing such calculations.

Example: Complex KCL / KVL analysis

Calculate all branch currents in the following circuit. All sources have a frequency of 100 Hz.

4 A∠20◦

50 Ω

25 mH

I1

20 µF

I2

c
20 ΩI3a b

20 V∠45◦

100 mH I4

100 Ω

25 µF

I5

Phasor transform all circuit elements and re-draw.

4 A∠20◦50+j15.71 Ω

I1

-j79.58 Ω

I2

c

20 ΩI3a b

20 V∠45◦

j62.83 Ω I4

100-j63.66 Ω

I5

The current source has a Cartesian form of 3.76+j1.37 A. The voltage source has a Cartesian form of

14.14+j14.14 V.

The circuit has two perfect nodes: node a and node c. These nodes will be solved using KCL. The
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circuit will be analyzed using units of A, V, and Ω, but units will be removed from all variables to make the

equations neater.

I1 + I2 + I3 = (3.76 + j1.37)

I2 + I4 − I5 = 0

There are three perfect loops in the circuit. One contains I1, I3, and the voltage source. The second

one contains the voltage source, I4, and I5. The third one contains I2, I3, and I4. Apply KVL around each

loop. Use the direction of the current to determine if the voltage is a rise or a drop. Voltage rises will be

negative, and voltage drops will be positive.

−(50 + j15.71)I1 + (20)I3 = −(14.14 + j14.14)

(j62.83)I4 + (100− j63.66)I5 = (14.14 + j14.14)

(−j79.58)I2 − (j62.83)I4 − (20)I3 = 0

Now that five linearly independent equations have been found, they can be put into the form of αI1 +

βI2 + γI3 + δI4 + γI5 = C and placed into a matrix.

1 1 1 0 0 (3.76 + j1.37)

0 1 0 1 −1 0

−(50 + j15.71) 0 20 0 0 −(14.14 + j14.14)

0 0 0 (j62.83) (100− j63.66) (14.14 + j14.14)

0 (−j79.58) −20 −(j62.83) 0 0


Solve for each current by finding the reduced row echelon form of the matrix.

I1 = 1.15 + j0.13 A

I2 = 0.53 + j0.71 A

I3 = 2.08 + j0.53 A

I4 = −0.84− j0.24 A

I5 = −0.31 + j0.47 A
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Convert each branch current to a time-dependent (cosine) function.

i1(t) = 1.16 A cos (2π100t+ 6.48π/180)

i2(t) = 0.89 A cos (2π100t+ 53.31π/180)

i3(t) = 2.14 A cos (2π100t+ 14.24π/180)

i4(t) = 0.87 A cos (2π100t− 164.09π/180)

i5(t) = 0.56 A cos (2π100t+ 123.23π/180)

9.1.4 Mesh Analysis

Mesh analysis can also be used in phasor transformed circuits. KCL and KVL are used to solve for mesh

currents. The mesh analysis method steps, outlined in section 2.8.2 of this book, are exactly the same in a

phasor transformed circuit.

Example: Complex mesh analysis

Calculate all mesh currents as well as VX in the following circuit. All sources have a frequency of 250 Hz.

The proportionality constant of the VCCS has units of A/V.

330 V∠−50◦

680 nF

+ −
VX

2VX

a
220 Ω

680 Ω

220 nF

500 Ω
470 nF

I1 I2

I3

Phasor transform all circuit elements and re-draw.
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330 V∠−50◦

-j936.21 Ω

+ −
VX

2VX

a
220 Ω

680-j2893.73 Ω

500-j1354.51 Ω

I1 I2

I3

The voltage source has a Cartesian form of 212.12-j252.79 V.

There is only one regular mesh in this circuit: the one containing mesh current I3. The circuit will be

analyzed using units of A, V, and Ω, but units will be removed from all variables to make the equations

neater.

(500− j1354.51)I3 + (220)(I3 − I2) + (−j936.21)(I3 − I1) = 0

The two loops containing I1 and I2 are a supermesh. KCL will be applied at node a.

(−j936.21)(I1 − I3) + (220)(I2 − I3) + (680− j2893.73)I2 = (212.12− j252.79)

I1 + 2VX − I2 = 0

The presence of the controlling voltage (VX) provides an additional unknown. This equation will come

from the relationship between the controlling voltage and mesh currents I1 and I3.

VX = (−j936.21)(I1 − I3)

Put all four equations into the form of αI1 + βI2 + γI3 + δVX = C and place into a matrix.
(j936.21) −220 (720− j2290.72) 0 0

(−j936.21) (900− j2893.73) −(220− j936.21) 0 (212.12− j252.79)

1 −1 0 2 0

(−j936.21) 0 (j936.21) −1 0


Solve for each mesh current as well as the controlling voltage by finding the reduced row echelon form
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of the matrix.

I1 = 0.001 + j0.02 A

I2 = 0.10 + j0.04 A

I3 = 0.001 + j0.02 A

VX = 0.05 + j0.01 V

Convert each variable to a time-dependent (cosine) function. (Note the units have been changed to mA

and mV due to the small quantities.)

i1(t) = 15.59 mA cos (2π100t+ 85.20π/180)

i2(t) = 108.09 mA cos (2π100t+ 23.14π/180)

i3(t) = 15.54 mA cos (2π100t+ 85.13π/180)

vX(t) = 50.86 mV cos (2π100t+ 15.36π/180)

9.1.5 Superposition

Superposition applies to all linear circuits. If a linear circuit has n independent sources, then n subcircuits

can be created, each with one of the independent sources activated and all others deactivated. Add the

properties of each of the subcircuits together to find the total value of the property. To deactivate a voltage

source, replace the voltage source with a short circuit (corresponding to 0 V). To deactivate a current source,

replace the current source with an open circuit (corresponding to 0 A). Any dependent sources that exist in

the circuit cannot be eliminated and must be present in all subcircuits.

Example: Complex superposition

Use superposition to calculate v(t) in the circuit below.

2 A cos(2π60t)

12 Ω

55 mH

15 Ω
68 µF

20 Ω

+

−

v(t)

16 Ω

50 V cos(2π60t+60π/180)
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Calculate the impedances of the inductor and the capacitor.

ZL = j2π60(0.055) = j20.73 Ω

ZC = − j

2π60(68× 10−6
= −j39.01 Ω

Both sources can be converted to phasor form. The current source is 2 A in phasor form because the

angle is zero degrees.

V = 50 cos 60◦ + j50 sin 60◦ V = 25 + j43.30 V

Deactivate the current source and calculate the contribution to the output voltage provided by the voltage

source.

12+j20.73 Ω

15-j39.01 Ω

20 Ω

+

−

V1

16 Ω

25+j43.30 V

The two impedances are in series and can be combined together.

27-j18.27 Ω 20 Ω

+

−

V1

16 Ω

25+j43.30 V

The 20 Ω resistor can be combined in parallel with the impedance.

12.61-j2.87 Ω

+

−

V1

16 Ω

25+j43.30 V
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Use the voltage divider rule to calculate V1.

V1 = (25 + j43.30 V )
12.61− j2.87 Ω

16 Ω + (12.61− j2.87 Ω)
= 13.57 + j17.93 V

Deactivate the voltage source and calculate the contribution to the output voltage provided by the current

source. The 16 Ω and 20 Ω resistors have been combined in parallel.

2cos(2π60t) A 12+j20.73 Ω

15-j39.01 Ω

8.89 Ω

+

−

V2

Combine the 15−j39.01 Ω impedance in series with the 8.89 Ω resistor so that a current divider can be

used.

2cos(2π60t) A 12+j20.73 Ω 23.89-j39.01 Ω

I2

Use the current divider rule to calculate I2.

I2 = (2 A)
(12 + j20.73 Ω)//(23.89− j39.01 Ω)

23.89− j39.01 Ω
= 0.06 + j1.19 A

Use Ohm’s law to calculate V2.

V2 = (8.89 Ω)(0.06 + j1.19 A) = 0.57 + j10.56 V

Add together the two voltages to obtain the total voltage V.

V = (13.57 + j17.93 V) + (0.57 + j10.56 V) = 14.13 + j28.49 V

Convert this value into a time-varying signal.

v(t) = 31.81 V cos(2π60t+ 63.62π/180)
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9.1.6 Source Transformation

In a phasor transformed circuit, source transformation can be used to convert an AC current source into an

AC voltage source and vice versa. The transformation process changes the source type and the impedance

location, but results in an equivalent circuit to the original. The goal of source transformation is usually to

reduce a circuit by changing the position of the source and an impedance; this can lead to further reductions

using series and parallel combinations of impedances.

Two equivalent AC circuits, as shown in figure 9.1, will have identical voltage drops over the load (depicted

as V) as well as identical currents flowing into the load (depicted as I).

VS

ZS I

+

−

V
load
circuit

VS/ZS

I

ZS

+

−

V
load
circuit

Figure 9.1: Both of these circuits are equivalent as they have identical voltage drops over the load (V) and
current flow into the load (I).

In this manner, a voltage source in series with an impedance can be made equivalent to a current source

in parallel with an impedance. The complex version of Ohm’s law is used to determine the value of the

voltage or current source. When transforming a voltage source to a current source, the current source value

will be equal to VS/ZS. This is depicted schematically in figure 9.2.

VS

ZS

a

b

VS/ZS

a

ZS

b

Figure 9.2: The transformation of a voltage source in series with an impedance (left) to a current source in
parallel with an impedance (right).

When transforming a current source to a voltage source, the voltage source value will be equal to ISZS

(using Ohm’s law). This is depicted schematically in figure 9.3.
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IS

a

ZS

b

ISZS

ZS

a

b

Figure 9.3: The transformation of a current source in parallel with an impedance (left) to a voltage source in
series with an impedance (right).

Example: Complex source transformation

Use source transformation and a voltage divider to calculate v(t).

24 V cos(2π250t)

8 Ω

100 µF

3 mH

6 Ω

+

−

v(t)

Calculate the impedances of the inductor and the capacitor.

ZL = j2π250(0.003) = j4.71 Ω

ZC = − j

2π250(100× 10−6
= −j6.37 Ω

Convert the source to a phasor. Because the angle is zero degrees, the phasor form is 24 V.

Source transform the voltage source to a current source. The value of the current source will be 3 A.

The circuit can be re-drawn.

3 A 8 Ω -j6.37 Ω

j4.71 Ω

6 Ω

+

−

V

The 8 Ω resistor and the capacitor can be combined in parallel.

Z =
(8 Ω)(−j6.37 Ω)

(8 Ω) + (−j6.37 Ω)
= 3.10− j3.90 Ω
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3 A 3.10-j3.90 Ω

j4.71 Ω

6 Ω

+

−

V

Perform another source transformation. Use Ohm’s law to calculate the value of the voltage source.

V = (3 A)(3.10− j3.90 Ω) = 9.31− j11.69 V

The circuit can be re-drawn. The impedance of the inductor has been added to the impedance of the

source resistor.

9.31-j11.69 V

3.10-j0.82 Ω

6 Ω

+

−

V

Use a voltage divider to calculate V.

V = (9.31− j11.69 V)
6 Ω

6 Ω + (3.10− j0.82 Ω)
= 5.40− j8.19 V

Convert this value into a time-varying signal.

v(t) = 9.81 V cos(2π250t− 56.60π/180)

9.1.7 Thévenin and Norton’s Theorems

The phasor transformed version of Thévenin’s theorem states that any linear circuit (regardless of the

complexity) can be represented by an equivalent circuit that contains a voltage source in series with an

impedance. This is depicted in figure 9.4.
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a

b

linear
circuit

VTH

ZTH

a

b

Figure 9.4: Thévenin’s theorem states that these two circuits are equivalent, given the correct value of VTH

and ZTH.

The Thévenin equivalent voltage (VTH) is equal to the open-circuit voltage between the output terminals.

The Thévenin equivalent impedance (ZTH) is solved using the procedure below.

• If there are no dependent sources in the circuit, then ZTH is equal to the equivalent impedance seen

between the output terminals, with all of the independent sources deactivated.

• If there are dependent sources in the circuit, calculate the short-circuit current (ISC) between the

output terminals. The Thévenin equivalent impedance is equal to VTH/ISC.

Example: Complex Thévenin equivalent circuit

Find a Thévenin equivalent circuit.

3 V cos(2π100t)

47 Ω

22 µF

+

−

vX(t)

47 µF

0.3vX(t)

a

68 Ω

b

Calculate the impedance of both capacitors.

Z22µF = − j

2π250(22× 10−6
= −j72.34 Ω

Z47µF = − j

2π250(47× 10−6
= −j33.86 Ω

Convert the source to a phasor. Because the angle is zero degrees, the phasor form is 3 V.

Mesh analysis will be used to solve this circuit. The mesh currents are depicted below on a simplified

circuit diagram.
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a

b

I1 I2 I3

Perform KVL around mesh 1. (At this point, units will be removed from most equations. They will all

be in V, Ω, and A, unless otherwise specified.)

3 = 47I1 + (−j72.34)(I1 − I2)

Perform KVL around the supermesh.

0 = (−j72.34)(I2 − I1) + (−j33.86)I2 + 68I3

KCL is performed at the intersection of meshes two and three.

0 = I2 − 0.3VX − I3

An equation can be created to define the dependent source in terms of mesh currents.

VX = (−j72.34)(I1 − I2)

Create a matrix in terms of αI1 + βI2 + γI3 + δVX = ϵ.
47− j72.34 j72.34 0 0 3

j72.34 −j106.21 68 0 0

0 1 −1 −0.3 0

j72.34 −j72.34 0 1 0


Reduce the matrix to reduced row echelon form. The quantity of interest is I3. When multiplied by 68 Ω

it yields VTH.

VTH =
(
(3 + j27.78)× 10−3 A

)
(68 Ω) = 0.20 + j1.89 V

This quantity can be converted to time-varying form.

vth(t) = 1.9 V cos(2π100t+ 83.84π/180)
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Because there is a dependent source, the short-circuit current must be calculated to determine the value

of the Thévenin equivalent impedance. The 68 Ω resistor is shorted and can be removed from the circuit.

3 V

47 Ω

-j72.34 Ω

+

−

VX

-j33.86 Ω

0.3vX(t) ISC

Mesh analysis will be used to solve this circuit. The meshes will be defined the same as above. Perform

KVL around mesh 1.

3 = 47I1 + (−j72.34)(I1 − I2)

Perform KVL around the supermesh.

0 = (−j72.34)(I2 − I1) + (−j33.86)I2

KCL is performed at the intersection of meshes two and three.

0 = I2 − 0.3VX − I3

An equation can be created to define the dependent source in terms of mesh currents.

VX = (−j72.34)(I1 − I2)

Create a matrix in terms of αI1 + βI2 + γI3 + δVX = ϵ.
47− j72.34 j72.34 0 0 3

j72.34 −j106.21 0 0 0

0 1 −1 −0.3 0

j72.34 −j72.34 0 1 0


Reduce the matrix to reduced row echelon form. The quantity of interest is I3, which is equal to ISC.

ISC = 139.65 + j373.15 mA
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Use Ohm’s law to calculate the Thévenin equivalent impedance.

ZTH =
0.20 + j1.89 V

0.14 + j0.37 A
= 4.26− j2.14 Ω

This is equal to a resistor of 4.26 Ω in series with a capacitor. The capacitor value can be calculated.

C =
1

2π100(2.14)
= 743.20 µF

The Thévenin equivalent circuit is shown below.

1.9 V cos(2π100t+83.84π/180)

4.26 Ω
743.20 µF

a

b

Norton’s theorem states that any linear circuit, regardless of the level of complexity, can be represented

by an equivalent circuit that contains a current source in parallel with an impedance. This is depicted in

figure 9.5.

a

b

linear
circuit

IN ZN

a

b

Figure 9.5: Norton’s theorem states that these two circuits are equivalent, given the correct value of IN and
ZN.

Norton’s theorem is simply a source transformed version of a Thévenin equivalent circuit. However, it

is possible to derive a Norton equivalent circuit without first deriving a Thévenin equivalent circuit. The

Norton equivalent current (IN) is equal to the short-circuit current between the output terminals. The

procedure to calculate the Norton equivalent impedance is given below.

• If there are no dependent sources in the circuit, then ZN is equal to the equivalent impedance seen

between the output terminals, with all of the independent sources deactivated.

• If there are dependent sources in the circuit, calculate the open-circuit voltage (VOC) between the

output terminals. The Norton equivalent impedance is equal to VOC/IN.
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Example: Complex Norton equivalent circuit

Find a Norton equivalent circuit.

30 V cos(2π2000t+120π/180)

470 nF

20 mH

220 Ω

150 Ω

10 mH

a

b

Calculate the impedance of both inductors and the capacitor, and convert the voltage source to phasor

form.

ZC = − j

2π2000(470× 10−9
= −j169.31 Ω

Z20mH = j2π2000(0.02) = j251.33 Ω

Z10mH = j2π2000(0.01) = j125.66 Ω

V = 30 cos 120◦ + j30 sin 120◦ = −15 + j25.98 V

Calculate the Norton equivalent current. Because the 150 Ω resistor and 10 mH inductor are shorted,

they are effectively removed from the circuit.

-15+j25.98 V

-j169.31 Ω

j251.33 Ω

220 Ω

IN

Perform a source transformation. The value of the current source is calculated below.

I =
−15 + j25.98 V

−j169.31 Ω
= −0.15− j0.09 A

cbna Alyssa J. Pasquale, Ph.D. 252 Last updated: 2023/05/18



9 Analysis of Phasor Transformed Circuits 9.1 Complex Circuit Analysis Techniques

-0.15-j0.09 A -j169.31 Ω j251.33 Ω 220 Ω

IN

Use a current divider to calculate IN.

IN = (−0.15− j0.09 A)
(−j169.31 Ω)//(j251.33 Ω)//(220 Ω)

220 Ω
= −0.16− j0.02 A

This quantity can be converted to time-varying form.

in(t) = 163.13 mA cos(2π2000t− 172.98π/180)

There are no dependent sources, so the Norton equivalent impedance can be calculated directly. The

voltage source will be deactivated.

-j169.31 Ω

j251.33 Ω

220 Ω

150+j125.66 Ω

a

b

←ZN

Combine the capacitor and inductor impedances in parallel.

-j518.86 Ω

220 Ω

150+j125.66 Ω

a

b

←ZN

Add that impedance to 220 Ω.

220-j518.86 Ω 150+j125.66 Ω

a

b

←ZN
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Combine both impedances in parallel.

ZN = 192.36 + j68.76 Ω

This is equal to a resistor of 192.36 Ω in series with an inductor. The inductor value can be calculated.

L =
68.76

2π2000
= 5.47 mH

The Norton equivalent circuit is shown below.

163.13 mA cos(2π100t-172.98π/180)

a

192.36 Ω

5.47 mH

b

9.2 Passive Filters

A filter is a circuit that selectively blocks certain frequencies (or a range of frequencies) from passing through

to the output. Filters can be passive (made of RLC components only) or active (made with RLC components

and an op-amp). Active filters will be discussed in section 9.3.

Filters are defined by their frequency response. The four types of frequency responses are low-pass, high-

pass, band-pass, and band-stop. Each of these four passive filter types will be explained in sections 9.2.1–

9.2.4. In addition, filters are defined by the circuit order. First order filters consist of first order circuits

(only one energy storage device is included in the design). Second order filters consist of second order circuits

(two energy storage devices are included in the design).

9.2.1 Low-Pass Filters (LPF)

A low-pass filter blocks high frequency signals (above a cutoff frequency) from passing through to the output.

(Only low frequencies can pass through, hence the name “low-pass filter.”) Low-pass filters are useful for

removing high frequency noise (for example) from a circuit’s output.

As the input voltage frequency changes, the magnitude of the output voltage will change. This can be

characterized by calculating vout/vin at varying frequencies and looking at the response. An ideal low-pass

filter has what’s called a “brick wall” response: all frequencies above the cutoff frequency are completely

eliminated from the output, and all frequencies below the cutoff frequency are able to pass through with

no change in magnitude. This ideal brick wall output response, as well as a real low-pass filter response, is

shown in figure 9.6 (note the use of the log/log scale).
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101 102 103 104 105
10−3

10−2

10−1

100
ωc

ω (rad/s)

v o
u
t
/v

in

Real LPF
Ideal LPF

Figure 9.6: Comparison between an ideal (“brick wall”) low-pass filter and a real low-pass filter.

There are many different ways to implement a low-pass filter. One example of a first order passive low-

pass filter is shown in figure 9.7. The capacitor, having a low impedance at high frequencies, leads to a

decreasing voltage drop as frequency increases.

vIN (t)

R

C

+

−

vout(t)

Figure 9.7: This resistor-capacitor circuit acts as a low-pass filter. As frequency increases, the voltage drop
over the load will decrease.

It is also possible to use a resistor-inductor combination to create a first order low-pass filter. This

circuit, shown in figure 9.8, acts as a low-pass filter because the inductor acts as an open at high frequencies,

blocking current flow through the output resistor.

vIN (t)

L

R

+

−

vout(t)

Figure 9.8: This resistor-inductor circuit acts as a low-pass filter. As frequency increases, current flow through
the load will decrease.

Both filters in figures 9.7 and 9.8 are first order circuits. The cutoff frequency of a first order filter is

given by equation 9.3.

ωc = a0 (9.3)

Second order passive low-pass filters can be created by cascading two first order filters together, as shown
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in figure 9.9.

vIN (t)

R1

C1

R2

C2

+

−

vout(t)

Figure 9.9: This circuit acts as a second order low-pass filter by cascading together two resistor-capacitor fil-
ters.

The cutoff frequency of a second order filter is given by equation 9.4. This is equal to the resonant

frequency of the second order circuit.

ωc =
√
a0 (9.4)

Other second order filter architectures include cascading RL filters, or by using a series RLC circuit.

Because of parasitic resistance effects in inductors, it is not always practical to use inductor-based filters.

A second order filter will cause a much faster decay of the output signal compared to a first order filter.

A comparison of waveforms for a first and second order RC low-pass filter (with identical cutoff frequencies)

is shown in figure 9.10.

101 102 103 104 105
10−4

10−2

100
ωc

ω (rad/s)

v o
u
t
/v

in

First order
Second order

Figure 9.10: Comparison between first order RC and second order RC low-pass filter.

There is theoretically no limit to how many stages can be cascaded together to create higher-order filters.

This textbook will only consider first and second order circuits.

Example: Low-pass filter analysis in symbolic form

Analyze the following low-pass filter. Determine the cutoff frequency
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vin(t)

L

R C

+

−

vout(t)

The second order equation will provide information about the properties of the circuit. It can be found

by performing KCL at the node between the inductor, resistor, and capacitor.

1

LC
vin(t) =

d2vout(t)

dt2
+

1

RC

dvout(t)

dt
+

1

LC
vout(t)

Using equation 9.4, it is now possible to calculate the cutoff frequency of the circuit.

ωc =
1√
LC

9.2.2 High-Pass Filters (HPF)

A high-pass filter blocks low frequency signals (below a cutoff frequency) from passing through to the output.

(Only high frequencies can pass through, hence the name “high-pass filter.”)

An ideal high-pass filter has a brick wall response: all frequencies below the cutoff frequency are com-

pletely eliminated from the output, and all frequencies above the cutoff frequency are able to pass through

with no change in magnitude. This ideal brick wall output response, as well as a real high-pass filter response,

is shown in figure 9.11.

101 102 103 104 105
10−3

10−2

10−1

100
ωc

ω (rad/s)

v o
u
t
/v

in

Real HPF
Ideal HPF

Figure 9.11: Comparison between an ideal (“brick wall”) high-pass filter and a real high-pass filter.

There are many different ways to implement a high-pass filter. One example of a first order passive

high-pass filter is shown in figure 9.12. The capacitor, having a high impedance at low frequencies, blocks

current from passing through the load at low frequencies.
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vIN (t)

C

R

+

−

vout(t)

Figure 9.12: This resistor-capacitor circuit acts as a high-pass filter. At low frequencies, current cannot pass
through the load resistor.

It is also possible to use a resistor-inductor combination to create a first order high-pass filter. This

circuit, shown in figure 9.13, acts as a high-pass filter because the inductor acts as a short at low frequencies,

creating leading to a small voltage drop over the load.

vIN (t)

R

L

+

−

vout(t)

Figure 9.13: This resistor-inductor circuit acts as a high-pass filter. At low frequencies, there will be minimal
voltage dropped over the load.

The cutoff frequency for a high-pass first order filter is the same as that of a first order low-pass filter.

The relationship is given in equation 9.3.

It is possible to create higher order high-pass filters. Second order filters can be created by cascading two

first order filters together, as shown in figure 9.14.

vIN (t)

C1

R1

C2

R2

+

−

vout(t)

Figure 9.14: This circuit acts as a second order high-pass filter by cascading together two resistor-capacitor
filters.

The cutoff frequency of a second order filter is given by equation 9.4, and is equal to the resonant frequency

of the second order circuit. There are other possible architectures for creating passive second order high-pass

filters.

A second order filter will cause a much faster decay of the output signal compared to a first order filter.
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A comparison of waveforms for a first and second order RC high-pass filter (with identical cutoff frequencies)

is shown in figure 9.15.

101 102 103 104 105
10−4

10−2

100
ωc

ω (rad/s)
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u
t
/
v i

n

First order
Second order

Figure 9.15: Comparison between first order RC and second order RC high-pass filter.

There is theoretically no limit to how many stages can be cascaded together to create higher-order filters.

This textbook will only consider first and second order circuits.

Example: High-pass filter analysis

Analyze the following high-pass filter. Calculate the cutoff frequency.

vin(t)

200 nF

5 kΩ

4 kΩ

10 mH

+

−

vout(t)

The second order equation will provide information about the properties of the circuit. It can be derived

using any circuit analysis technique.

d2vin(t)

dt
=

d2vout(t)

dt2
+ (401000)

dvout(t)

dt
+ (9× 108)vout(t)

Using equation 9.4, it is now possible to calculate the cutoff frequency of the circuit.

ωc = 30000 rad/s

9.2.3 Band-Pass Filters (BPF)

A band-pass filter only allows a range of frequencies to pass through to the output. Anything below a certain

frequency, or above a certain frequency, is blocked from reaching the output.

An ideal band-pass filter has a brick wall response: all frequencies within the so-called passband (centered

around the center frequency ω0) are able to pass through with no change in magnitude. All frequencies
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outside of the passband are eliminated. This ideal brick wall output response, as well as a real band-pass

filter response, is shown in figure 9.16.

101 102 103 104 105
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10−1

100

ωc1 ωc2ω0
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Figure 9.16: Comparison between an ideal (“brick wall”) band-pass filter and a real band-pass filter.

At least two energy-storage elements are required to create a band-pass filter; all band-pass filters must

be at least second order circuits. One possible band-pass filter architecture is shown in figure 9.17. At very

low frequencies, the inductor acts as a short and the capacitor acts as an open; there will be minimal voltage

dropped over the load. At very high frequencies, the inductor acts as an open and the capacitor acts as a

short; there will again be minimal voltage dropped over the load.

vIN (t)

R

L C

+

−

vout(t)

Figure 9.17: This RLC circuit acts as a band-pass filter. At both very low and very high frequencies, there will
be minimal voltage dropped over the load.

The center frequency (ω0) of a second order filter is equal to its resonant frequency, described in equa-

tion 7.3. The cutoff frequencies of a band-pass filter describe the frequency at which the voltage is reduced

to a value of 1/
√
2. There are two cutoff frequencies: ωc1 describes the low-frequency bound of the pass-

band; ωc2 describes the high-frequency bound of the passband. Both cutoff frequencies are described in

equations 9.5 and 9.6.

ωc1 = −α+
√

α2 + ω2
0 (9.5)

ωc2 = α+
√
α2 + ω2

0 (9.6)

The bandwidth of the circuit describes the width of the passband, and is described in equation 9.7. The

wider the passband (and hence the larger the bandwidth), the more frequencies that are allowed to pass
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through to the output.

β = ωc2 − ωc1 (9.7)

Band-pass filters can also be characterized by their quality factor. A filter with a high quality factor will

have a very narrow passband (low bandwidth), and vice versa. A graph showing the output response of

band-pass filters with different quality factors is shown in figure 9.18.
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Figure 9.18: Comparison between band-pass filters with low and high quality factors.

The quality factor of a second order band-pass filter can be calculated based on its characteristic equation.

This relationship is given in equation 9.8.

Q =

√
a0
a1

(9.8)

Example: Band-pass filter analysis

Analyze the following band-pass filter. Calculate the center frequency, both cutoff frequencies, the

bandwidth, and the quality factor.

vin(t)

40 µF

200 Ω

120 Ω

20 µF

+

−

vout(t)

The second order equation will provide information about the properties of the circuit. It can be derived

using any circuit analysis technique.

d2vin(t)

dt
=

d2vout(t)

dt2
+ (750)

dvout(t)

dt
+ (52083.33)vout(t)
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Using equation 9.4, it is now possible to calculate the center frequency of the circuit.

ω0 = 228.22 rad/s

The cutoff frequencies can be calculated using equations 9.5 and 9.6.

ωc1 = 63.99 rad/s

ωc2 = 813.99 rad/s

Calculate the bandwidth using equation 9.7.

β = 750 rad/s

Use equation 9.8 to calculate the quality factor.

Q = 0.304

9.2.4 Band-Stop Filters (BSF)

A band-stop filter rejects a range of frequencies centered around the center frequency. Anything below a

certain frequency, or above a certain frequency, is passed through to the output.

An ideal band-stop filter has a brick wall response: all frequencies within the so-called stopband (centered

around the center frequency) are rejected. All frequencies outside of the stopband are passed through. This

ideal brick wall output response, as well as a real band-stop filter response, is shown in figure 9.19.
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Figure 9.19: Comparison between an ideal (“brick wall”) band-stop filter and a real band-stop filter.

At least two energy-storage elements are required to create a band-stop filter; all band-stop filters must

be at least second order circuits. One possible band-stop filter architecture is shown in figure 9.20. At very

low frequencies, the inductor acts as a short and the capacitor acts as an open; there will be maximum

voltage dropped over the load. At very high frequencies, the inductor acts as an open and the capacitor acts

as a short; there will again be maximum voltage dropped over the load.
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vIN (t)

L

C

R

+

−

vout(t)

Figure 9.20: This RLC circuit acts as a band-stop filter. At both very low and very high frequencies, there will
be maximum voltage dropped over the load.

The center frequency of a second order filter is given by its resonant frequency described in equation 7.3.

Similarly, the cutoff frequencies can be described by equations 9.5 and 9.6. The bandwidth is given in

equation 9.7.

Band-stop filters can also be characterized by their quality factor. A filter with a high quality factor will

have a very narrow stopband, and vice versa. A graph showing the output response of band-stop filters with

different quality factors is shown in figure 9.21.

101 102 103 104 105
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100
ω0
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v o
u
t
/v

in

Low q factor
High q factor

Figure 9.21: Comparison between band-stop filters with low and high quality factors.

The quality factor of a second order band-pass filter can be calculated based on its characteristic equation.

This relationship is given in equation 9.8. It is not different from the equation used to find the quality factor

in a band-pass filter.

Example: Band-stop filter analysis

Analyze the following band-stop filter. Calculate the center frequency, both cutoff frequencies, the

bandwidth, and the quality factor.
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vin(t)

10 Ω

200 mH

50 µF

+

−

vout(t)

The second order equation will provide information about the properties of the circuit. It can be derived

using any circuit analysis technique.

d2vin(t)

dt
+ 100000vin(t) =

d2vout(t)

dt2
+ (50)

dvout(t)

dt
+ (100000)vout(t)

Using equation 9.4, it is now possible to calculate the center frequency of the circuit.

ω0 = 316.23 rad/s

The cutoff frequencies can be calculated using equations 9.5 and 9.6.

ωc1 = 292.21 rad/s

ωc2 = 342.21 rad/s

Calculate the bandwidth using equation 9.7.

β = 50 rad/s

Use equation 9.8 to calculate the quality factor.

Q = 6.32

9.2.5 Determining Filter Type

To determine the type of filter a circuit corresponds to, first analyze the circuit given a DC steady-state

(ω = 0). In this case, all capacitors can be replaced with opens and all inductors can be replaced with shorts.

Determine the value of the output voltage (which will either be zero or non-zero).

Second, analyze the circuit given a frequency approaching infinity (ω →∞). In this case, all capacitors

can be replaced with shorts and all inductors can be replaced with opens. Determine the value of the output
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voltage (which will either be zero or non-zero).

Table 9.1 can then be used to determine the filter type based on vout(0) and vout(∞).

vout(0) vout(∞) Filter Type
zero zero band-pass filter
zero non-zero high-pass filter
non-zero zero low-pass filter
non-zero non-zero band-stop filter

Table 9.1: It is possible to determine a filter type by analyzing the output voltage at low frequency (ω = 0)
and very high frequency (ω →∞).

Example: Determining filter type

Determine the type of filter shown below.

vin(ω)

L R

C

+

−

vout(ω)

Re-draw the circuit for ω = 0.

vin(0)

R

+

−

vout(0)

Determine the output voltage.

vout(0) = vin

Re-draw the circuit for ω →∞.

vin(∞)

R

+

−
vout(∞)
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Determine the output voltage.

vout(∞) = 0

Consult table 9.1. The circuit is a low-pass filter.

Example: Determining filter type

Determine the type of filter shown below.

vin(ω)

R

RC

C

RL

L

+

−

vout(ω)

Re-draw the circuit for ω = 0.

vin(0)

R

RC RL

+

−

vout(0)

Determine the output voltage.

vout(0) = vin
RL

R+RL

Re-draw the circuit for ω →∞.

vin(∞)

R

RC RL

+

−

vout(∞)

Determine the output voltage.
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vout(∞) = vin
RC

R+RC

Consult table 9.1. The circuit is a band-stop filter.

9.3 Active Filters

It is possible to design filters that use an op-amp; these filters are known as active filters. Active filters are

capable of generating output amplification (from the op-amp gain), and can also be used to create band-

pass filters and band-stop filters without using inductors, which are physically large and contain parasitic

resistance. While there are many different types of active filters, only a few will be discussed in this book.

9.3.1 First Order Active Filters

First order active filters are first order (one energy storage element) filters that use an op-amp. An active

first order low-pass filter is shown in figure 9.22.

−

+
+

−

vout(t)

R1

vin(t)

C

R2

Figure 9.22: First order active low-pass filter.

The first order differential equation that describes the behavior of this low-pass filter is shown in equa-

tion 9.9, and can be derived by performing KCL at the inverting node of the op-amp.

−vin(t)

R1C
=

dvout(t)

dt
+

1

R2C
vout(t) (9.9)

The cutoff frequency of the filter is defined by the coefficient on the vout(t) term, therefore the cutoff

frequency of the first order active low-pass filter depicted in figure 9.22 is given in equation 9.10.

ωc =
1

R2C
(9.10)

The gain of this active filter is given by the ratio of feedback resistor to input resistor, which can be seen
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in the coefficient of the ratio of output to input voltages, shown in equation 9.11 and derived below. The

initial equation in the derivation is obtained by performing KCL at the inverting input of the op-amp.

vout(t)

vin(t)
= −R2

R1

(
1

R2C

jω + 1
R2C

)
(9.11)

DERIVATION

vin(t)

R1
= −vout(t)

R2
− vout(t)

1
jωC

= −vout(t)
(

1

R2
+ jωC

)
vout(t)

vin(t)
= − 1

R1

(
1

1
R2

+ jωC

)

= −R2

R1

(
1

1 + jωCR2

)
= −R2

R1

(
1

R2C

jω + 1
R2C

)

An active first order high-pass filter is shown in figure 9.23.

−

+
+

−

vout(t)

C
R1

vin(t)

R2

Figure 9.23: First order active high-pass filter.

The first order differential equation that describes the behavior of this high-pass filter is shown in equa-

tion 9.12, and can be derived by performing KCL at the inverting node of the op-amp.

−R2

R1

dvin(t)

dt
=

dvout(t)

dt
+

1

R1C
vout(t) (9.12)

The cutoff frequency of the filter is defined by the coefficient on the vout(t) term, therefore the cutoff

frequency of the first order active high-pass filter depicted in figure 9.23 is given in equation 9.13.

ωc =
1

R1C
(9.13)
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The gain of this active filter is given by the ratio of feedback resistor to input resistor, which can be seen

in the coefficient of the ratio of output to input voltages, shown in equation 9.14 and derived below. The

initial equation in the derivation is obtained by performing KCL at the inverting input of the op-amp.

vout(t)

vin(t)
= −R2

R1

(
jω

jω + 1
R1C

)
(9.14)

DERIVATION

vin(t)

R1 +
1

jωC

= −vout(t)

R2

vout(t)

vin(t)
= − R2

R1 +
1

jωC

= − jωCR2

jωCR1 + 1

= −R2

R1

(
jω

jω + 1
R1C

)

9.3.2 Cascaded Filters

As mentioned in section 4.5.3, op-amps can be cascaded together. While section 4.5.3 made reference to the

product of each individual circuit gain, cascaded filters can be analyzed by calculating the product of each

filter’s transfer function (discussed in section 9.4). In this manner, band-pass filters, band-stop filters, and

second order (or higher) high-pass and low-pass filters can be designed.

A low-pass filter whose input is fed into a high-pass filter acts as a band-pass filter. A cascaded active

band-pass filter is depicted in figure 9.24.

−

+

RL

vin(t)

CL

RL

−

+

CH
RH

RH

−

+
+

−
vout(t)

RI

RF

Figure 9.24: Cascaded active band-pass filter.
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This filter has three stages. The first stage is a low-pass filter, the second stage is a high-pass filter, and

the third stage is an inverting amplifier to provide overall amplification (gain). The low-pass filter stage sets

the upper cutoff frequency, which was defined in equation 9.6 as ωc2. Using equation 9.10, we can derive the

upper cutoff frequency as shown in equation 9.15.

ωc2 =
1

RLCL
(9.15)

The high-pass filter stage sets the lower cutoff frequency, which was defined in equation 9.5 as ωc1. Using

equation 9.13, we can derive the lower cutoff frequency as shown in equation 9.16.

ωc1 =
1

RHCH
(9.16)

The final stage has a gain given by equation 4.9 and sets the overall gain of the band-pass filter circuit.

In this manner, each of the circuit properties can be tuned in each individual stage.

A low-pass filter and high-pass filter can also be used as inputs to a summing amplifier, which leads to

an active band-stop filter. This circuit is depicted in figure 9.25.

−

+

RL

CL

RL

RI

−

+
vin(t)

CH
RH

RH

RI

−

+

RF

+

−

vout(t)

Figure 9.25: Cascaded active band-stop filter.

The low-pass filter sets the lower cutoff frequency of the stopband and the high-pass filter sets the upper

cutoff frequency of the stopband. The summing amplifier sets the overall gain of the band-stop filter circuit.
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This gain is defined by the input and feedback resistors, described in equation 9.17.

A = −RF

RI
(9.17)

Finally, higher order active filters can be created by cascading together multiple low-pass filters or multiple

high-pass filters (for example). Cascading together identical filters creates a sharper slope at the cutoff

frequency. An inverting amplifier can be staged at the output to create an overall circuit gain.

9.3.3 Other Active Filter Topologies

While there are numerous other active (and passive) filter designs that will not be explored in this book, one

other active filter topology will be described. This is called the Sallen-Key topology. A low-pass Sallen-Key

filter is depicted in figure 9.26. (Swapping all resistors for capacitors and vice versa will result in a high-pass

Sallen-Key filter. A band-pass Sallen-Key filter can also be realized.)

−

+
R2R1

C2vin(t)

C1

+

−

vout(t)

Figure 9.26: A unity gain Sallen-Key low-pass filter circuit.

The voltage follower configuration of the circuit gives it a gain of one (known as unity gain), and ensures

that the voltage at the non-inverting input of the op-amp is equal to vout(t). If a filter gain is desired, then

the voltage follower configuration can be altered to include divided feedback instead of shorting the inverting

input to the output.

The Sallen-Key filter shown in figure 9.26 has a differential equation described in equation 9.18 and is

derived below using KCL at the nodes connecting the two resistors to capacitor C1 and also at the non-

inverting input of the op-amp. (The term va(t) in the derivation denotes the note connecting the two resistors

to capacitor C1.)

1

R1R2C1C2
vin(t) =

d2vout(t)

dt2
+

[
1

R1C1
+

1

R2C1

]
dvout(t)

dt
+

[
1

R1R2C1C2

]
vout(t) (9.18)
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DERIVATION

vin(t)− va(t)

R1
= C1

d

dt
[va(t)− vout(t)] + C2

dvout(t)

dt

vin(t)

R1
=

[
1

R1
+ C1

d

dt

]
va(t) +

[
C2

d

dt
− C1

d

dt

]
vout(t)

va(t)− vout(t)

R2
= C2

dvout(t)

dt

va(t) = R2C2
dvout(t)

dt
+ vout(t)

vin(t)

R1
=

[
1

R1
+ C1

d

dt

] [
R2C2

dvout(t)

dt
+ vout(t)

]
+

[
C2

d

dt
− C1

d

dt

]
vout(t)

=
R2C2

R1

dvout(t)

dt
+

1

R1
vout(t) + C1R2C2

d2vout(t)

dt2
+ C2

dvout(t)

dt

= R2C1C2
d2vout(t)

dt2
+

[
R2C2

R1
+ C2

]
dvout(t)

dt
+

[
1

R1

]
vout(t)

1

R1R2C1C2
vin(t) =

d2vout(t)

dt2
+

[
1

R1C1
+

1

R2C1

]
dvout(t)

dt
+

[
1

R1R2C1C2

]
vout(t)

9.4 Transfer Functions

All of the analysis that was carried out on filters in the previous sections of this book looked at the magnitude

response of vout(t)/vin(t) at different frequencies. A transfer function is defined as the frequency response

of a system, described in equation 9.19.

H(jω) =
vout(jω)

vin(jω)
(9.19)

The transfer function provides a lot of useful information about the response of a circuit across many

different frequencies of operation. The transfer function is a complex function of jω. It can be split into

magnitude and phase responses. The magnitude of the transfer function is calculated by taking the absolute

value of H(jω), as shown in equation 9.20.

|H(jω)| =
√
(ℜH(jω))2 + (ℑH(jω))2 (9.20)

The phase response is calculated by finding the angle between the real and imaginary parts, as shown in

equation 9.21.

∠H(jω) = atan2 (ℑH(jω),ℜH(jω)) (9.21)

When plotted together, this is called a Bode plot. A Bode plot shows the frequency response of a system

by showing the magnitude and phase response of the system.
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The transfer function of a circuit is derived by using a phasor transformed circuit to calculate the output

voltage divided by the input voltage as a function of jω. The function is normalized by forcing the highest

order term of jω (which, for a second order circuit, is −ω2) to have a coefficient of one.

Consider the phasor transformed low-pass filter circuit shown in figure 9.27.

vIN (ω)

R

1
jωC

+

−

vout(ω)

Figure 9.27: A phasor transformed low-pass filter circuit.

The voltage divider rule can be used to determine the transfer function of the circuit, shown in equa-

tion 9.22 and derived below.

H(jω) =
1

RC

jω + 1
RC

(9.22)

DERIVATION

H(jω) =

(
1

jωC

R+ 1
jωC

)

=
1

jωRC + 1

=
1

RC

jω + 1
RC

The magnitude response of the filter is shown in equation 9.23 and derived below.

|H(jω)| =
1

RC√
−ω2 + ( 1

RC )2
(9.23)

DERIVATION

|H(jω)| =
∣∣∣∣ 1

RC

jω + 1
RC

∣∣∣∣
=

| 1
RC |

|jω + 1
RC |

=
1

RC√
−ω2 + ( 1

RC )2
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The phase response of the filter is shown in equation 9.24 and derived below.

∠H(jω) = − atan2

(
ω,

1

RC

)
(9.24)

DERIVATION

∠H(jω) =
∠( 1

RC )

∠(jω + 1
RC )

=
0◦

atan2 (ω, 1
RC )

= − atan2

(
ω,

1

RC

)

Given values of R = 100 Ω and C = 100 µF, it is possible to create a Bode plot of the filter. This is

shown in figure 9.28.

10−2

10−1

100

|H
(j
ω
)|

100 101 102 103 104
−90

−45

0

ω (rad/s)

∠
H
(j
ω
)
(◦
)

Figure 9.28: Bode plot for the low-pass filter circuit shown in figure 9.27 given R = 100 Ω and C = 100 µF.

Example: Transfer function in symbolic form

Derive a transfer function for the circuit shown below. Then, determine the filter type.

vin(ω)

R1

R2 L

+

−

vout(ω)

This transfer function can be derived using a voltage divider. Combine the impedances of resistor R2
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and the inductor in parallel.

ZRL =
jωLR2

R2 + jωL

Apply the voltage divider rule, and minimize until the transfer function is normalized.

vout(ω) = vin(ω)

[
jωLR2

R2+jωL

R1 +
jωLR2

R2+jωL

]

H(jω) =

jωLR2

R2+jωL

R1 +
jωLR2

R2+jωL

=
jωLR2

jωLR1 +R1R2 + jωLR2

=
jωLR2

jωL(R1 +R2) +R1R2

=
jω R2

R1+R2

jω + R1R2

L(R1+R2)

To determine the filter type, first analyze the circuit for ω = 0.

vin(0)

R1

R2

+

−
vout(0)

The output voltage will be zero at ω = 0 due to the inductor being a short in those conditions. Then,

analyze the circuit for ω →∞.

vin(∞)

R1

R2

+

−

vout(∞)

The output voltage will be non-zero at ω = ∞ due to the inductor being an open in those conditions.

Therefore, this is a high-pass filter.

cbna Alyssa J. Pasquale, Ph.D. 275 Last updated: 2023/05/18



9 Analysis of Phasor Transformed Circuits 9.4 Transfer Functions

Example: Transfer function in numeric form

Derive a transfer function for the circuit shown below. Then, determine the filter type.

vin(ω)

20 mH

800 Ω

200 nF

+

−

vout(ω)

It is advantageous to begin by deriving the transfer function in symbolic form, and then substituting

numeric values in at the end. This circuit’s transfer function can be derived by applying the voltage divider

rule and minimizing until the transfer function is normalized.

vout(ω) = vin(ω)

[
R+ 1

jωC

jωL+R+ 1
jωC

]

H(jω) =
jωCR+ 1

−ω2LC + jωCR+ 1

=
jωR

L + 1
LC

−ω2 + jωR
L + 1

LC

Now that the transfer function has been derived symbolically, a numerical solution can be obtained.

H(jω) =
jω40000 + 2.5× 108

−ω2 + jω40000 + 2.5× 108

The bode plot for this filter is shown below.

10−1

100

|H
(j
ω
)|

103 104 105 106
−90

−45

0

ω (rad/s)

∠
H
(j
ω
)
(◦
)

To determine the filter type, first analyze the circuit for ω = 0.
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vin(ω)

800 Ω
+

−

vout(ω)

The output voltage will be non-zero at ω = 0. Then, analyze the circuit for ω →∞.

vin(ω)

800 Ω
+

−

vout(ω)

The output voltage will be zero at ω = ∞. Therefore, this is a low-pass filter. This analysis is verified

by the Bode plot.

9.4.1 Relating Transfer Functions and Differential Equations

After close observation, it can be seen that a transfer function contains exactly the same information as the

differential equation that describes a circuit. Consider the circuit in figure 9.27. KCL can be used to derive

the differential equation, shown in equation 9.25.

1

RC
vin(t) =

d

dt
vout(t) +

1

RC
vout(t) (9.25)

It is possible to replace every d/dt term with jω, every t term with ω, and solve for vout/vin. This is

shown in equation 9.26 and derived below.

vout(ω)

vin(ω)
=

1
RC

jω + 1
RC

(9.26)
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DERIVATION

1

RC
vin(t) = jωvout(t) +

1

RC
vout(t)

1

RC
vin(ω) = vout(ω)

(
jω +

1

RC

)
vout(ω)

vin(ω)
=

1
RC

jω + 1
RC

Note that this is exactly the same as the transfer function derived in equation 9.22!

9.4.2 Understanding Transfer Function Poles and Zeros

Identifying the poles and zeros of a transfer function can provide information about the stability of a system.

Poles are the roots of the denominator of the transfer function; zeros are the roots of the numerator of

the transfer function. Stability relates to what happens after a system is disturbed from a condition of

equilibrium. If, after a disturbance, a system tends to return to equilibrium, that system is said to be stable.

If, after a disturbance, the system remains in the new state without changing, that system is said to be

marginally stable. If, after a disturbance, the system diverges away from equilibrium, that system is said to

be unstable.

In resistive circuits (such as the ones described in this book), the systems are stable due to the damping

property of resistors. This causes all exponential terms in output voltage equations to have negative powers,

causing them to decay over time. All poles have negative real values. The greater the magnitude of the real

part of the pole, the faster the exponential term will decay.

Second order systems (such as second order circuits) will have two poles. If the two poles have real and

distinct negative values, then the system will have an overdamped transient response. If the two poles have

real and repeated negative values, then the system will have a critically damped transient response. If the

two poles are complex conjugate pairs, then the system will have an underdamped transient response.

Example: Relating poles to the transient response (overdamped)

A second order circuit has a transfer function described below.

H(jω) =
jω + 6

−ω2 + jω3 + 2

There is one zero at –6, and two poles (at –2 and –1). The transfer function can be rewritten.

H(jω) =
(jω + 6)

(jω + 2)(jω + 1)

Because the poles are real and distinct, the transient response of this circuit will be overdamped. The

step transient response of the circuit is plotted below as a function of time.
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Example: Relating poles to the transient response (critically damped)

A second order circuit has a transfer function described below.

H(jω) =
1

−ω2 + jω2000 + 1× 106

There are no zeros, and two repeated poles at –1000. The transfer function can be rewritten.

H(jω) =
1

(jω + 1000)(jω + 1000)

Because the poles are real and repeated, the transient response of this circuit will be critically damped.

The step transient response of the circuit is plotted below as a function of time.
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v
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)
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Example: Relating poles to the transient response (underdamped)

A second order circuit has a transfer function described below.

H(jω) =
−ω2

−ω2 + jω3.5 + 7.5

There are no zeros, and two repeated poles at –1000. The transfer function can be rewritten.

H(jω) =
(jω + 0)(jω + 0)

(jω + 1.75 + j
√
4.4375)(jω + 1.75− j

√
4.4375)

Because the poles are complex conjugate pairs, the transient response of this circuit will be underdamped.

The step transient response of the circuit is plotted below as a function of time.

cbna Alyssa J. Pasquale, Ph.D. 279 Last updated: 2023/05/18



9 Analysis of Phasor Transformed Circuits 9.4 Transfer Functions

−2 −1 0 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

t (s)

v
(t
)
(V

)

A transfer function can be re-written as shown in equation 9.27. Each of the z values is a zero, and each

of the p values is a pole. A first order system (such as a first order circuit) will have one pole. A second

order system will have two poles.

H(jω) =
(jω − z1)(jω − z2)...(jω − zn)

(jω − p1)(jω − p2)...(jω − pn)
(9.27)

Example: Poles and zeros

Determine the poles and zeros of the transfer function of the second order low-pass filter from figure 9.9,

where R1 = 10 Ω, R2 = 20 Ω, C1 = 200 µF, and C2 = 500 µF.

The transfer function of the circuit is given below.

H(jω) =
50000

−ω2 + jω850 + 50000

The transfer function has no zeros and two poles (at –786.42 and –63.58). The transfer function can be

rewritten.

H(jω) =
50000

(jω + 786.42)(jω + 63.58)

Poles and zeros can be plotted on the complex plane. Each pole is depicted with an × symbol, and each

zero is depicted with a ◦. Based on the location of the poles in the complex plane, the stability of the system

can be quickly determined. Pole-zero diagrams for stable second order systems are depicted in figure 9.29.
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real

imaginary

×× ◦ real

imaginary

×× ◦ real

imaginary

×

×

◦

Figure 9.29: Distinct poles lead to an underdamped response (left). Repeated poles lead to a critically
damped response (middle). Complex conjugate poles lead to an underdamped response (right). All three of
these pole-zero diagrams is stable.

Unstable systems have increasing exponential functions in the output response. In the real physical

world, this output response is impossible. Not only is there only a finite amount of energy (which means

that no output, whether it be voltage, current, or a non-electrical property, can increase infinitely), but any

physical system will eventually break once the output response reaches a certain value. An unstable second

order system with distinct or repeated real roots is depicted in figure 9.30.

real

imaginary

× ×◦

Figure 9.30: Poles with positive real parts (whether they are distinct, as shown, or repeated, not shown) lead
to an unstable response (left). The system output consists of increasing exponentials (right).

An unstable system with complex conjugate roots (with positive real parts) has an output response of

an increasing amplitude sinusoid. This is depicted in figure 9.31.
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real

imaginary

×

×

◦

Figure 9.31: Poles that are complex conjugates with positive real parts lead to an unstable response (left).
The system output consists of an increasing amplitude sinusoid (right).

Marginally stable systems have constant amplitude functions in the output response. A second order

system with two poles of zero is depicted in figure 9.32.

real

imaginary

××◦

Figure 9.32: Poles equal to zero lead to a marginally stable response (left). The system output consists of a
constant value (right).

Amarginally stable system with complex conjugate pair poles (with no real part) has a constant amplitude

sinusoid as a response. This would be the case for an ideal LC circuit with no parasitic resistance. The

output response is depicted in figure 9.33.

real

imaginary

×

×

◦

Figure 9.33: Poles that are complex conjugates with zero real parts lead to a marginally stable response (left).
The system output consists of a constant amplitude sinusoid (right).
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Extra Resources

• Cheever, Erik. Bode Plots Overview. Retrieved 3 March 2021. https://lpsa.swarthmore.edu/

Bode/Bode.html

• Massachusetts Institute of Technology Department of Mechanical Engineering. Retrieved 2 Septem-

ber 2021. https://web.mit.edu/2.14/www/Handouts/PoleZero.pdf

• National Semiconductor Corporation, 2010. Application Note 779: A Basic Introduction to Filters

- Active, Passive, and Switched Capacitor. https://www.ti.com/lit/an/snoa224a/snoa224a.

pdf

• Texas Instruments, 2002. Application Report: Analysis of the Sallen-Key Architecture. https:

//www.ti.com/lit/an/sloa024b/sloa024b.pdf
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Example Problems

Complex Voltage and Current Divider

1. Calculate v(t) given the circuit diagram shown in figure 9.34.

50 V cos(2π60t + 60π/180)

50 Ω

35 µF

+

−

v(t)

Figure 9.34: Circuit diagram for complex voltage and current divider circuits question 1.

2. Calculate v(t) given the circuit diagram shown in figure 9.35. The frequency of operation is 80 Hz.

160 V ∠ 150◦

j26.4 Ω

120 Ω

–j75.8 Ω

+

−

v(t)

Figure 9.35: Circuit diagram for complex voltage and current divider circuits question 2.

3. Calculate i(t) given the circuit diagram shown in figure 9.36. The frequency of operation is 150 Hz.

20 A ∠ –120◦ –j7 Ω

6 Ω

j5 Ω

i(t)

Figure 9.36: Circuit diagram for complex voltage and current divider circuits question 3.
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4. Calculate v(t) given the circuit diagram shown in figure 9.37.

7 V cos(2π100t)

28 Ω 52 mH

48 µF 30 Ω

+

−

v(t)

Figure 9.37: Circuit diagram for complex voltage and current divider circuits question 4.

5. Calculate i(t) given the circuit diagram shown in figure 9.38.

4.5 A cos(2π6000t+30π/180) 40 Ω

i(t)

330 nF 1 mH

Figure 9.38: Circuit diagram for complex voltage and current divider circuits question 5.

Complex Kirchhoff’s Laws

6. Calculate i(t) given the circuit diagram shown in figure 9.39.

24 V cos(2π60t)

40 Ω

330 µF

10 mH

80 Ω

i(t)

Figure 9.39: Circuit diagram for complex Kirchhoff’s laws question 6.

7. Calculate v(t) given the circuit diagram shown in figure 9.40. The frequency of operation is 20 Hz.

80 V ∠ 120◦

8 Ω

10 Ω

5 Ω

–j6 Ω j5 Ω

+

−

v(t)

Figure 9.40: Circuit diagram for complex Kirchhoff’s laws question 7.
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8. Calculate v(t) given the circuit diagram shown in figure 9.41. The frequency of operation is 20 kHz.

15 A ∠ 0◦ 6 Ω

j9 Ω

–j3 Ω

4 Ω

+

−

v(t)

8 Ω

j5 Ω

Figure 9.41: Circuit diagram for complex Kirchhoff’s laws question 8.

9. Calculate v(t) given the circuit diagram shown in figure 9.42. The frequency of operation is 30 Hz.

100 V ∠ 0◦

5 Ω

–j10 Ω

10 Ω

j10 Ω

+

−

v(t)

–j5 Ω

Figure 9.42: Circuit diagram for complex Kirchhoff’s laws question 9.

10. Calculate v(t) given the circuit diagram shown in figure 9.43.

5 V cos(2π200t)

2 Ω

5 Ω

+

−

v(t)

40 µF

0.5v(t) 7 Ω 100 µF

Figure 9.43: Circuit diagram for complex Kirchhoff’s laws question 10.
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Complex Mesh Analysis

11. Calculate v(t) given the circuit diagram shown in figure 9.44. The frequency of operation is 50 Hz.

105 V ∠ 0◦

12 Ω

24 Ω

+

−

v(t)

9 Ω

j12 Ω

Figure 9.44: Circuit diagram for complex mesh analysis question 11.

12. Calculate i(t) given the circuit diagram shown in figure 9.45.

30 V cos(2π100t + 45π/180)

15 Ω

160 µF

i(t)

8 mH

20 Ω

30 Ω
250 µF

Figure 9.45: Circuit diagram for complex mesh analysis question 12.

13. Calculate v(t) given the circuit diagram shown in figure 9.46.

12 V cos(2π200t)

130 Ω

5 µF

80 Ω

210 Ω

56 Ω

95 mH

+

−

v(t)

Figure 9.46: Circuit diagram for complex mesh analysis question 13.
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14. Calculate v(t) given the circuit diagram shown in figure 9.47. The frequency of operation is 5 kHz.

10 V ∠ –50◦

20 Ω

50 Ω

+

−

v(t)

1.4 µF

20 Ω

−
+

2v(t)

60 Ω

Figure 9.47: Circuit diagram for complex mesh analysis question 14.

15. Calculate v(t) given the circuit diagram shown in figure 9.48.

15 V cos(2π600t + 25π/180)

30 Ω

0.3v(t)

60 Ω

6.6 µF

20 Ω

+ −
v(t)

5.3 µF

Figure 9.48: Circuit diagram for complex mesh analysis question 15.

Complex Superposition

16. Calculate v(t) given the circuit diagram shown in figure 9.49. The frequency of operation is 10 kHz.

5 V ∠ 15◦

20 Ω

j15 Ω

+

−

v(t)

–j40 Ω

30 V ∠ 0◦

Figure 9.49: Circuit diagram for complex superposition question 16.
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17. Calculate v(t) given the circuit diagram shown in figure 9.50. The frequency of operation is 40 Hz.

10 A ∠ 0◦ 5 Ω

+

−

v(t) –j20/9 Ω j5 Ω

20 Ω

100 V ∠ –90◦

Figure 9.50: Circuit diagram for complex superposition question 17.

18. Calculate v(t) given the circuit diagram shown in figure 9.51. The frequency of operation is 100 Hz.

100–j50 V

20 Ω

j5 Ω

12 Ω j16 Ω

+ −v(t)

–j10 Ω 30+j20 A

Figure 9.51: Circuit diagram for complex superposition question 18.

19. Calculate i(t) given the circuit diagram shown in figure 9.52. The frequency of operation is 2 kHz.

5 A ∠ 0◦

10 µF

310 µH

i(t)

12 Ω

20 V ∠ 90◦

20 µF

Figure 9.52: Circuit diagram for complex superposition question 19.
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20. Calculate i(t) given the circuit diagram shown in figure 9.53. The frequency of operation is 20 Hz.

5 V ∠ 0◦

200 Ω

j80 Ω

i(t)

150 Ω

100 Ω

10 V ∠ 60◦

j60 Ω

120 Ω 600 mA ∠ 45◦

Figure 9.53: Circuit diagram for complex superposition question 20.

Complex Source Transformation

21. Use source transformation to calculate v(t) in the circuit shown in figure 9.49 (in the complex super-

position section).

22. Use source transformation to calculate v(t) in the circuit shown in figure 9.50 (in the complex super-

position section).

23. Use source transformation to calculate i(t) for the circuit shown in figure 9.54. The frequency of

operation is 10 Hz.

20 V ∠ 0◦

6 Ω

–j5 Ω

j4 Ω

11 Ω

i(t)

–j7 Ω

30 V ∠ 0◦

Figure 9.54: Circuit diagram for complex source transformation question 23.
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24. Use source transformation to calculate v(t) for the circuit shown in figure 9.55.

3 A cos(2π50000t) 25 µH

500 nF

+ −
v(t)

12 Ω

9 Ω

15 V cos(2π50000t)

Figure 9.55: Circuit diagram for complex source transformation question 24.

25. Use source transformation to calculate v(t) for the circuit shown in figure 9.56.

3 V cos(2π100t)

2 Ω

1.6 mF

+

−

v(t)

0.3 mF

2 v(t) 5 Ω

Figure 9.56: Circuit diagram for complex source transformation question 25.

Complex Thévenin and Norton’s Theorems

26. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 9.57. The

frequency of operation is 50 Hz.

10 V ∠ 30◦

5 Ω

25 mH

750 µF

a

b

Figure 9.57: Circuit diagram for complex Thévenin and Norton theorems question 26.
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27. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 9.58.

60 mA cos(2π1500t)

50 Ω

10 mH

2 µF

100 Ω

a

b

Figure 9.58: Circuit diagram for complex Thévenin and Norton theorems question 27.

28. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in figure 9.59. The

frequency of operation is 2 kHz.

50 V ∠ 0◦

10 Ω 600 µH

10 µF

a

6 Ω

400 µH

b

Figure 9.59: Circuit diagram for complex Thévenin and Norton theorems question 28.

29. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in figure 9.60. The

frequency of operation is 60 Hz.

3 V ∠ 0◦

5 Ω

500 µF

+

−

v(t)

200 µF

0.3 v(t)

a

8 Ω

b

Figure 9.60: Circuit diagram for complex Thévenin and Norton theorems question 29.
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30. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in figure 9.61. The

frequency of operation is 300 Hz.

10 V ∠ 0◦

6 Ω

100 µF

+

−

v(t)

20 µF

10 Ω

−
+

0.8 v(t)

a

b

Figure 9.61: Circuit diagram for complex Thévenin and Norton theorems question 30.

Filters

31. Given the circuit shown in figure 9.62, determine the filter type, calculate the center frequency, band-

width, and quality factor.

vin(ω)

R L

C

+

−

vout(ω)

Figure 9.62: Circuit diagram for filters question 31.

32. Given the circuit shown in figure 9.63, determine the filter type, calculate the center frequency, band-

width, and quality factor.

vin(ω)

C

R L

+

−

vout(ω)

Figure 9.63: Circuit diagram for filters question 32.
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33. Given the circuit shown in figure 9.64, determine the filter type, calculate the center frequency, band-

width, and quality factor.

vin(ω)

1 kΩ

10 mH

0.01 µF

+

−

vout(ω)

Figure 9.64: Circuit diagram for filters question 33.

34. Given the circuit shown in figure 9.65, determine the filter type and calculate the cutoff frequency.

−

+
+

−

vout(ω)

C
R1

vin(ω)

R2

Figure 9.65: Circuit diagram for filters question 34.

35. Given the circuit shown in figure 9.66, determine the filter type and calculate the cutoff frequency.

−

+
+

−

vout(ω)

30 kΩ

vin(ω)

5 µF

20 kΩ

Figure 9.66: Circuit diagram for filters question 35.
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Transfer Functions

36. Derive a transfer function for the circuit shown in figure 9.67. Then, determine the filter type.

vin(ω)

R1

R2 C

+

−

vout(ω)

Figure 9.67: Circuit diagram for transfer functions question 36.

37. Derive a transfer function for the circuit shown in figure 9.68. Then, determine the filter type.

vin(ω)

L
C

R

+

−

vout(ω)

Figure 9.68: Circuit diagram for transfer functions question 37.

38. Derive a transfer function for the circuit shown in figure 9.69. Then, determine the filter type.

vin(ω)

C

R

L

+

−

vout(ω)

Figure 9.69: Circuit diagram for transfer functions question 38.
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39. Derive a transfer function for the circuit shown in figure 9.70. Then, determine the filter type.

vin(ω)

C

R1

R2

L

+

−

vout(ω)

Figure 9.70: Circuit diagram for transfer functions question 39.

40. Derive a transfer function for the circuit shown in figure 9.71. Then, determine the filter type.

−

+
R1

C1vin(ω)

+

−

vout(ω)

R2

C2

R3

Figure 9.71: Circuit diagram for transfer functions question 40.
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10 AC Power

10.1 Phase and Root Mean Square (RMS)

Discussions about power require an understanding of the voltage and current characteristics of a circuit.

In DC circuits, this analysis is relatively straightforward because voltages and currents do not vary with

respect to time. Even in transient analysis, changes occur quickly and return to a steady-state. This analysis

becomes more difficult in AC circuits because elements do not settle down to one value; the sinusoidal nature

of voltages and currents imply that values are continuously changing.

AC circuits may also have a phase difference between voltage and current signals. In other words:

maximum current may arrive at the load slightly before maximum voltage, or maximum current may arrive

at the load slightly after maximum voltage. This phase difference leads to complex power, which will be

explained in the next section of this book. The phase difference is described in equation 10.1, where ϕv is

the phase of the voltage and ϕi is the phase of the current.

θ = ϕv − ϕi (10.1)

Because time-varying signals are frequently plotted with respect to time, and not phase, the phase

difference (in degrees) can be determined by calculating the time difference between subsequent peaks divided

by the period of the wave (T ), as defined in equation 10.2. To calculate the phase difference in radians,

multiply by 2π instead of 360◦.

θ = 360◦
(
tpeak,voltage − tpeak,current

T

)
(10.2)

Figure 10.1 shows two different voltage/current relationships measured in the load of a hypothetical

circuit containing resistors, capacitors, and inductors.

−5

0

5
v(t)

i(t)

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

t (ms)

v(t)

i(t)

Figure 10.1: Current-voltage signals for a lagging (top) circuit and a leading (bottom) circuit.

In the top figure, the voltage arrives at the load before current. In other words: the current lags the
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voltage. This is called a lagging circuit, and is caused by an inductive load. In the bottom figure, the voltage

arrives at the load after current. In other words: the current leads the voltage. This is called a leading

circuit, and is caused by a capacitive load.

So far, the amplitude of a wave (Vm for voltage and Im for current) has been used to quantify sinusoidal

signals. The amplitude defines the maximum displacement from equilibrium. The average value also provides

useful information. However, a sinusoidal wave with no DC offset has an average of zero. This means that

a normal average does not provide any useful information about a sine or cosine wave. The concept of root

mean square (RMS) value is used instead.

The root mean square definition for a periodic waveform (f(t)) is defined in equation 10.3, where T is

equal to the period of the function.

fRMS =

√
1

T

∫ T

0

f2(t) dt (10.3)

The RMS value for a sinusoidal wave is therefore equal to the amplitude divided by the square root of

two, shown in equation 10.4. (All of the voltage terms can be replaced with current terms to find the RMS

value of a sinusoidal current.)

VRMS =
Vm√
2

(10.4)

Triangular and ramp waves have RMS values defined in equation 10.5.

VRMS =
Vm√
3

(10.5)

As will be seen in the next section, RMS values will be used in calculations of complex power in AC

circuits. These values will be noted with a subscript on the variable names, and with the term RMS used in

conjunction with units. In other words, VRMS = 10 VRMS will be used to define an RMS voltage of 10 V.

10.2 AC Power

Power, which was initially described in section 1.4 of this textbook, is lost or gained at particular rates in

each circuit element. In AC circuits, there are many different quantities used to describe the power that is

delivered or absorbed by different circuit elements.

10.2.1 Instantaneous Power

Instantaneous power was defined in equation 1.2. Instantaneous power in a circuit can be calculated using

the time-varying forms of voltage and current and multiplying them together. The instantaneous power

equation, rewritten in terms of cosine form for voltage and current, is shown in equation 10.6 and derived
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below. (Note, the derivation uses a product-to-sum trigonometric identity to derive the result.)

p(t) = VRMSIRMS [cos θ + cos (2ωt+ ϕv + ϕi)] (10.6)

DERIVATION

v(t) = Vm cos (ωt+ ϕv)

i(t) = Im cos (ωt+ ϕi)

p(t) = [Vm cos (ωt+ ϕv)][Im cos (ωt+ ϕi)]

=
VmIm

2
[cos θ + cos (2ωt+ ϕv + ϕi)]

= VRMSIRMS [cos θ + cos (2ωt+ ϕv + ϕi)]

10.2.2 Complex and Apparent Power

Complex power is defined in equation 10.7 and derived below, where the ∗ symbol denotes the complex

conjugate. The units used with complex power are VA (volt-amps).

S = VRMSI
∗
RMS (10.7)

DERIVATION

S = VRMSIRMSe
jθ

= VRMSIRMSe
j(ϕv−ϕi)

= VRMSe
jϕvIRMSe

−jϕi

= VRMSI
∗
RMS

Equation 10.7 can be unwieldy to use if only current is known and not voltage; or if only voltage is known

and not current. If the voltage is known (but not the current), the equation can be rewritten in terms of only

voltage and impedance. This method uses the complex version of Ohm’s law and is shown in equation 10.8

and derived below.

S =
|VRMS|2Z
|Z|2

(10.8)
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DERIVATION

I∗RMS =

(
VRMS

Z

)∗

S =
VRMSV

∗
RMS

Z∗

=
|VRMS|2

Z∗

=
|VRMS|2Z

ZZ∗

=
|VRMS|2Z
|Z|2

If the current is known (but not the voltage), the equation can be rewritten as shown in equation 10.9

(and derived below) in terms of only current and impedance.

S = |IRMS|2Z (10.9)

DERIVATION

VRMS = IRMSZ

S = IRMSI
∗
RMSZ

= |IRMS|2Z

In Cartesian form, the complex power is defined in equation 10.10. Both terms P (average power) and

Q (reactive power) will be defined in the next two sections of this book.

S = P + jQ (10.10)

The magnitude of the complex power is known as apparent power. It is also measured in units of VA. It

is defined in equation 10.11.

|S| = VRMSIRMS =
√
P 2 +Q2 (10.11)

10.2.3 Average Power

The average power is equal to the average of the instantaneous power (defined in equation 10.6) over one

period. It is also equal to the real part of the complex power. Either way, the equation for average power is
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provided in equation 10.12.

P = VRMSIRMS cos θ (10.12)

Average power is the component of complex power that does useful work in a circuit. It is generally

advantageous to maximize average power and reduce reactive power as much as possible.

10.2.4 Reactive Power

Reactive power can be conceptually understood as energy that oscillates between the load and any reac-

tive (inductive or capacitive) components without doing any useful work in a circuit. It is equal to the

imaginary part of the complex power. Reactive power, measured in VAR (volt-amps reactive), is defined in

equation 10.13.

Q = VRMSIRMS sin θ (10.13)

Because reactive power does not contribute any useful work to a circuit, it is generally advantageous to

minimize it as much as possible.

10.2.5 Power Triangle and Power Factor

The power triangle is used to quantify the complex nature of power consumption. The real part of the power

triangle, P , is the average power (measured in W). The imaginary part of the power triangle, Q, is the

reactive power (measured in VAR). The sum of these two components is the complex power, S (measured

in VA). This power triangle is depicted in figure 10.2.

real

imaginary

S = P + jQ

P

Q

Figure 10.2: A power triangle is used to quantify the complex nature of AC power. The real part (P ) is equal
to the average power, while the imaginary part (Q) is equal to the reactive power.
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10 AC Power 10.2 AC Power

Note that the units for each of the components is different (W for P , VAR for Q, VA for S). The unit

for power (regardless of the type of power) is watts. However, to clearly differentiate reactive power from

average power from complex power, different units are used. VA (the units for complex power) stands for

volt-amps. VAR (the units for reactive power) stands for volt-amps reactive. This means that you can look

at a number and know exactly what type of power it corresponds to. 28 VAR would be a measure of complex

power, whereas 28 W would be a measure of average power.

The angle of the complex power (measured in relation to the positive real axis, as described in section 8.1)

can be used to quantify how much of the power is real vs. reactive. The quantity used to describe this is

called the power factor and is defined in equation 10.14. Note that θ is the same angle that was calculated

in equation 10.1.

pf = cos θ =
P

|S|
(10.14)

This power factor relates to how efficiently a circuit delivers useable power to a load. The closer the

power factor is to one, the more the power is real. The closer the power factor is to zero, the more the power

is reactive. Reactive power does no useful work in a circuit, but still uses energy (and thus costs money

when connected to the power grid).

Example: Calculating complex power from time-varying voltage and current

Calculate the complex power consumed by a load characterized by the following voltage and current wave-

forms.

v(t) = 100 V cos (2π60t+ 120π/180)

i(t) = 8 A cos (2π60t+ 60π/180)

Calculate the phase offset between the voltage and current using equation 10.1.

θ = 120◦ − 60◦

= 60◦

Calculate the RMS value of both the voltage and the current.

|V| = 100√
2

VRMS

= 70.71 VRMS

|I| = 8√
2
ARMS

= 5.66 ARMS
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Use equation 10.12 to calculate the real power.

P = (70.71 VRMS)(5.66 ARMS) cos 60◦

= 200 W

Use equation 10.13 to calculate the reactive power.

Q = (70.71 VRMS)(5.66 ARMS) sin 60◦

= 346.41 VAR

Use equation 10.10 to determine the complex power.

S = 200 + j346.41 VA

Example: Calculating complex power from average power and power factor

Calculate the complex power consumed by a load characterized by an average power consumption of 1630 W

and a lagging power factor of 0.862.

Use equation 10.14 to calculate the apparent power.

|S| = 1630 W

0.862

= 1890.95 VA

Use equation 10.10 to calculate the reactive power. It must be positive because the power factor is

lagging.

Q = |S|
√

1− pf2

= (1890.95 VA)
√
1− 0.8622

= 958.54 VAR

It is now simple to state the complex power in terms of the average and reactive power.

S = 1890.95 + j958.54 VA

Example: Calculating complex power from a circuit diagram

Calculate the complex power consumed by the following circuit.
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20 VRMS cos(2π500t−30π/180) 2 µF

120 Ω

20 mH

First, phasor transform the circuit. The load impedance is equal to the impedance of the capacitor in

parallel with the series combination of the resistor and inductor.

17.32-j10 VRMS 128.37-j56.11 Ω

Use the complex form of Ohm’s law to calculate the current flowing through the circuit.

I =
V

Z

=
17.32− j10 VRMS

128.37− j56.11 Ω

= 141.87− j15.89 mARMS

Use equation 10.7 to calculate the complex power.

S = (17.32− j10 VRMS)(141.87 + j15.89 mARMS)

= 2616.11− j1143.48 mVA

10.3 Maximum Power Transfer

The theorem of maximum power transfer states that the maximum amount of power will be delivered to the

load when the impedance of the load is equal to the complex conjugate of the Thévenin equivalent impedance

of the circuit. The circuit shown in figure 10.3 will be used to demonstrate this theorem.

VTH

ZTH I

ZLOAD

Figure 10.3: Circuit diagram used to demonstrate the theorem of maximum power transfer for AC circuits.

To determine the impedance of the load (ZLOAD) that will lead to maximum power transfer, the power
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consumed by the load can be calculated using equation 10.7. This is shown in equation 10.15 and derived

below.

SLOAD =
|VTH,RMS|2ZLOAD

|ZTH + ZLOAD|2
(10.15)

DERIVATION

ILOAD,RMS =
VTH,RMS

ZTH + ZLOAD

VLOAD,RMS = VTH,RMS

(
ZLOAD

ZTH + ZLOAD

)
SLOAD = VLOAD,RMSI

∗
LOAD,RMS

= VTH,RMS

(
ZLOAD

ZTH + ZLOAD

)(
V∗

TH,RMS

(ZTH + ZLOAD)∗

)
=
|VTH,RMS|2ZLOAD

|ZTH + ZLOAD|2

The partial derivatives of equation 10.15 can be taken with respect to RLOAD and XLOAD and set equal

to zero to find the maximum. (These derivations will not be shown in this book.) The maximum occurs

when RLOAD is equal to RTH , and XLOAD is equal to −XTH . In other words, ZLOAD is equal to Z∗
TH.

The maximum power that can be consumed by the load can then be calculated by solving equation 10.15

for ZLOAD = RTH − jXTH . This is shown in equation 10.16 and derived below.

PLOAD,MAX =
|VTH,RMS|2

4RTH
(10.16)

DERIVATION

SLOAD,MAX =
|VTH,RMS|2(RTH − jXTH)

(2RTH)2

=
|VTH,RMS|2RTH

(2RTH)2
− j
|VTH,RMS|2XTH

(2RTH)2

=
|VTH,RMS|2

4RTH
− j
|VTH,RMS|2XTH

4R2
TH

PLOAD,MAX =
|VTH,RMS|2

4RTH

Because a Norton equivalent circuit and a Thévenin equivalent circuit are simply source-transformed

versions of each other, the maximum power transferred to the load in a Norton equivalent circuit would

occur when the load impedance is equal to the complex conjugate of the Norton impedance.
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Example: Deriving a load for maximum power transfer

Determine the components of the load, and their corresponding values, that will lead to maximum power

transfer.

200 VRMS cos(2π100t+60π/180)

10 Ω 20 mH

200 µF

20 Ω

10 mH

ZLOAD

First, phasor transform the circuit.

100+j173.21 VRMS

10+j12.57 Ω

3.14-j7.69 Ω ZLOAD

Deactivate the source to calculate the Thévenin equivalent impedance. This will be equal to both

impedances in parallel.

ZTH =
(10 + j12.57 Ω)(3.14− j7.69 Ω)

(10 + j12.57 Ω) + (3.14− j7.69 Ω)

= 7.64− j5.68 Ω

The resistance of the optimal load is equal to the real part of ZTH. The reactance of the optimal load is

equal to the negative value of the imaginary part of ZTH. This requires the use of an inductor. The value

of the inductor can be calculated using equation 8.18.

L =
5.68 Ω

2π100 Hz

= 9 mH

The load that will lead to maximum power transfer is therefore a resistance of 7.64 Ω in series with a

9 mH inductor.
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10.4 Power Factor Correction

It is possible to minimize the reactive power present in the load of a circuit. This is accomplished by putting

a compensation circuit in parallel with the load, as depicted in figure 10.4.

linear
circuit

compensation
circuit

ZLOAD

Figure 10.4: A compensation circuit can be used to increase the power factor by reducing complex power con-
sumed by the load.

10.4.1 Correcting an Inductive Load

To correct an inductive load, a capacitor can be placed in parallel with the load. The value of capacitance

that is required depends on the final power factor value that is desired (pff ). The final reactive power

(Qf ) that is necessary to achieve this final power factor can then be calculated by solving equations 10.14

and 10.11 for Q. This result will not be derived in this book but is shown in equation 10.17. (Note that the

sign of Qf is positive because the load will still be inductive after correction, although only slightly. If pff

is one, then the load will be resistive and Qf will be equal to zero.)

Qf = P

√
1

pf2
f

− 1 (10.17)

The compensation circuit therefore requires a reactive power that is capable of changing the reactive

power from the initial value to the final value given in equation 10.17. That is, QC = ∆Q = Qf − Qi. To

find the value of capacitor that can generate QC , solve equation 10.8 for Z = − j
ωC and solve for C. This

result is shown in equation 10.18.

C =
−QC

|VLOAD,RMS|2ω
(10.18)

Inductive loads are very common in any circuitry that uses motors. Compensation circuits are frequently

used to reduce the reactive power generated by the inductive load and reduce energy bills.

Example: Correcting an inductive load

Find a capacitor to place in parallel with the load to increase the power factor to 0.98.
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330 VRMS cos(2π60t)

50 Ω

160 Ω

250 mH

+

−

VLOAD

Phasor transform the circuit.

330 VRMS

50 Ω

160+j94.25 Ω

+

−

VLOAD

Use the voltage divider tool to calculate the voltage drop over the load. (This is required to determine

the original reactive power.) It is also useful to calculate the magnitude of the load voltage at this time.

VLOAD,RMS = 330 VRMS

(
160 + j94.25 Ω

210 + j94.25 Ω

)
= 264.60 + j29.35 VRMS

|VLOAD,RMS|2 = 70875.28 VRMS2

Use equation 10.8 to calculate the power consumed by the load.

SLOAD =
(70875.28 VRMS2)(160 + j94.25 Ω)

|(160 + j94.25 Ω)|2

=
(70875.28 VRMS2)(160 + j94.25 Ω)

34482.64 Ω2

= 328.86 + j193.72 VA

The initial reactive power is 193.72 VAR. Use equation 10.17 to calculate the final reactive power.

Qf = (328.86 W)

√
1

0.982
− 1

= 66.78 VAR

The change in reactive power due to the compensating capacitor must be 66.78 VAR − 193.72 VAR =
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−126.94 VAR. Use equation 10.18 to determine the value of the compensating capacitor.

C =
126.94 VAR

(70875.28 VRMS2)(2π60 Hz)

= 4.75× 10−6 F

= 4.75 µF

10.4.2 Correcting a Capacitive Load

To correct a capacitive load, an inductor can be placed in parallel with the load. The value of inductance

that is required depends on the final power factor value that is desired (pff ). The final reactive power

(Qf ) that is necessary to achieve this final power factor can then be calculated by solving equations 10.14

and 10.11 for Q. This is equal to the negative value of equation 10.17, shown in equation 10.19. (The sign

now is negative because, after correction, the load will either be purely resistive or be slightly capacitive.)

Qf = −P
√

1

pf2
f

− 1 (10.19)

The compensation circuit therefore requires a reactive power that is capable of changing the reactive

power from the initial value to the final value given in equation 10.19. That is, QL = ∆Q = Qf − Qi. To

find the value of inductor that can generate QL, solve equation 10.8 for Z = jωL and solve for L. This result

is shown in equation 10.20.

L =
|VLOAD,RMS|2

ωQL
(10.20)

Example: Correcting a capacitive load

Find an inductor to place in parallel with the load to increase the power factor to 0.99.

220 VRMS cos(2π60t)

30 Ω

95 Ω

25 µF

+

−

VLOAD

Phasor transform the circuit.
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220 VRMS

30 Ω

95-j106.10 Ω

+

−

VLOAD

Use the voltage divider tool to calculate the voltage drop over the load. (This is required to determine

the original reactive power.) It is also useful to calculate the magnitude of the load voltage at this time.

VLOAD,RMS = 220 VRMS

(
95− j106.10 Ω

125− j106.10 Ω

)
= 189.31− j26.05 VRMS

|VLOAD,RMS|2 = 36517.36 VRMS2

Use equation 10.8 to calculate the power consumed by the load.

SLOAD =
(36517.36 VRMS2)(95− j106.10 Ω)

|(95− j106.10 Ω)|2

=
(36517.36 VRMS2)(95− j106.10 Ω)

20282.91 Ω2

= 171.04− j191.03 VA

The initial reactive power is −191.03 VAR. Use equation 10.19 to calculate the final reactive power.

Qf = −(171.04 W)

√
1

0.992
− 1

= −24.37 VAR

The change in reactive power due to the compensating inductor must be −24.37 VAR + 191.03 VAR =

166.66 VAR. Use equation 10.20 to determine the value of the compensating inductor.

L =
(36517.36 VRMS2)

(166.66 VAR)(2π60 Hz)

= 0.581 H

= 581.23 mH
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Example Problems

Phase and Root Mean Square

1. Calculate the RMS value of the voltage and current signals, as well as the phase difference. v(t) =

120 V cos(2π60t+ 120π/180), i(t) = 5 A cos(2π60t+ 60π/180)

2. Calculate the RMS value of the voltage and current signals, as well as the phase difference. v(t) =

150 V cos(2π60t+ 60π/180), i(t) = 3 A cos(2π60t+ 35π/180)

3. Calculate the RMS value of the voltage and current signals, as well as the phase difference. v(t) =

220 V cos(2π50t+ 120π/180), i(t) = 6 A cos(2π50t− 40π/180)

4. Calculate the RMS value of the voltage and current signals, as well as the phase difference, given the

circuit shown in figure 10.5.

60 V ∠ 20◦

8 Ω

–j5 Ω

i(t)

Figure 10.5: Circuit diagram for phase and root mean square question 4.

5. Calculate the RMS value of the voltage and current signals, as well as the phase difference, given the

circuit shown in figure 10.6.

100 V ∠ 0◦

6 Ω

j8 Ω

i(t)

Figure 10.6: Circuit diagram for phase and root mean square question 5.
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Complex Power

6. Calculate the power consumed by the load (indicated with dashed lines), as well as the power factor,

for the circuit given in figure 10.7. The frequency of operation is 50 Hz.

7 ARMS ∠ 0◦

10 Ω

8 µF

90 Ω

155 mH

35 µF

Figure 10.7: Circuit diagram for complex power question 6.

7. Calculate the power consumed by the load (indicated with dashed lines), as well as the power factor,

for the circuit given in figure 10.8. The frequency of operation is 60 Hz.

250 VRMS ∠ 0◦

40 Ω

–j200 Ω

50 Ω

j40 Ω

Figure 10.8: Circuit diagram for complex power question 7.
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8. Calculate the power consumed by the load (indicated with dashed lines), as well as the power factor,

for the circuit given in figure 10.9. The frequency of operation is 60 Hz.

60 VRMS ∠ 0◦

20 Ω j60 Ω

60 Ω

j80 Ω

Figure 10.9: Circuit diagram for complex power question 8.

9. Calculate the power consumed by the load (indicated with dashed lines), as well as the power factor,

for the circuit given in figure 10.10. The frequency of operation is 60 Hz.

120 VRMS ∠ 60◦

5 Ω

20 mH

10 mH

10 Ω

2 Ω

100 µF

Figure 10.10: Circuit diagram for complex power question 9.

10. Calculate the power consumed by the load (indicated with dashed lines), as well as the power factor,

for the circuit given in figure 10.11. The frequency of operation is 50 Hz.

660 VRMS ∠ 30◦

25 Ω 190 mH

140 mH

65 Ω

40 µF

Figure 10.11: Circuit diagram for complex power question 10.
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Maximum Power Transfer

11. Determine the circuit elements that must be placed on the load (shown as a generic circuit element)

for maximum power transfer given the circuit in figure 10.12. Then, calculate the power consumed by

that load. The frequency of operation is 60 Hz.

250 VRMS ∠ 0◦

190 Ω

120 mH

100 Ω
25 µF

Figure 10.12: Circuit diagram for maximum power transfer question 11.

12. Determine the circuit elements that must be placed on the load (shown as a generic circuit element)

for maximum power transfer given the circuit in figure 10.13. Then, calculate the power consumed by

that load. The frequency of operation is 60 Hz.

50 VRMS ∠ 60◦

10 Ω

–j12 Ω

j15 Ω

Figure 10.13: Circuit diagram for maximum power transfer question 12.

13. Determine the circuit elements that must be placed on the load (shown as a generic circuit element)

for maximum power transfer given the circuit in figure 10.14. Then, calculate the power consumed by

that load. The frequency of operation is 50 Hz.

40 VRMS ∠ 50◦

50 mH
2 µF

80 Ω

Figure 10.14: Circuit diagram for maximum power transfer question 13.
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14. Determine the circuit elements that must be placed on the load (shown as a generic circuit element)

for maximum power transfer given the circuit in figure 10.15. Then, calculate the power consumed by

that load. The frequency of operation is 50 Hz.

20 ARMS ∠ 45◦ 5 Ω

40 mH

0.5 mF

8 Ω

Figure 10.15: Circuit diagram for maximum power transfer question 14.

15. Determine the circuit elements that must be placed on the load (shown as a generic circuit element)

for maximum power transfer given the circuit in figure 10.16. Then, calculate the power consumed by

that load. The frequency of operation is 60 Hz.

28 ARMS ∠ 0◦ 0.4 mF

10 Ω 16 mH

18 Ω

Figure 10.16: Circuit diagram for maximum power transfer question 15.

Power Factor Correction

16. Calculate the initial power factor consumed by the load (indicated with dashed lines) in the circuit

shown in figure 10.17. Then, determine the circuit element that must be placed in parallel with the

load to increase the power factor to 0.800. The frequency of operation is 60 Hz.

80 VRMS ∠ 0◦

33 Ω

47 Ω

130 mH

Figure 10.17: Circuit diagram for power factor correction question 16.
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17. Calculate the initial power factor consumed by the load (indicated with dashed lines) in the circuit

shown in figure 10.18. Then, determine the circuit element that must be placed in parallel with the

load to increase the power factor to 0.860. The frequency of operation is 60 Hz.

160 VRMS ∠ 0◦

4 Ω

6 Ω

100 µF

Figure 10.18: Circuit diagram for power factor correction question 17.

18. Calculate the initial power factor consumed by the load (indicated with dashed lines) in the circuit

shown in figure 10.19. Then, determine the circuit element that must be placed in parallel with the

load to increase the power factor to 0.990. The frequency of operation is 60 Hz.

170 VRMS ∠ 0◦

35 Ω 45 mH

75 Ω

65 mH

Figure 10.19: Circuit diagram for power factor correction question 18.
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19. Calculate the initial power factor consumed by the load (indicated with dashed lines) in the circuit

shown in figure 10.20. Then, determine the circuit element that must be placed in parallel with the

load to increase the power factor to 0.980. The frequency of operation is 60 Hz.

160 VRMS ∠ 0◦

30 Ω 33 mH

90 Ω

70 µF

Figure 10.20: Circuit diagram for power factor correction question 19.

20. Calculate the initial power factor consumed by the load (indicated with dashed lines) in the circuit

shown in figure 10.21. Then, determine the circuit element that must be placed in parallel with the

load to increase the power factor to 0.960. The frequency of operation is 60 Hz.

190 VRMS ∠ 0◦

23 Ω 29 mH

65 Ω

72 mH

73 Ω

83 mH

Figure 10.21: Circuit diagram for power factor correction question 20.
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11 Laplace Transforms and s-Domain Analysis

11.1 The Laplace Transform

The Laplace transform, defined in equation 11.1, is used to simplify the analysis of circuits containing

energy-storage elements such as capacitors and inductors. As was the case in phasor analysis, using the

Laplace transform converts calculus to algebra. The inverse Laplace transform additionally aids in deriving

time-domain equations for voltage and current without having to derive differential equations.

L{f(t)} =
∫ ∞

0−
f(t)e−st dt (11.1)

The variable s is a complex variable defined by equation 11.2. As discussed in section 9.4.2 of this book

(although we did not formally use the variable s yet at that point), s relates to the location of a pole or zero

on the complex axis. The real part (σ) relates to decaying exponential terms; the imaginary part (ω) relates

to oscillatory (sinusoidal) terms. Performing a Laplace transform converts a time-domain function into the

s-domain. (Phasor analysis essentially performed an equivalent transformation, where σ = 0.)

s = σ + jω (11.2)

While Laplace transforms are especially important in many applications (such as signal processing),

their focus will be limited to analysis of linear circuits in this textbook. As a result, some Laplace transform

properties (convolution, for example) will not be covered in this textbook.

This textbook will not rigorously derive Laplace transforms for various elementary functions. Instead,

Laplace transforms used for several frequently-used time-varying functions are given in table 11.1. These

transforms will be directly applied to functions in the time domain to convert them to the s-domain, without

requiring the direct use of equation 11.1 (which frequently necessitates the use of integration by parts). The

reader is encouraged to derive the equations themselves if they would like to convince themselves of their

veracity.
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Function Laplace Transform
f(t) F (s) = L{f(t)}
δ(t) 1

u(t) 1
s

t u(t) 1
s2

e−αt u(t) 1
s+α

t e−αt u(t) 1
(s+α)2

sin(ωt) u(t) ω
s2+ω2

cos(ωt) u(t) s
s2+ω2

e−αt sin(ωt) u(t) ω
(s+α)2+ω2

e−αt cos(ωt) u(t) s+α
(s+α)2+ω2

Table 11.1: Laplace transforms of commonly-used time-varying functions.

Example: Laplace transform

Derive the Laplace transform of

f(t) = e−10t u(t).

The Laplace transform is

F (s) =
1

s+ 10
.

The Laplace transform has many properties that can also be used to transform more complicated functions

into the s-domain. These properties include multiplication, addition, and differentiation, and are included

in table 11.2.

Property Laplace Transform
Multiplication L{Kf(t)} = KF (s)
Addition and subtraction L{f1(t)± f2(t)} = F1(s)± F2(s)

Derivative L{ d
dtf(t)} = sF (s)− f(0−)

Second derivative L{ d2

dt2 f(t)} = s2F (s)− sf(0−)− f ′(0)

Integral L{
∫ t

0−
f(x) dx} = F (s)

s

Time translation L{f(t−α) u(t−α)} = e−αsF (s), α > 0
Frequency translation L{e−αt f(t)} = F (s+ α)

Scaling L{f(αt)} = 1
αF ( s

α )

Table 11.2: Properties of the Laplace transform.

Using tables 11.1 and 11.2, Laplace transforms of every time-domain function derived in this book can

be computed.
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Example: Laplace transform

Derive the Laplace transform of the voltage dropped over a circuit element. The time-domain response has

been derived as

v(t) =
[
40 V + e−10t (2 V cos(20t) + 1 V sin(20t))

]
u(t).

Use the addition and subtraction property to analyze each individual term. (Note that units are being

dropped from this point forward.)

V (s) = L{40 u(t)}+ L{2e−10t cos(20t) u(t)}+ L{e−10t sin(20t) u(t)}

Use the multiplication property to factor out coefficients.

V (s) = 40L{u(t)}+ 2L{e−10t cos(20t) u(t)}+ L{e−10t sin(20t) u(t)}

Use table 11.1 to calculate the Laplace transform.

V (s) = 40
1

s
+ 2

(s+ 10)

(s+ 10)2 + 202
+

20

(s+ 10)2 + 202

Find a common denominator for all terms and multiply through.

V (s) =
40
[
(s+ 10)2 + 400

]
+ 2(s+ 10)s+ 20s

s [(s+ 10)2 + 400]

Simplify so there is a simple polynomial in both the numerator and the denominator. Factor the denom-

inator so that the order of the polynomial is two.

V (s) =
42s2 + 840s+ 20000

s(s2 + 20s+ 500)

Example: Laplace transform of a differential equation

Derive the Laplace transform of the current described by the differential equation in the example on page 195.

The differential equation is

0 =
d2i(t)

dt2
+ 250

di(t)

dt
+ 10500i(t).

The initial current flow i(0) = 0.1 A and the first derivative of the current flow is zero.
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Use the addition and subtraction property to analyze each individual term.

0 = L{d
2i(t)

dt2
}+ L{250di(t)

dt
}+ L{10500i(t)}

Use the multiplication property to factor out coefficients.

0 = L{d
2i(t)

dt2
}+ 250L{di(t)

dt
}+ 10500L{i(t)}

Use the derivative and second derivative properties to find an expression in terms of I(s).

0 = s2I(s)− si(0)− i′(0) + 250 [sI(s)− i(0)] + 10500I(s)

Plug in the initial conditions and simplify to find an expression for I(s).

0 = s2I(s)− 0.1s+ 250 [sI(s)− 0.1] + 10500I(s)

0.1s+ 25 = s2I(s) + 250sI(s) + 10500I(s)

I(s) =
0.1s+ 25

s2 + 250s+ 10500

11.2 Inverse Laplace Transform

To most easily derive a time-domain function of current or voltage in a circuit, an analysis can be done

in the s-domain (which will be described in the next section) to derive an s-domain function V (s) or I(s).

That s-domain function can then be inverse transformed back into the time domain. That inverse transform

process will be described in this section.

Rather than applying a mathematical expression (such as that defined in equation 11.1), a Laplace

transform is broken into individual components using partial fraction expansion. Then, table 11.1 can be

used to derive the time-domain expression.

11.2.1 Partial Fraction Expansion

A function in the s-domain can be represented as a polynomial in the numerator and a polynomial in the

denominator. The denominator can then be factored. Similar to equation 9.27, the factored denominator

contains the poles of the circuit. A generalized factored s-domain expression is given in equation 11.3, where

N(s) is the numerator and p are the poles of the denominator.

F (s) =
N(s)

(s− p1)(s− p2)(s− p3)...(s− pn)
(11.3)

The circuits and equations in this textbook will have a denominator with a higher order than the numer-
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ator (i.e. there are more poles than zeros). Otherwise, the partial fraction expansion process will require a

different process that will not be described in this book.

The partial fraction expansion process converts a factored expression (such as that given in equation 11.3)

into a sum of many expressions (shown in equation 11.4, which can then be converted to time-domain

expressions using table 11.1.

F (s) =
K1

(s− p1)
+

K2

(s− p2)
+

K3

(s− p3)
+ ...+

Kn

(s− pn)
(11.4)

One possibility will be that poles are real and unique, such as those shown in equation 11.5.

F (s) =
K1

s+ n
+

K2

s+m
(11.5)

To calculate coefficient K1, multiply both sides of the equation by (s + n) and solve at s = −n. To

calculate coefficient K2, multiply both sides of the equation by (s+m) and solve at s = −m.

Example: Partial fraction expansion with unique real roots

Find a partial fraction expansion of the following function, then convert into the time domain.

F (s) =
4s− 5

s2 + 6s+ 5

First, factor the denominator.

F (s) =
4s− 5

(s+ 1)(s+ 5)
=

K1

s+ 1
+

K2

s+ 5

The roots are real and unique. Perform a partial fraction expansion and calculate coefficients K1 and K2.

K1 =
4s− 5

s+ 5

∣∣∣
s=−1

=
−4− 5

−1 + 5

= −2.25

K2 =
4s− 5

s+ 1

∣∣∣
s=−5

=
−20− 5

−4

= 6.25

The expanded version of F(s) is given below.

F (s) =
−2.25
s+ 1

+
6.25

s+ 5
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Consult table 11.1 to derive the time-domain function.

f(t) =
[
−2.25 e−t + 6.25 e−5t

]
u(t)

A second possibility will be that the poles are real and repeated, such as those shown in equation 11.6.

F (s) =
K1

(s+ n)2
+

K2

s+ n
(11.6)

To calculate coefficient K1, multiply both sides of the equation by (s + n)2 and solve at s = −n. To

calculate coefficient K2, multiply both sides of the equation by (s+n)2, differentiate with respect to s, then

solve at s = −n.
Example: Partial fraction expansion with repeated real roots

Find a partial fraction expansion of the following function, then convert into the time domain.

F (s) =
−2s

s2 + 10s+ 25

First, factor the denominator.

F (s) =
−2s

(s+ 5)2
=

K1

(s+ 5)2
+

K2

s+ 5

The roots are real and repeated. Perform a partial fraction expansion and calculate coefficients K1 and

K2.

K1 = −2s
∣∣∣
s=−5

= (−2)(−5)

= 10

d

ds
K2(s+ 5)

∣∣∣
s=−5

=
d

ds
(−2s)

∣∣∣
s=−5

= −2

The expanded version of F(s) is given below.

F (s) =
10

(s+ 5)2
+
−2
s+ 5

Consult table 11.1 to derive the time-domain function.

f(t) =
[
10 t e−5 − 2 e−5t

]
u(t)

The third possibility will be that the poles are complex conjugate pairs, such as those shown in equa-
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tion 11.7.

F (s) =
K1

s+ α+ jβ
+

K2

s+ α− jβ
(11.7)

Coefficients K1 and K2 will be complex conjugate pairs that take the form of X ± jY . To calculate the

coefficients, multiply both sides of the equation by (s + α − jβ) and solve at s = −α + jβ. Because the

coefficients are complex conjugates, the solution takes the form given in equation 11.8. This is derived below

using Euler’s equations for sine and cosine.

f(t) = e−αt [2X cos(βt) + 2Y sin(βt)] u(t) (11.8)

DERIVATION

F (s) =
X + jY

s+ α+ jβ
+

X − jY

s+ α− jβ

f(t) =
[
(X + jY ) e(−α−jβ)t + (X − jY ) e(−α+jβ)t

]
u(t)

= e−αt
[
(X + jY ) e−jβt + (X − jY ) ejβt

]
u(t)

= e−αt
[
X e−jβt +X ejβt + jY e−jβt − jY ejβt

]
u(t)

= e−αt

[
2X

e−jβt + ejβt

2
+ 2Y

−e−jβt + ejβt

j2

]
u(t)

= e−αt [2X cos(βt) + 2Y sin(βt)] u(t)

Example: Partial fraction expansion with complex conjugate roots

Find a partial fraction expansion of the following function, then convert into the time domain.

F (s) =
−40s+ 5200

s2 + 40s+ 40400

First, factor the denominator.

F (s) =
−40s+ 5200

(s+ 20 + j200)(s+ 20− j200)
=

K1

s+ 20 + j200
+

K2

s+ 20− j200

The roots are complex conjugate pairs. Perform a partial fraction expansion and calculate coefficient K1.
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(Note, K2 is simply the complex conjugate of K1, so it is not necessary to calculate it.)

K1 =
−40s+ 5200

s+ 20− j200

∣∣∣
s=−20−j200

=
(−40)(−20− j200) + 5200

−j400

=
6000 + j8000

−j400

= −20 + j15

The expanded version of F(s) is given below.

F (s) =
−20 + j15

s+ 20 + j200
+
−20− j15

s+ 20− j200

Consult equation 11.8 to derive the time-domain function.

f(t) = e−20t [−40 cos(200t) + 30 sin(200t)] u(t)

Example: Partial fraction expansion with mixed roots

Find a partial fraction expansion of the following function, then convert into the time domain.

F (s) =
s+ 100

s(s2 + 400)(s2 + 6.5s+ 10)

First, factor the denominator.

F (s) =
s+ 100

s(s+ j20)(s− j20)(s+ 2.5)(s+ 4)
=

K1

s
+

K2

s+ j20
+

K3

s− j20
+

K4

s+ 2.5
+

K5

s+ 4

K1 corresponds to a single real root.

K1 =
s+ 100

(s2 + 400)(s2 + 6.5s+ 10)

∣∣∣
s=0

=
100

4000

= 0.025

K2 and K3 correspond to complex conjugate roots.

K2 =
s+ 100

s(s− j20)(s2 + 6.5s+ 10)

∣∣∣
s=−j20

=
−j20 + 100

(−j20)(−j40)((−j20)2 + 6.5(−j20) + 10)

= 2.7× 10−4 − j1.5× 10−4
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K4 and K5 correspond to unique real roots.

K4 =
s+ 100

s(s2 + 400)(s+ 4)

∣∣∣
s=−2.5

=
97.5

(−2.5)(406.25)(1.5)

= −0.064

K5 =
s+ 100

s(s2 + 400)(s+ 2.5)

∣∣∣
s=−4

=
96

(−4)(416)(−1.5)

= 0.038

The expanded version of F(s) is given below.

F (s) =
0.025

s
+

2.7× 10−4 − j1.5× 10−4

s+ j20
+

2.7× 10−4 + j1.5× 10−4

s− j20
+
−0.064
s+ 2.5

+
0.038

s+ 4

Consult equation 11.8 and table 11.1 to derive the time-domain function.

f(t) =
[
0.025 + 0.00054 cos(20t) + 0.00031 sin(20t)− 0.064 e−2.5t + 0.038 e−4t

]
u(t)

11.3 s-Domain Analysis

It is possible to fully analyze a circuit in the s-domain and use the inverse Laplace transform to derive a

time-domain function. While this is not always easier than a differential equation analysis, it is frequently

more convenient, especially when the equation is non-constant input non-homogeneous, or the circuit is

higher than second order.

To perform an s-domain analysis, transform each individual circuit component into the s domain. This is

similar to phasor analysis, with the notable difference being that s-domain analysis includes initial conditions

in the circuit transformation. Once all circuit elements are transformed into the s-domain, perform any circuit

analysis technique to obtain an equation for V (s) or I(s). Then perform an inverse Laplace transform to

obtain a time-domain expression.

11.3.1 Resistor

The voltage and current properties of a resistor are defined by Ohm’s law (equation 2.19). Converting to

the s-domain, the relationship between voltage and current becomes that defined in equation 11.9.

V (s) = RI(s) (11.9)
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Therefore, in the s domain, a resistor is expressed simply as a resistor. This transform is depicted in

figure 11.1.

R

+

−

v(t)

i(t)

⇐⇒ R

+

−

V (s)

I(s)

Figure 11.1: Transformation of a resistor from the time domain into the s-domain.

11.3.2 Capacitor

The voltage and current properties of a capacitor are defined in equation 5.5. In the s-domain, this corre-

sponds to the relationship shown in equation 11.10 and derived below.

V (s) =
1

sC
I(s) +

v(0)

s
(11.10)

DERIVATION

i(t) = C
dv(t)

dt

I(s) = C [sV (s)− v(0)]

= sCV (s)− Cv(0)

V (s) =
1

sC
I(s) +

v(0)

s

Therefore, in the s domain, a capacitor is expressed as a capacitor (with impedance of (sC)−1) in series

with a voltage source corresponding to the initial conditions of the capacitor. This transform is depicted in

figure 11.2.

C

+

−

v(t)

i(t)

⇐⇒

1
sC

I(s)

−
+v(0)

s

+

−

V (s)

Figure 11.2: Transformation of a capacitor from the time domain into the s-domain.
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11.3.3 Inductor

The voltage and current properties of an inductor are defined in equation 6.4. In the s-domain, this corre-

sponds to the relationship shown in equation 11.11 and derived below.

I(s) =
1

sL
V (s) +

i(0)

s
(11.11)

DERIVATION

v(t) = L
di(t)

dt

V (s) = L [sI(s)− i(0)]

= sLI(s)− Li(0)

I(s) =
1

sL
V (s) +

i(0)

s

Therefore, in the s domain, an inductor is expressed as an inductor (with impedance of sL) in parallel

with a current source corresponding to the initial conditions of the inductor. This transform is depicted in

figure 11.3.

L

+

−

v(t)

i(t)

⇐⇒ sL

+

−

V (s)
i(0)
s

I(s)

Figure 11.3: Transformation of an inductor from the time domain into the s-domain.

11.3.4 Switched Sources

Frequently, to demonstrate a change in a circuit leading to a transient response, a source will be connected

to a circuit via an opening or closing switch. Sources connected via an opening switch (that are disconnected

from the steady-state response of the circuit) contribute to initial conditions that are included in the s-

domain model of a capacitor (figure 11.2) and inductor (figure 11.3). Sources that are connected via a

closing switch do not contribute to the initial conditions, but do contribute to the transient and/or steady-

state response. Therefore, a source connected via a closing switch can be represented as v(t) u(t) or i(t) u(t).

When transformed into the s-domain, this becomes V (s)/s or I(s)/s. This transformation is depicted in

figure 11.4 for a voltage source.
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−
+v(t) ⇐⇒ −

+v(t) u(t) ⇐⇒ −
+V (s)

s

Figure 11.4: Transformation of a switched voltage source from the time domain into the s-domain.

Example: First order circuit s-domain analysis

Calculate V(s) for the circuit given below, and then use the inverse Laplace transform to find an equation

for v(t).

−
+Vs1

R1

R2 C

+

−

v(t)

R3

−
+Vs2

Calculate the initial conditions of the circuit.

+

−

v(0)

R3

−
+Vs2

v(0) = VS2

Transform the circuit into the s-domain.

−
+Vs1/s

R1

R2

+

−

V(s)

1/(sC)

−
+v(0)/s

R3

−
+Vs2/s
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Perform KCL at the node between all three resistors and the capacitor. Group like terms and normalize

to find V(s).

VS1

s − V (s)

R1
=

V (s)

R2
+

V (s)− v(0)
s

1
sC

+
V (s)− VS2

s

R3

VS1

sR1
=

V (s)

R1
+

V (s)

R2
+ sCV (s)− sCv(0)

s
+

V (s)

R3
− VS2

sR3

VS1

sR1
+

VS2

sR3
+

sCv(0)

s
= sCV (s) +

[
1

R1
+

1

R2
+

1

R3

]
V (s)

1

s

[
sv(0) +

R3VS1 +R1VS2

CR1R3

]
= sV (s) +

[
1

CR1
+

1

CR2
+

1

CR3

]
V (s)

V (s) =
sv(0) + R3VS1+R1VS2

CR1R3

s
(
s+

[
1

CR1
+ 1

CR2
+ 1

CR3

])
The parameter values are: Vs1 = 5 V, Vs2 = 10 V, C = 40 µF, R1 = 5 Ω, R2 = 10 Ω, and R3 = 10 Ω.

Find a numeric expression for V(s).

V (s) =
10s+ 50000

s (s+ 10000)

=
K1

s
+

K2

s+ 10000

Perform a partial fraction expansion to calculate the coefficients.

K1 =
10s+ 50000

s+ 10000

∣∣∣
s=0

=
50000

10000

= 5

K2 =
10s+ 50000

s

∣∣∣
s=−10000

=
−50000
−10000

= 5

The expanded version of F(s) is given below.

F (s) =
5

s
+

5

s+ 10000

Consult table 11.1 to derive the time-domain function.

f(t) =
[
5 V + 5 V e−10000t

]
u(t)
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Example: Second order circuit s-domain analysis, symbolic

Calculate V(s) for the circuit given below.

−
+Vdc

R1

L

R2

C

+

−

v(t)

Calculate the initial conditions of the circuit.

−
+Vdc

R1

i(0)

+

−

v(0)

v(0) = 0

i(0) =
VDC

R1

Transform the circuit into the s-domain.

i(0)/s sL

R2

1/(sC)

+

−

V(s)
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Perform KCL. Group like terms and normalize to find V(s).

−i(0)
s

=
V (s)

sL
+

V (s)

R2 +
1
sC

−i(0)
s

[
R2 +

1

sC

]
=

V (s)

sL

[
R2 +

1

sC

]
+ V (s)

−R2i(0)

s
− i(0)

s2C
=

R2

sL
V (s) +

1

s2LC
V (s) + V (s)

−sR2i(0)−
i(0)

C
= s2V (s) +

R2

L
sV (s) +

1

LC
V (s)

V (s) =
−R2i(0)s− i(0)

C

s2 + R2

L s+ 1
LC

Example: Second order circuit s-domain analysis, numeric

Calculate I(s) for the circuit given below, and then use the inverse Laplace transform to find an equation for

i(t).

−
+Vm cos(ωt)

R1

C

L

i(t)

R

The initial conditions are zero, as no source is connected before the switch closes. Transform the circuit

into the s-domain.

−
+Vm s/(s2 + ω2)

R1

1/(sC)

sL

I(s)

R

Perform KCL. Group like terms and normalize to find I(s). (Note that Vx is the voltage dropped over
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the capacitor.)

Vms
s2+ω2 − VX

R1
= sCVX + I(s)

Vms

R1(s2 + ω2)
=

VX

R1
+ sCVX + I(s)

VX = sLI(s) +R2I(s)

Vms

R1(s2 + ω2)
=

1

R1
[sLI(s) +R2I(s)] + sC [sLI(s) +R2I(s)] + I(s)

= LCs2I(s) +

[
L

R1
+ CR2

]
sI(s) +

[
R2

R1
+ 1

]
I(s)

Vms

LCR1(s2 + ω2)
= s2I(s) +

[
1

CR1
+

R2

L

]
sI(s) +

[
R1 +R2

LCR1

]
I(s)

I(s) =
Vms
LCR1

(s2 + ω2)
(
s2 +

[
1

CR1
+ R2

L

]
s+

[
R1+R2

LCR1

])
The parameter values are: Vm = 0.5 V, ω = 50 rad/s, R1 = 200 Ω, R2 = 1 Ω, C = 50 µF, and L =

4 mH. Find a numeric expression for I(s).

I(s) =
12500s

(s2 + 2500)(s2 + 350s+ 5025000)

=
K1

s+ j50
+

K2

s− j50
+

K3

s+ 175 + j2234.8
+

K4

s+ 175− j2234.8

Perform a partial fraction expansion to calculate the coefficients.

K1 =
12500s

(s− j50)(s2 + 350s+ 5025000)

∣∣∣
s=−j50

=
−j625000

(−j100)(−2500− j17500 + 5025000)

= (12.44 + j0.04) mA

K3 =
12500s

(s2 + 2500)(s+ 175 + j2234.8)

∣∣∣
s=−175−j2234.8

= (−12.44− j0.98) mA

The time-domain function is

i(t) = [24.89 mA cos(50t) + 0.09 mA sin(50t)

+ e−175t (−24.89 mA cos(2234.8t) + 1.95 mA sin(2234.8t))] u(t).

The function is plotted below.
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Example Problems

Laplace Transforms

1. Derive the Laplace transform of f(t) = 2 e−5t u(t).

2. Derive the Laplace transform of f(t) =
[
6 t e−4t + 2 e−4t + 5

]
u(t).

3. Derive the Laplace transform of f(t) = e−t [2 cos(10t) + 4 sin(10t)] u(t).

4. Derive the Laplace transform of v(t). The differential equation describing v(t) is given in equation 11.12.

Note that v(0) = 3 V.

dv(t)

dt
+ 0.25v(t) = 0 (11.12)

5. Derive the Laplace transform of i(t). The differential equation describing i(t) is given in equation 11.13.

Note that i(0) = 10 A and i′(0) = −5 A/s.

d2i(t)

dt2
+ 6

di(t)

dt
+ 109i(t) = 0 (11.13)

Inverse Laplace Transforms

6. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.14. Identify the terms

that contribute to the transient response, then identify the terms that contribute to the steady-state

response.

F (s) =
10

s+ 10
(11.14)

7. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.15. Identify the terms

that contribute to the transient response, then identify the terms that contribute to the steady-state

response.

F (s) =
10s2 + 10

s(s2 + 10s+ 25)
(11.15)

8. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.16. Identify the terms

that contribute to the transient response, then identify the terms that contribute to the steady-state

response.

F (s) =
s2 + 4

(s2 + 16)(s2 + 5s+ 4)
(11.16)
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9. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.17. Identify the terms

that contribute to the transient response, then identify the terms that contribute to the steady-state

response.

F (s) =
5s2 + 10s+ 3

(s+ 2)2(s2 + 5s+ 64)
(11.17)

10. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.18. Identify the terms

that contribute to the transient response, then identify the terms that contribute to the steady-state

response.

F (s) =
−4s2 + 10

s(s2 + 25)(s2 + 20s+ 100)
(11.18)

s-Domain Analysis

11. Use s-domain analysis to calculate V (s) and v(t) of the circuit shown in figure 11.5. The switch moves

from position a to b at a time of zero seconds. The component values are: VS1 = 3 V, VS2 = 2 V,

R1 = 50 Ω, R2 = 100 Ω, C = 250 µF.

−

+

R1

C

R2

v(t)

a

−
+VS1

b

−
+VS2

Figure 11.5: Circuit diagram for s-domain analysis question 11.
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12. Use s-domain analysis to calculate V (s) of the circuit shown in figure 11.6. The switch closes at a time

of zero seconds.

−
+VDC

R1

L

C

R2

+

−

v(t)

Figure 11.6: Circuit diagram for s-domain analysis question 12.

13. Use s-domain analysis to calculate V (s) and v(t) of the circuit shown in figure 11.7. The switch moves

from position a to b at a time of zero seconds. The component values are: VS1 = 6 V, VS2 = 20 V,

R1 = 4 Ω, R2 = 2 Ω, C = 50 µF, L = 1 mH.

−
+VS1

a

b

−
+VS2

R1 L

R2
C

+

−
v(t)

Figure 11.7: Circuit diagram for s-domain analysis question 13.

14. Use s-domain analysis to calculate I(s) and i(t) of the circuit shown in figure 11.8. The switch moves

from position b to a at a time of zero seconds. The component values are: VS1 = 40 V, α = 4 rad/s,

VS2 = 10 V, R = 50 Ω, C = 10 µF, L = 400 mH.

te−tVS1 t e−αt

a

b

−
+VS2

R L

C

+

−
v(t)

Figure 11.8: Circuit diagram for s-domain analysis question 14.
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15. Use s-domain analysis to calculate I(s) and i(t) of the circuit shown in figure 11.9. The switch closes

at a time of zero seconds. The component values are: Im = 500 mA, ω = 60 rad/s, R1 = 200 Ω,

R2 = 2 Ω, R3 = 1 Ω, C = 20 µF, L = 50 mH.

Im cos(ωt) R1

L

R2

i(t)

C

R3

Figure 11.9: Circuit diagram for s-domain analysis question 15.
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Solutions to Example Problems

Chapter 1

Power

1. 8 mW – Use conservation of power to find the unknown power. 10 mW + 3 mW −5 mW + P = 0.

P = −8 mW. The negative sign indicates that the circuit element supplies 8 mW of power (hence the

positive sign in the answer).

2. 416.67 mA – Use equation 1.2. i(t) = p(t)/v(t) = 5 W/12 V = 416.67 mA.

3. (a) Elements A, B, C (b) Element D – Current flows from + to − in elements A, B, and C, hence

they absorb power. Current flows from − to + in element D, hence it delivers power.

4. 0.5cos2(2π50t) W – Multiply the two functions together.

5. 120t δ(t−5) mW – Multiply the two functions together. Units of the solution are in mW because

current has units of mA.

Sinusoidal Waves

6. Vm = 3.8 V, VDC = 3 V, f = 20 Hz, ϕ = 25◦ – Use equation 1.3 to determine the properties of

the wave.

7. Vm = 2.19 V, VPP = 4.38 V, T = 0.025 s – Use equation 1.3 to determine the properties of the

wave.

8. Vm = 2 V, VDC = 1 V, f = 125 Hz – Use figure 1.11 to determine the properties of the wave,

and note from equation 1.3 that f = 1/T .

9. The waveform is shown in figure SOL.1.

0 2 4 6 8 10 12 14 16 18 20
−200

0
200
400
600

t (ms)

i(
t)

(m
A
)

Figure SOL.1: Waveform for sinusoidal waves answer 9.

10. 30 mA – The DC offset required to remove negative components is equal to the magnitude.
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Sources

11. VCVS. The controlling value is a voltage, and the source itself is a voltage source.

12. CCVS. The controlling value is a current, and the source itself is a voltage source.

13. –0.96 mA – The current measured by the ammeter is 4.8 mA, which is opposite the direction of IX

as defined in the circuit diagram. Therefore IX = −4.8 mA. Multiply by the proportionality constant

of 0.2 to calculate the magnitude of the dependent current.

14. The circuit diagram is shown in figure SOL.2.

−
+7 V

Figure SOL.2: Circuit schematic for sources answer 14.

15. The circuit diagram is shown in figure SOL.3.

−
+10 V−0.4IX

IX

−
+ 8 V

Figure SOL.3: Circuit schematic for sources answer 15.

Elementary Signals

16. f(t) = 2δ(t+4) – δ(t+2) – δ(t) + 1.5δ(t–5)

17. There are two possible answers, depending on which type of elementary signal is used to

find the answer. – Using the step function, f(t) = u(t+ 4) + u(t+ 1)− 3u(t− 1) + u(t− 4). Using

the rectangular pulse function, f(t) = rect
(
t+2.5

3

)
+ 2 rect

(
t
2

)
− rect

(
t−2.5

3

)
.
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18. The signal is shown in figure SOL.4.

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−2

0

2

t (s)

f
(t
)

Figure SOL.4: Signal function for elementary signals answer 18.

19. The signal is shown in figure SOL.5.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

2

4

6

t (s)

f
(t
)

Figure SOL.5: Signal function for elementary signals answer 19.

20. The current is shown in figure SOL.6.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−1
−0.5

0

0.5

1

t (s)

i(
t)

(A
)

Figure SOL.6: Signal function for elementary signals answer 20.

Chapter 2

Equivalent Resistance

1. The equivalent resistance is given in equation SOL.1. – Combine R2 and R3 in parallel. Then

combine that result in series with R1.

REQ = R1 +
R2R3

R2 +R3
(SOL.1)
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2. The reduced circuit diagram is shown in figure SOL.7. – The only two resistors that can be

combined are the 10 Ω and 24 Ω resistors. No other resistors are in purely series or purely parallel

combinations with each other.

34 Ω

18 Ω

−
+2 V

47 Ω

130 mA

33 Ω

Figure SOL.7: Circuit diagram for equivalent resistance answer 2.

3. 1400 Ω – Note that you will have to perform either a delta-wye or wye-delta transform to solve this

question.

4. 733.333 Ω – This calculation only requires series and parallel combinations.

5. 20.448 kΩ – Note that you will have to perform either a delta-wye or wye-delta transform to solve

this question.

Ohm’s Law

6. 3.7 Ω – The minimum equivalent resistance of the circuit is 5 Ω.

7. -3.125 mA – Because the current flow is defined opposite to the direction of the voltage drop, the

current is going to be a negative number.

8. 51.2 µW – Using the current divider rule, the current flowing through the 20 Ω resistor is calculated

to be 1.6 mA. Then, use equation 2.23 to calculate the power consumed by the resistor. Be careful

with the units. When mA are squared, the resulting units are µA2.

9. 234.375 W – The equivalent resistance of the circuit is 9.375 Ω. Then use equation 2.23 to calculate

the power absorbed by the resistor, which must be equal to the power supplied by the source.

10. 400 Ω – Use the voltage divider rule to determine that the voltage dropped over each resistor will be

10 V. Then set equation 2.24 equal to 0.25 W to calculate the minimum allowable value of R.
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Voltage and Current Divider

11. 4.8 V – VX = 7.2 V
(

6 kΩ
3 kΩ+6 kΩ

)
12. 140 mA – IX = 500 mA

(
42 Ω//12 Ω//24 Ω

24 Ω

)
13. 3.214 V – VX = 8 V

(
470 Ω

100 Ω+470 Ω

)(
570 Ω//330 Ω

220 Ω+570 Ω//330 Ω

)
14. 93.986 mA – IX = 210 mA

(
200 Ω//150 Ω

150 Ω

)(
400 Ω//(25 Ω+200 Ω//150 Ω)

25 Ω+200 Ω//150 Ω

)
15. VX1 is given in equation SOL.2, and VX2 is given in equation SOL.3.

VX1 = VS

(
R3

R1 +R2 +R3

)
(SOL.2)

VX2 = VS

[
R7

R6 +R7

] [
R5//(R6 +R7)

R4 +R5//(R6 +R7)

]
(SOL.3)

Kirchhoff’s Laws

16. 3 V – 5 V− 2 V− VX = 0

17. 6 mA – 10 mA− 4 mA− IX = 0

18. 6.667 mA – There are many different ways to label and solve this question using KCL and KVL. One

possible set of equations is I1 + I2 − IX = 0; 5 = I1 + 0.1IX ; 3 = I2 + 0.1IX (all units are in V, mA,

or kΩ).

19. 1.081 V – There are many different ways to label and solve this question using KCL and KVL. One

possible set of equations is I1 − I2 − I3 = 0; 10 = 0.1I1 + 0.05I2; −2 = −0.05I2 + 1.2I3 (all units are

in V, mA, or kΩ). Then use Ohm’s law to calculate VX .

20. 120 V – There are many different ways to label and solve this question using KCL and KVL. One

possible set of equations is −0.8IX + I1 = 0; 320 = 100I1+48IX (all units are in V, mA, or kΩ). Then

use Ohm’s law to calculate VX .

Mesh Analysis

21. IA = 10 mA, IB = 8 mA – Mesh IA contains a current source, causing IA to be equal to the value

of the current source. The branch current is equal to IA − IB .

22. 9 A – The branch current is equal to the left mesh current minus the right mesh current.

23. IX = – I2 – I4 – I5 – I7 – Note that all of the numbered mesh currents are also branch currents.

24. 1.081 V – This answer is and should be identical to the Kirchhoff’s laws question. There are many

different ways to label and solve this question using mesh analysis. One possible set of equations is
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0.1I1 +0.05(I1− I2) = 10; 0.05(I2− I1)+ 1.2I2 = −2 (all units are in V, mA, or kΩ). Then use Ohm’s

law to calculate VX .

25. 12.181 V – There are many different ways to label and solve this question using mesh analysis. One

possible set of equations is 10I1 + 20(I1 − I2) = 20; I2 + 0.008− I3 = 0; 20(I2 − I1) + 60I2 + 10I3 = 0

(all units are in V, A, or Ω). Then use VX = 20 Ω(I1 − I2).

Chapter 3

Superposition

1. 12.72 V – The voltage contributed by the voltage source is 7.66 V, and the voltage contributed by

the current source is 5.06 V.

2. –3.64 V – The voltage contributed by the voltage source is −7 V, and the voltage contributed by the

current source is 3.36 V.

3. 3.44 mA – The current contributed by the current source is 2.37 mA, the current contributed by the

24 V voltage source is 0.79 mA, and the current contributed by the 5 V voltage source is 0.28 mA.

4. 50 V – The voltage contributed by the voltage source is 20 V, and the voltage contributed by the

current source is 30 V.

5. 4.11 V – The voltage contributed by the current source is 0.32 V, and the voltage contributed by the

voltage source is 3.79 V.

Source Transformation

6. 12.72 V – This circuit can be reduced to a single current source of 551/3 mA in parallel with a resistor

of value 229.895 Ω. (This answer should be and is identical to question 1 in the superposition section.)

7. –3.64 V – This circuit can be reduced to a single voltage source of 10.4 V in series with a 1300 Ω

resistor, and the 700 Ω resistor over which −VX is measured. (This answer should be and is identical

to question 2 in the superposition section.)

8. 3.44 mA – This circuit can be reduced to a single voltage source of 62.6 V in series with a resistor of

value 18.2 kΩ, through which IX is measured. (This answer should be and is identical to question 3 in

the superposition section.)

9. 50 V – This circuit can be reduced to a single current source of 31/3 + 0.1VX A in parallel with a

6 Ω resistor, over which VX is measured. (This answer should be and is identical to question 4 in the

superposition section.)
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10. VX = –2.941 V, VY = –2.353 V – This circuit can be reduced to a single voltage source of

31/3 +
2 /3VX +3VY V in series with a 62/3 Ω resistor, a 40 Ω resistor over which VY is measured, and

a 50 Ω resistor over which VX is measured. Use a matrix to solve for both unknown quantities.

Thévenin and Norton’s Theorems

11. VTH = –3 V, RTH = 21 Ω – Calculate the open-circuit voltage using a voltage divider (and be

careful with the sign), then deactivate the voltage source to calculate the equivalent resistance between

nodes a and b.

12. IN = 28 mA, RN = 891.892 Ω – Use source transformation or superposition to solve. Deactivate

all sources to calculate the equivalent resistance.

13. VTH = 6.75 V, RTH = 375 Ω – Calculate the open-circuit voltage, then short nodes a and b

to calculate a short-circuit current of 18 mA. Use Ohm’s law to calculate the Thévenin equivalent

resistance.

14. VTH = 6.2 V, RTH = 260 Ω – Use any circuit analysis tool to calculate the open-circuit voltage

and short-circuit current (23.846 mA). Use Ohm’s law to calculate the Thévenin equivalent resistance.

15. IN = 0.04 A, RN = 33.333 Ω – Use Ohm’s law on both sides of the circuit to calculate VX and IX ;

VX is the open-circuit voltage. Then short terminals a and b and use Ohm’s law again to calculate

IN . Use Ohm’s law to calculate the Norton equivalent resistance.

Maximum Power Transfer

16. RLOAD = 21 Ω, PMAX = 0.107 W – Use the Thévenin equivalent resistance from question 11, and

calculate the maximum power using equation 3.8.

17. RLOAD = 891.892 Ω, PMAX = 0.175 W – Calculate the Thévenin equivalent resistance from

question 12, and calculate the maximum power using equation 3.8.

18. RLOAD = 375 Ω, PMAX = 0.030 W – Use the Thévenin equivalent resistance from question 13,

and calculate the maximum power using equation 3.8.

19. RLOAD = 260 Ω, PMAX = 0.370 W – Use the Thévenin equivalent resistance from question 14,

and calculate the maximum power using equation 3.8.

20. RLOAD = 33.333 Ω, PMAX = 0.013 W – Calculate the Thévenin equivalent resistance from question

15, and calculate the maximum power using equation 3.8.
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Chapter 4

1. VOUT = –3 V, A = -6 – This is an inverting op-amp circuit.

2. VOUT = 4 V – This is a difference amplifier circuit. Calculate the voltage at the non-inverting input

by using a voltage divider. Then use Ohm’s law on the feedback path to calculate the output voltage.

3. VOUT = 1.5 V, A = 3 – Find two equations for two unknowns (the output voltage and the node

voltage at the op-amp inputs).

4. A = 1.5 – There are three unknowns in this circuit: VOUT , the virtual node voltage of the left-most

op-amp, and the output of the left-most op-amp. Use the op-amp properties, Ohm’s law, and KCL to

find three equations for these three unknowns, and solve for the gain.

5. VOUT = 4 V – There are three unknowns in this circuit: VOUT , the virtual node voltage of the

left-most op-amp, and the output of the left-most op-amp. Use the op-amp properties, Ohm’s law,

and KCL to find three equations for these three unknowns, and solve for the gain.

Chapter 5

Capacitance and Equivalent Capacitance

1. v(t) = 80 V [1 – e–500t] u(t), p(t) = 0.08 W [e–500t – e–1000t] u(t) – To calculate the voltage,

take the integral of the current. Use equation 1.2 to calculate the instantaneous power.

2. i(t) = 0.033 A u(t), p(t) = 3.3 W/s t u(t) – To calculate the current, take the derivative of the

voltage. Use equation 1.2 to calculate the instantaneous power.

3. 67.2 pF – To calculate series combinations of capacitors, use equation 5.7. To calculate parallel

combinations of capacitors, use equation 5.8.

4. 6.38 nF – To calculate series combinations of capacitors, use equation 5.7. To calculate parallel

combinations of capacitors, use equation 5.8.

5. 2 µF – To calculate series combinations of capacitors, use equation 5.7. To calculate parallel combi-

nations of capacitors, use equation 5.8.

Resistor-Capacitor Circuits

6. v(t) = 200 V e–62.5t u(t) + 200 V u(–t), i(t) = –5 mA e–62.5t u(t) – This is a discharging

circuit. Analyze the circuit in the initial steady-state configuration (switch is in position a) to find v(0).

Then find the equivalent resistance seen by the capacitor in the final steady-state configuration (switch

is in position b) to calculate τ . Use equation 5.12 to calculate v(t) and equation 5.13 to calculate i(t).
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7. v(t) = 8 V e–5.882t u(t) + 8 V u(–t), i(t) = –0.424 mA e–5.882t u(t) – This is a discharging

circuit. Analyze the circuit in the initial steady-state configuration (switch is closed) to find v(0). Then

find the equivalent resistance seen by the capacitor in the final steady-state configuration (switch is

open) to calculate τ . Use equation 5.12 to calculate v(t) and equation 5.13 to calculate i(t).

8. v(t) = [4.44 V – 4.44 V e–90t] u(t), i(t) = 2 mA e–90t u(t) – This is a charging circuit. Analyze

the circuit in the final steady-state configuration (switch is closed) to find v(∞) as well as the equivalent

resistance seen by the capacitor to calculate τ . Use equation 5.15 to calculate v(t) and equation 5.16

to calculate i(t).

9. v(t) = [16.875 V – 4.875 V e–6.849t] u(t) + 12 V u(–t), i(t) = 1.336 mA e–6.849t u(t) –

This is a general circuit. Analyze the circuit in the initial steady-state configuration (switch is open)

to find v(0). Then analyze the circuit in the final steady-state configuration (switch is closed) to find

v(∞) as well as the equivalent resistance seen by the capacitor. Use equation 5.17 to calculate v(t)

and equation 5.18 to calculate i(t).

10. v(t) = [4 V + 10 V e–1000t] u(t) + 14 V u(–t), i(t) = –0.4 mA e–1000t u(t) – This is a general

circuit. Analyze the circuit in the initial steady-state configuration (switch is closed) to find v(0). Then

analyze the circuit in the final steady-state configuration (switch is open) to find v(∞) as well as the

equivalent resistance seen by the capacitor. Use equation 5.17 to calculate v(t) and equation 5.18 to

calculate i(t).

Chapter 6

Inductance and Equivalent Inductance

1. v(t) = u(t) mV, p(t) = 0.05 mW u(t) – To calculate the voltage, use equation 6.4. Use equation 1.2

to calculate the instantaneous power.

2. i(t) = 13.333 A sin(5000t) u(t), p(t) = 6.667 W sin(10000t) u(t) – To calculate the current,

use equation 6.5. Use equation 1.2 to calculate the instantaneous power.

3. 74.375 mH – To calculate series combinations of inductors, use equation 6.6. To calculate parallel

combinations of inductors, use equation 6.7.

4. 102.24 µH – To calculate series combinations of inductors, use equation 6.6. To calculate parallel

combinations of inductors, use equation 6.7.

5. 300 µH – To calculate series combinations of inductors, use equation 6.6. To calculate parallel com-

binations of inductors, use equation 6.7.
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Resistor-Inductor Circuits

6. i(t) = 5 mA e–5000t u(t) + 5 mA u(–t), v(t) = –8 V e–5000t u(t) – This is a discharging circuit.

Analyze the circuit in the initial steady-state configuration (switch is in position a) to find i(0). Then

find the equivalent resistance seen by the inductor in the final steady-state configuration (switch is in

position b) to calculate τ . Use equation 6.9 to calculate i(t) and equation 6.10 to calculate v(t).

7. i(t) = 6 mA e–7500t u(t) + 6 mA u(–t), v(t) = –0.9 V e–7500t u(t) – This is a discharging

circuit. Analyze the circuit in the initial steady-state configuration (switch is closed) to find i(0).

Then find the equivalent resistance seen by the inductor in the final steady-state configuration (switch

is open) to calculate τ . Use equation 6.9 to calculate i(t) and equation 6.10 to calculate v(t).

8. i(t) = 0.5 mA [1 – e–80000t] u(t), v(t) = 4 V e–80000t u(t) – This is a charging circuit. Analyze

the circuit in the final steady-state configuration (switch is closed) to find i(∞) as well as the equivalent

resistance seen by the inductor to calculate τ . Use equation 6.12 to calculate i(t) and equation 6.13 to

calculate v(t).

9. i(t) = [3.143 mA – 0.643 mA e–35000t] u(t) + 2.5 mA u(–t), v(t) = 5.4 V e–35000t u(t) –

This is a general circuit. Analyze the circuit in the initial steady-state configuration (switch is open)

to find i(0). Then analyze the circuit in the final steady-state configuration (switch is closed) to find

i(∞) as well as the equivalent resistance seen by the inductor. Use equation 6.14 to calculate i(t) and

equation 6.15 to calculate v(t).

10. i(t) = [5 mA – 3 mA e–20000t] u(t) + 2 mA u(–t), v(t) = 6 V e–20000t u(t) – This is a general

circuit. Analyze the circuit in the initial steady-state configuration (switch S1 is closed and switch S2

is open) to find i(0). Then analyze the circuit in the final steady-state configuration (switch S1 is open

and switch S2 is closed) to find i(∞) as well as the equivalent resistance seen by the inductor. Use

equation 6.14 to calculate i(t) and equation 6.15 to calculate v(t).

Chapter 7

Homogeneous Second Order Circuits

1. v(t) = –50 V/s t e–200t u(t) – This is a critically-damped series RLC circuit.

2. i(t) = [0.117 A e–8612.667t – 0.017 A e–58053.987t] u(t) + 0.100 A u(–t) – This is an overdamped

parallel RLC circuit.

3. v(t) = [315.83 mV e–37.94t – 91.83 mV e–67.77t] u(t) + 224 mV u(–t) – This is an overdamped

parallel RLC circuit with parasitic resistance in the inductor.

4. v(t) = e–4900t [1.875 V cos(5999.171t) + 1.53 V sin(5999.171t)] u(t) + 1.875 V u(–t) –

This is an underdamped general RLC circuit.
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5. The differential equation is given in equation SOL.4. – This is a general RLC circuit.

d2i(t)

dt2
+

[
R2

L1
+

R3

L2
+

R2

L2
+

R1

L1

]
di(t)

dt
+

[
R2R3

L1L2
+

R1R3

L1L2
+

R1R2

L1L2

]
i(t) = 0 (SOL.4)

Non-Homogeneous Second Order Circuits

6. v(t) = [e–320000t (6 V cos(240000t) + 3.83 V sin(240000t)) + 20 V] u(t) + 26 V u(–t) –

This is an underdamped series RLC circuit.

7. i(t) = [e–640t (–0.2 A cos(480t) – 0.267 A sin(480t)) + 0.2 A] u(t) – This is an underdamped

parallel RLC circuit.

8. v(t) = [20 V – 21.373 V e–11567.72t +1.373 V e–180098.94t] u(t) – This is an overdamped general

second order circuit.

9. i(t) = [0.5 A + 0.971 A e–782.099t – 0.271 A e–1917.901t] u(t) + 1.2 A u(–t) – This is an

overdamped general second order circuit.

10. v(t) = [–0.08 V sin(2π40t) + 0.64 V e–5t sin(31.22t)] u(t) – This is a variable input non-

homogeneous second order circuit. Start by deriving the second order differential equation for the

circuit, shown in equation SOL.5. Then, find the particular solution to the equation. Finally, derive

the solution to the homogeneous equation (which is underdamped).

5000 sin(2π40t) =
d2v(t)

dt2
+ 10

dv(t)

dt
+ 1000v(t) (SOL.5)

Chapter 8

Phasor Arithmetic

1. 223.61∠–153.43◦

2. –2.5–j4.33

3. –1315–j140 in Cartesian form, 1322∠–173.92◦ in polar form

4. 74.73+j266.24 in Cartesian form, 276.53∠74.32◦ in polar form

5. 79.13–j1027.49 in Cartesian form, 1030.54∠–85.60◦ in polar form

Impedance and Equivalent Impedance

6. Z = j9.425 Ω – Use equation 8.18.

7. Z = –j169.314 Ω – Use equation 8.17.
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8. Z = 103.217+j16.101 Ω – Start by calculating the impedance of the inductor. Then combine

impedances in series and parallel as required.

9. Z = 23.970+j282.647 Ω – Start by calculating the impedance of both inductors and the capacitor.

Then combine impedances in series and parallel as required.

10. Z = 0.059-j0.528 Ω – Start by calculating the impedance of both capacitors and the inductor. Then

combine impedances in series and parallel as required.

Delta-Wye and Wye-Delta Transforms

11. The equivalent circuit is shown in figure SOL.8 – Use equations 8.30–8.32 to complete the

transform.

a

2.67–j2 Ω

b

–7.5–j10 Ω
c

6+j8 Ω

Figure SOL.8: Circuit diagram for delta-wye and wye-delta transforms answer 11.

12. The equivalent circuit is shown in figure SOL.9 – Use equations 8.27–8.28 to complete the

transform.

a

4.04–j0.67 Ω

–2.17–j5.84 Ω

b

4.70+j12.63 Ω

c

Figure SOL.9: Circuit diagram for delta-wye and wye-delta transforms answer 12.

13. ZEQ = 2.86 – j2.17 Ω – Use either a delta-wye or a wye-delta transform. The equivalent circuit

consists of a 2.86 Ω resistor in series with a capacitor of unknown value (the value of the capacitor is

unknown because the frequency of operation is not specified).

14. ZEQ = 149.15 – j134.42 Ω – First, convert all values to impedances. Then use either a delta-wye or

a wye-delta transform and combine impedances in series and parallel as needed. The equivalent circuit
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consists of a 149.15 Ω resistor in series with a 118.40 nF capacitor.

15. ZEQ = 53.10 – j22.89 Ω – First, convert all values to impedances. Then use either a delta-wye or a

wye-delta transform and combine impedances in series and parallel as needed. The equivalent circuit

consists of a 53.10 Ω resistor in series with a 139.05 µF capacitor.

Chapter 9

Complex Voltage and Current Divider

1. v(t) = 41.74 V cos(2π60t + 26.59π/180) – V = (25 + j43.3 V) −j75.79 Ω
50−j75.79 Ω Start by converting

the capacitance to an impedance. Then apply the voltage divider rule.

2. v(t) = 175.00 V cos(2π80t + 140.10π/180) – V = (−138.56+j75 V) 120−j75.8 Ω
120−j49.4 Ω Apply the voltage

divider rule.

3. i(t) = 22.14 A cos(2π150t + 168.43π/180) – I = (−10− j17.32 A)7.35−j4.55 Ω
6+j5 Ω Apply the current

divider rule.

4. v(t) = 3.25 V cos(2π100t – 63.88π/180) – V = (7 V) 16.50−j14.93 Ω
44.50+j17.75 Ω Start by converting the

capacitance and inductance to impedances. Then apply the voltage divider rule.

5. i(t) = 3.92 A cos(2π6000t + 59.40π/180) – I = (3.90+ j2.25 A)30.36+j17.11 Ω
40 Ω Start by converting

the capacitance and inductance to impedances. Then apply the current divider rule.

Complex Kirchhoff’s Laws

6. i(t) = 57.91 mA cos(2π60t – 75.86π/180) – There are many different ways to label and solve

this question using KCL and KVL. One possible set of equations is I1 − I2 − I3 = 0; 24 = 40I1 +

(−j8.04)I2 + (80 + j3.77)I3; 0 = (j8.04)I2 + (80 + j3.77)I3 (all units are in V, A, or Ω).

7. v(t) = 42.39 V cos(2π20t + 137.47π/180) – There are many different ways to label and solve

this question using KCL and KVL. One possible set of equations is I1 − I2 − I3 = 0; I3 − I4 − I5 = 0;

−40+ j69.28 = 8I1 +10I2; 0 = −10I2 +5I3− j6I4; 0 = j6I4 + j5I5 (all units are in V, A, or Ω). Then

use Ohm’s law to calculate v(t).

8. v(t) = 27.60 V cos(2π20000t – 53.82π/180) – There are many different ways to label and solve

this question using KCL and KVL. One possible set of equations is I1 + I2 = 15; I2 − I3 − I4 = 0;

0 = −6I1 + j9I2 + (4 − j3)I3; 0 = (−4 + j3)I3 + (8 + j5)I4 (all units are in V, A, or Ω). Then use

Ohm’s law to calculate v(t).

9. v(t) = 145.52 V cos(2π30t + 14.04π/180) – There are many different ways to label and solve

this question using KCL and KVL. One possible set of equations is I2 − I3 − I4 = 0; I1 + I4 − I5 = 0;
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100 = 5I2− j10I3; 0 = j10I3+10I4+ j10I5; 0 = −j5I1−10I4−5I2 (all units are in V, A, or Ω). Then

use Ohm’s law to calculate v(t).

10. v(t) = 3.12 V cos(2π200t – 8.00π/180) – There are many different ways to label and solve this

question using KCL and KVL. One possible set of equations is I1−I2−I3 = 0; I3−0.5(5I2)−I4−I5 = 0;

5 = 2I1 + 5I2; 0 = −5I2 − j19.89I3 + 7I4; 0 = −7I4 − j7.96I5 (all units are in V, A, or Ω). Then use

Ohm’s law to calculate v(t).

Complex Mesh Analysis

11. v(t) = 50.46 V cos(2π50t + 17.91π/180) – There are many different ways to label and solve this

question using mesh analysis. One possible set of equations is 12I1 + 24(I1 − I2) = 105; 24(I2 − I1) +

(9 + j12)I2 = 0 (all units are in V, A, or Ω). Then use Ohm’s law to calculate v(t).

12. i(t) = 1.83 A cos(2π100t + 103.18π/180) – There are many different ways to label and solve this

question using mesh analysis. One possible set of equations is 15(I1−I3)−j9.95(I1−I2) = 21.21+j21.21;

−j9.95(I2 − I1) + j5.03(I2 − I3) + 20I2 = 0; (30− j6.37)I3 + j5.03(I3 − I2) + 15(I3 − I1) = 0 (all units

are in V, A, or Ω).

13. v(t) = 5.05 V cos(2π200t + 32.40π/180) – There are many different ways to label and solve this

question using mesh analysis. One possible set of equations is 130I1−j159.15(I1−I2)+80(I1−I3) = 12;

−j159.15(I2 − I1) + 56I2 + 210(I2 − I3) = 0; 80(I3 − I1) + 210(I3 − I2) + j119.38I3 = 0 (all units are

in V, A, or Ω). Then use Ohm’s law to calculate v(t).

14. v(t) = 8.09 V cos(2π5000t + 14.35π/180) – There are many different ways to label and solve

this question using mesh analysis. One possible set of equations is 20I1 + 50(I1 − I2) = 6.43 − j7.66;

50(I2− I1)− j22.74I2 +20(I2− I3)+ 2V ; V − 50I1 +50I2 = 0; −2V +20(I3− I2)+ 60I3 = 0 (all units

are in V, A, or Ω). Then use Ohm’s law to calculate v(t).

15. v(t) = 15.84 V cos(2π600t + 122.13π/180) – There are many different ways to label and solve

this question using mesh analysis. One possible set of equations is I1 − 6I3 − I2 = 0; 30(I1 − I3) +

60(I2 − I3)− j40.19I2 = 13.59 + j6.34; 20I3 − j50.05I3 + 60(I3 − I2) + 30(I3 − I1) = 0 (all units are in

V, A, or Ω). Then use Ohm’s law to calculate v(t).

Complex Superposition

16. v(t) = 13.06 V cos(2π10000t + 113.30π/180) – The voltage contributed by the 5 V source is

3.84 V cos(2π10000t+54.81π/180). The voltage contributed by the 30 V source is 11.52 V cos(2π10000t+

129.81π/180).
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17. v(t) = 31.62 V cos(2π40t – 71.57π/180) – The voltage contributed by the current source is

28.28 V cos(2π40t− 45π/180). The voltage contributed by the voltage source is 14.14 V cos(2π40t−

135π/180).

18. v(t) = 417.23 V cos(2π100t – 38.05π/180) – The voltage contributed by the current source is

424.74 V cos(2π100t−42.27π/180). The voltage contributed by the voltage source is 31.94 V cos(2π100t+

63.44π/180).

19. i(t) = 2.23 A cos(2π2000t + 64.57π/180) – The current contributed by the current source is

2.23 A cos(2π2000t−25.73π/180). The current contributed by the voltage source is 3.16 A cos(2π2000t+

109.42π/180).

20. i(t) = 151.81 mA cos(2π20t – 8.72π/180) – The current contributed by the five volt volt-

age source is 19.42 cos(2π20t − 37.51π/180) mA. The current contributed by the ten volt voltage

source is 21.97 mA cos(2π20t + 30.62π/180). The current contributed by the current source is

117.89 mA cos(2π20t− 10.95π/180).

Complex Source Transformation

21. v(t) = 13.06 V cos(2π10000t + 113.30π/180) – Convert both sources to current sources. Then,

combine all sources and impedances. Use Ohm’s law to calculate the voltage. (This answer should be

and is identical to question 16 in the complex superposition section.)

22. v(t) = 31.62 V cos(2π40t – 71.57π/180) – Convert the voltage source to a current source. Then,

combine all sources and impedances. Use Ohm’s law to calculate the voltage. (This answer should be

and is identical to question 17 in the complex superposition section.)

23. i(t) = 294 mA cos(2π10t – 11.84π/180) – Apply repeated applications of source transformation

until there is one current source in parallel with the 11 Ω resistor and one or more additional impedances.

Then, apply the current divider rule to calculate the current through the resistor.

24. v(t) = 29.81 V cos(2π50000t + 3.86π/180) – Apply repeated applications of source transformation

until there is one voltage source in series with each passive element. Then, apply the voltage divider

rule to calculate the voltage dropped over the capacitor.

25. v(t) = 576.06 mV cos(2π100t – 53.88π/180) – Apply repeated applications of source transfor-

mation until there is one current source in series with one or more impedances. Then, use complex

Ohm’s law to calculate the voltage dropped over the 1.6 mF capacitor.

cbna Alyssa J. Pasquale, Ph.D. 353 Last updated: 2023/05/18



Solutions to Example Problems Chapter 9

Complex Thévenin and Norton’s Theorems

26. The Thévenin equivalent circuit is shown in figure SOL.10 – Calculate the open-circuit voltage

using a voltage divider, then deactivate the voltage source to calculate the equivalent impedance

between nodes a and b.

8.44 V ∠ 62.48◦

3.56 Ω
1.61 mF

a

b

Figure SOL.10: Circuit diagram for complex Thévenin and Norton theorems answer 26.

27. The Thévenin equivalent circuit is shown in figure SOL.11 – Calculate the open-circuit voltage

using any circuit analysis technique, then deactivate the current source to calculate the equivalent

impedance between nodes a and b.

4.12 V ∠ 46.70◦

38.01 Ω 1.81 mH
a

b

Figure SOL.11: Circuit diagram for complex Thévenin and Norton theorems answer 27.

28. The Thévenin equivalent circuit is shown in figure SOL.12 – Calculate the open-circuit voltage

using any circuit analysis technique, then deactivate the voltage source to calculate the equivalent

impedance between nodes a and b.

24.68 V ∠ –35.44◦

6.18 Ω 13.54 µH
a

b

Figure SOL.12: Circuit diagram for complex Thévenin and Norton theorems answer 28.
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29. The Norton equivalent circuit is shown in figure SOL.13 – Calculate the open-circuit voltage

and short-circuit current using any circuit analysis techniques. Then divideV/I to calculate the Norton

equivalent impedance.

560.52 mA ∠ 113.05◦

a

4.08 Ω

1.2 mF

b

Figure SOL.13: Circuit diagram for complex Thévenin and Norton theorems answer 29.

30. The Norton equivalent circuit is shown in figure SOL.14 – Calculate the open-circuit voltage

and short-circuit current using any circuit analysis techniques. Then divideV/I to calculate the Norton

equivalent impedance.

524.61 mA ∠ –28.38◦

a

9.78 Ω

187.74 µF

b

Figure SOL.14: Circuit diagram for complex Thévenin and Norton theorems answer 30.

Filters

31. The filter is an LPF with center frequency of 1/
√
(LC), bandwidth of R/L, and quality

factor of
√
L/(R

√
C) – Note that this is a series RLC circuit.

32. The filter is an HPF with center frequency of 1/
√
(LC), bandwidth of 1/(RC), and quality

factor of R
√
C/
√
L – Note that this is a parallel RLC circuit.

33. The filter is a BSF with center frequency of 100,000 rad/s, bandwidth of 100,000 rad/s,

and quality factor of 1 – Note that this is a series RLC circuit.
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34. The filter is an HPF with cutoff frequency of 1/(R1C) – Tau can be calculated from the first-

order differential equation. The zero-input first-order differential equation is shown in equation SOL.6.

0 =
dvout
dt

+
1

R1C
vout (SOL.6)

35. The filter is an LPF with cutoff frequency of 10 rad/s – Tau can be calculated from the first-

order differential equation. The zero-input first-order differential equation (given that R1 = 30 kΩ,

R2 = 20 kΩ, and C = 5 µF) is shown in equation SOL.7.

0 =
dvout
dt

+
1

R2C
vout (SOL.7)

Transfer Functions

36. The transfer function is given in equation SOL.8, and the filter is an LPF – Combine

impedances R2 and 1/(jωC) in parallel, then use a voltage divider to calculate the transfer function.

H(jω) =
1

CR1

jω + R1+R2

CR1R2

(SOL.8)

37. The transfer function is given in equation SOL.9, and the filter is a BPF – Use a voltage

divider to calculate the transfer function.

H(jω) =
jωR

L

−ω2 + jωR
L + 1

LC

(SOL.9)

38. The transfer function is given in equation SOL.10, and the filter is an HPF – Combine

impedances R and 1/(jωC) in parallel. Then use a voltage divider to calculate the transfer function.

H(jω) =
−ω2 + jω 1

RC

−ω2 + jω 1
RC + 1

LC

(SOL.10)

39. The transfer function is given in equation SOL.11, and the filter is an HPF – Combine

impedances R2 + jωL and R1 in parallel. Then use a voltage divider (twice) to calculate the transfer

function. Alternatively, use any other circuit analysis techniques to calculate the transfer function.

H(jω) =
−ω2

−ω2 + jω
(

1
R1C

+ R2

L

)
+ R1+R2

R1LC

(SOL.11)

40. The transfer function is given in equation SOL.12, and the filter is an LPF – Combine

impedances R3 and 1/(jωC2) in parallel. Then use a voltage divider at the non-inverting node to

calculate the op-amp input node voltage. Then, use the ideal op-amp properties to calculate the
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transfer function.

H(jω) =
jω
(

1
C1R1

)
+ R2+R3

C1C2R1R2R3

−ω2 + jω
(

1
C2R3

+ 1
C1R1

)
+ 1

C1C2R1R3

(SOL.12)

Chapter 10

Phase and Root Mean Square

1. |VRMS| = 84.85 VRMS, |IRMS| = 3.54 ARMS, θ = 60◦ – Both signals are sinusoids, so use

equation 10.4 to calculate the RMS values. Use equation 10.1 to calculate the phase difference.

2. |VRMS| = 106.07 VRMS, |IRMS| = 2.12 ARMS, θ = 25◦ – Both signals are sinusoids, so use

equation 10.4 to calculate the RMS values. Use equation 10.1 to calculate the phase difference.

3. |VRMS| = 155.56 VRMS, |IRMS| = 4.24 ARMS, θ = 160◦ – Both signals are sinusoids, so use

equation 10.4 to calculate the RMS values. Use equation 10.1 to calculate the phase difference.

4. |VRMS| = 42.43 VRMS, |IRMS| = 4.50 ARMS, θ = –32.01◦ – Use complex Ohm’s law to

calculate the current flowing through the circuit. Both signals are sinusoids, so use equation 10.4 to

calculate the RMS values. Use equation 10.1 to calculate the phase difference.

5. |VRMS| = 70.71 VRMS, |IRMS| = 7.07 ARMS, θ = 53.13◦ – Use complex Ohm’s law to calculate

the current flowing through the circuit. Both signals are sinusoids, so use equation 10.4 to calculate

the RMS values. Use equation 10.1 to calculate the phase difference.

Complex Power

6. SLOAD = 3453.00 – j2555.89 VA, pf = 0.804 – The current through the load is given. Find the

equivalent impedance of the load and use equation 10.9 to calculate the power through the load. Then

use equation 10.14 to calculate the power factor.

7. SLOAD = 338.79 + j132.13 VA, pf = 0.932 – Find the equivalent impedance of the load, then

use a complex voltage divider to calculate the voltage dropped over the load. Use equation 10.8 to

calculate the power through the load. Then use equation 10.14 to calculate the power factor.

8. SLOAD = 8.31 + j11.08 VA, pf = 0.600 – Find the equivalent impedance of the load, then use a

complex voltage divider to calculate the voltage dropped over the load. Use equation 10.8 to calculate

the power through the load. Then use equation 10.14 to calculate the power factor.

9. SLOAD = 557.38 – j203.20 VA, pf = 0.940 – Find the equivalent impedance of the load, then

use a complex voltage divider to calculate the voltage dropped over the load. Use equation 10.8 to

calculate the power through the load. Then use equation 10.14 to calculate the power factor.
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10. SLOAD = 631.25 + j1558.36 VA, pf = 0.375 – Find the equivalent impedance of the load, then

use a complex voltage divider to calculate the voltage dropped over the load. Use equation 10.8 to

calculate the power through the load. Then use equation 10.14 to calculate the power factor.

Maximum Power Transfer

11. The load should consist of a 205 Ω resistor in series with a 48.8 µF capacitor, the power

consumed by the load will be 76.2 W – Calculate the Thévenin equivalent impedance. The load

impedance should be equal to the complex conjugate of that value. Use equation 10.16 to calculate

the maximum power consumption.

12. The load should consist of a 5.9 Ω resistor in series with a 263 µF capacitor, the power

consumed by the load will be 62.52 W – Calculate the Thévenin equivalent impedance. The load

impedance should be equal to the complex conjugate of that value. Use equation 10.16 to calculate

the maximum power consumption.

13. The load should consist of a 80 Ω resistor in series with a 13 mH inductor, the power

consumed by the load will be 12.9 mW – Calculate the Thévenin equivalent impedance. The load

impedance should be equal to the complex conjugate of that value. Use equation 10.16 to calculate

the maximum power consumption.

14. The load should consist of a 11.2 Ω resistor in series with a 32.9 mH inductor, the power

consumed by the load will be 142.7 W – Calculate the Thévenin equivalent impedance. The load

impedance should be equal to the complex conjugate of that value. Use equation 10.16 to calculate

the maximum power consumption.

15. The load should consist of a 6.4 Ω resistor in series with a 657 µH inductor, the power

consumed by the load will be 553.4 W – Calculate the Thévenin equivalent impedance. The load

impedance should be equal to the complex conjugate of that value. Use equation 10.16 to calculate

the maximum power consumption.

Power Factor Correction

16. The initial power factor is 0.692, and to increase the power factor to 0.800, a 7.9 µF

capacitor must be placed in parallel with the load – Start by calculating the load impedance

and the voltage dropped over the load. Then use equation 10.8 to calculate the power consumed by the

load. The initial power factor can be calculated with equation 10.14. Use equations 10.17 and 10.18

to determine the value of the corrective capacitor.

17. The initial power factor is 0.221, and to increase the power factor to 0.860, a 85.4 mH

inductor must be placed in parallel with the load – Start by calculating the load impedance and
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the voltage dropped over the load. Then use equation 10.8 to calculate the power consumed by the

load. The initial power factor can be calculated with equation 10.14. Use equations 10.19 and 10.20

to determine the value of the corrective inductor.

18. The initial power factor is 0.951, and to increase the power factor to 0.990, a 5.9 µF

capacitor must be placed in parallel with the load – Start by calculating the load impedance

and the voltage dropped over the load. Then use equation 10.8 to calculate the power consumed by the

load. The initial power factor can be calculated with equation 10.14. Use equations 10.17 and 10.18

to determine the value of the corrective capacitor.

19. The initial power factor is 0.922, and to increase the power factor to 0.980, a 1.3 H

inductor must be placed in parallel with the load – Start by calculating the load impedance and

the voltage dropped over the load. Then use equation 10.8 to calculate the power consumed by the

load. The initial power factor can be calculated with equation 10.14. Use equations 10.19 and 10.20

to determine the value of the corrective inductor.

20. The initial power factor is 0.921, and to increase the power factor to 0.960, a 8.6 µF

capacitor must be placed in parallel with the load – Start by calculating the load impedance

and the voltage dropped over the load. Then use equation 10.8 to calculate the power consumed by the

load. The initial power factor can be calculated with equation 10.14. Use equations 10.17 and 10.18

to determine the value of the corrective capacitor.

Chapter 11

Laplace Transforms

1. The Laplace transform of f(t) is given in equation SOL.13.

F (s) =
2

s+ 5
(SOL.13)

2. The Laplace transform of f(t) is given in equation SOL.14.

F (s) =
7s2 + 54s+ 80

s(s2 + 8s+ 16)
(SOL.14)

3. The Laplace transform of f(t) is given in equation SOL.15.

F (s) =
2s+ 42

s2 + 2s+ 101
(SOL.15)
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4. The Laplace transform of v(t) is given in equation SOL.16.

V (s) =
3

s+ 0.25
(SOL.16)

5. The Laplace transform of i(t) is given in equation SOL.17.

I(s) =
10s+ 55

s2 + 6s+ 109
(SOL.17)

Inverse Laplace Transforms

6. The function f(t) is given in equation SOL.18. The single term contributes to the transient response

of the circuit.

f(t) = 10 e−10t u(t) (SOL.18)

7. The partial fraction expansion of F (s) is given in equation SOL.19, and the function f(t) is given in

equation SOL.20. The term 0.4 contributes to the steady-state response. The terms −52 t e−5t and

9.6 e−5t contribute to the transient response.

F (s) =
0.4

s
+
−52

(s+ 5)2
+

9.6

(s+ 5)
(SOL.19)

f(t) =
[
0.4− 52 t e−5t + 9.6 e−5t

]
u(t) (SOL.20)

8. The partial fraction expansion of F (s) is given in equation SOL.21, and the function f(t) is given in

equation SOL.22. The terms 0.11 cos(4t) and 0.066 sin(4t) contribute to the steady-state response.

The terms 0.098 e−t and −0.208 e−4t contribute to the transient response.

F (s) =
0.055 + j0.033

(s+ j4)
+

0.055− j0.033

(s− j4)
+

0.098

(s+ 1)
+
−0.208
(s+ 4)

(SOL.21)

f(t) =
[
0.11 cos(4t) + 0.066 sin(4t) + 0.098 e−t − 0.208 e−4t

]
u(t) (SOL.22)

9. The partial fraction expansion of F (s) is given in equation SOL.23, and the function f(t) is given in

equation SOL.24. All of the terms in the function contribute to the transient response.

F (s) =
0.052

(s+ 2)2
+
−0.173
(s+ 2)

+
0.087− j0.331

(s+ 2.5− j7.6)
+

0.087 + j0.331

(s+ 2.5 + j7.6)
(SOL.23)

f(t) =
[
0.052 t e−2t − 0.173 e−2t + e−2.5t (0.173 cos(7.6t) + 0.663 sin(7.6t))

]
u(t) (SOL.24)

10. The partial fraction expansion of F (s) is given in equation SOL.25, and the function f(t) is given in
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equation SOL.26. The terms 0.004, −0.021 cos(5t), and 0.028 sin(5t) contribute to the steady-state

response. The terms 0.312 t e−10t and 0.017 e−10t contribute to the transient response.

F (s) =
0.004

s
+
−0.011− j0.014

(s+ j5)
+
−0.011 + j0.014

(s− j5)
+

0.312

(s+ 10)2
+

0.017

(s+ 10)
(SOL.25)

f(t) =
[
0.004− 0.021 cos(5t) + 0.028 sin(5t) + 0.312 t e−10t + 0.017 e−10t

]
u(t) (SOL.26)

s-Domain Analysis

11. The s-domain transformed circuit is shown in figure SOL.15. V (s) is given in symbolic form in equa-

tion SOL.27 and v(t) is given in equation SOL.28.

−

+

R1

1/(sC)

−+

v(0)/s

R2

V (s)

−
+VS2/s

Figure SOL.15: Circuit diagram for s-domain analysis answer 11.

V (s) =
sv(0)− VS2

CR1

s(s+ 1
CR2

)
(SOL.27)

v(t) =
[
−4 V− 2 V e−40t

]
u(t) (SOL.28)

12. The s-domain transformed circuit is shown in figure SOL.16. V (s) is given in symbolic form in equa-

tion SOL.29.

−
+VDC/s

R1

sL

1/(sC)

R2

+

−

V (s)

Figure SOL.16: Circuit diagram for s-domain analysis answer 12.
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V (s) =

[
VDCR2

R1+R2

]
s

s2 +
[

L+CR1R2

LC(R1+R2)

]
s+

[
R1

LC(R1+R2)

] (SOL.29)

13. The s-domain transformed circuit is shown in figure SOL.17. V (s) is given in symbolic form in equa-

tion SOL.30 and v(t) is given in equation SOL.31.

−
+VS2/s

R1 sL

i(0)/s

R2

1/(sC)

−
+v(0)/s

+

−

V (s)

Figure SOL.17: Circuit diagram for s-domain analysis answer 13.

V (s) =

[
VS1R2

R1+R2

]
s2 +

[
LVS1+CVS1R1R2

LC(R1+R2)

]
s+

[
VS2

LC

]
s
(
s2 +

[
1

R2C
+ R1

L

]
s+

[
R1+R2

LCR2

]) (SOL.30)

v(t) =
[
6.67 V + e−7000t (−4.67 V cos(3316.63t) + 9.85 V sin(3316.63t))

]
u(t) (SOL.31)

14. The s-domain transformed circuit is shown in figure SOL.18. I(s) is given in symbolic form in equa-

tion SOL.32 and i(t) is given in equation SOL.33.

−
+VS1/(s+ α)2

R sL

1/(sC)

I(s)

−
+VS2/s

Figure SOL.18: Circuit diagram for s-domain analysis answer 14.
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I(s) =

[−VS2

L

]
s2 +

[
VS1−2αVS2

L

]
s+

[
−VS2α

2

L

]
(s+ α)2

(
s2 +

[
R
L

]
s+

[
1

LC

]) (SOL.32)

i(t) = [−1.6 mA/s t e−4t + 0.4 mA e−4t

+ e−62.5t (−0.4 mA cos(496.08t) + 50.44 mA sin(496.08t))] u(t) (SOL.33)

15. The s-domain transformed circuit is shown in figure SOL.19. I(s) is given in symbolic form in equa-

tion SOL.34 and i(t) is given in equation SOL.35.

Ims/(s2 + ω2) R1

sL

R2

I(s)

1/(sC)

R3

Figure SOL.19: Circuit diagram for s-domain analysis answer 15.

I(s) =

[
CR1R3Im

LC(R1+R3)

]
s2 +

[
R1Im

LC(R1+R3)

]
s

(s2 + ω2)
(
s2 +

[
1

C(R1+R3)
+ R2R3+R1R3+R1R2

L(R1+R3)

]
s+

[
R1+R2

LC(R1+R3)

]) (SOL.34)

i(t) = [0.5 A cos(60t)− 0.01 A sin(60t)

+ e−154.33t (−0.5 A cos(990.5t) + 0.07 A sin(990.5t))] u(t) (SOL.35)
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555 timer, 151

astable mode, 152

monostable mode, 156

active filter, 267

alternating current, 17

amplifier, 97

amplifying, 98

attenuating, 98

differential, 98

gain, 97

inverting, 98

non-inverting, 98

saturation, 98

single-ended input, 97

single-ended output, 97

voltage, 97

analog to digital converter, 102

band-pass filter, 259, 269

band-stop filter, 262, 270

bandwidth, 260, 263

Bode plot, 272

branch, 32

current, 58, 63, 238

capacitance, 124, 129

equivalent, 130

parallel, 131

parasitic, 160

series, 130

capacitor, 124, 180, 219

ceramic, 125

electrolytic, 128

impedance, 219

non-polarized, 125

parallel combination, 131

polarized, 127

s-domain, 327

series combination, 130

variable, 126

center frequency, 260, 263

charge, 10, 124

circuit elements, 31

active, 31, 97

capacitor, 124, 180, 219

inductor, 159, 180, 220

passive, 31, 82

resistor, 33, 219

comparator, 99, 151

critically damped circuit, 181, 197, 198, 278

current, 13, 48, 129, 161, 180

branch, 58, 63, 238

divider, 56, 236

lagging, 298

leading, 298

mesh, 63, 240

Norton equivalent, 86, 251

op-amp, 118

short-circuit, 81, 86, 251

current divider, 56, 236

cutoff frequency, 255, 256, 258, 260

damping parameter, 180, 184, 187, 190

delta-wye transform, 44, 223

difference op-amp, 112

differentiator op-amp, 133

direct current, 16

elementary signals, 20
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damped sinusoid, 26

Dirac delta function, 20

exponential decay, 25

ramp function, 22

rectangular pulse, 23

sinusoidal wave, 17

step function, 21

triangular pulse, 24

feedback, 105

divided, 108

negative, 105, 106, 113

positive, 105

filter, 254

active, 267

band-pass, 259, 269

band-stop, 262, 270

bandwidth, 260, 263

cascaded, 255, 269

center frequency, 260, 263

cutoff frequency, 255, 256, 258, 260

first order, 254, 267

high-pass, 257, 268

low-pass, 254, 267

passive, 254

quality factor, 261, 263

Sallen-Key, 271

second order, 254, 260

first order circuit, 135, 163, 254, 267

ground, 12

high-pass filter, 257, 268

impedance, 218, 234

capacitor, 219

equivalent, 221

delta-wye transform, 223

wye-delta transform, 226

inductor, 220

Norton equivalent, 251

parallel, 221

resistor, 219

series, 221

Thévenin equivalent, 248, 304

inductance, 159, 160

equivalent, 161

parallel, 162

series, 161

inductor, 159, 180, 220

impedance, 220

parallel combination, 162

s-domain, 328

series combination, 161

variable, 159

integrator op-amp, 134

inverting op-amp, 108, 270

Kirchhoff’s current law, 58, 60, 237

Kirchhoff’s voltage law, 59, 60, 237

Laplace transform, 318

inverse transform, 321

s-domain analysis, 326

loop, 32

low-pass filter, 254, 267

maximum power transfer, 88, 304

mesh, 32

analysis, 62, 240

current, 63, 240

mesh analysis, 62, 240

node, 31

non-inverting op-amp, 110

Norton’s theorem, 86, 251
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Ohm’s law, 48, 218

op-amp, 97, 99, 106, 108, 267

cascaded, 110, 269

current, 118

difference, 112

differentiator, 133

gain, 106, 108, 110

integrator, 134

inverting, 108, 270

non-inverting, 110

summing, 112, 270

virtual node, 108

voltage follower, 106, 271

open-circuit voltage, 80, 84

oscillation frequency, 182

overdamped circuit, 181, 197, 278

parallel RLC circuit, 186

parasitic resistance, 160, 189

passive filter, 254

phasor, 212, 234

potentiometer, 35

power, 15, 52

apparent, 300

average, 300

complex, 299

conservation, 15

instantaneous, 15, 298

lagging circuit, 298

leading circuit, 298

maximum, 88, 304

phase difference, 297

power factor, 302

reactive, 301

triangle, 301

power factor

correction, 307

pulse-width modulation, 103

quality factor, 261, 263

reactance, 218

resistance, 33, 36, 48, 218

equivalent, 37–39, 84, 86

delta-wye transform, 44

wye-delta transform, 46

Norton equivalent, 86, 89

parallel, 38

parasitic, 160, 189

series, 37

Thévenin equivalent, 84, 88

resistor, 33, 219

color codes, 34

impedance, 219

parallel combination, 38

potentiometer, 35

s-domain, 326

series combination, 37

variable, 35

resistor-capacitor circuit, 135, 153

charging response, 138

discharging response, 135

general response, 141

time constant, 136, 139, 142

transient analysis, 135

resistor-inductor circuit, 163

charging response, 167

discharging response, 164

general response, 170

time constant, 165, 168, 170

resonant frequency, 180, 184, 187, 190, 256, 258,

260, 263

root mean square, 298

s-domain analysis, 326
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capacitor, 327

inductor, 328

resistor, 326

sources, 328

Sallen-Key filter, 271

second order circuit, 180, 254, 260, 278

constant input non-homogeneous, 197

critically damped, 181, 197, 198, 278

damping parameter, 180, 184, 187, 190

general homogeneous, 192

homogeneous, 180

non-homogeneous, 196

oscillation frequency, 182

overdamped, 181, 197, 278

parallel RLC, 186

resonant frequency, 180, 184, 187, 190, 256,

258, 260, 263

roots, 180

series RLC, 183

underdamped, 182, 197, 198, 278

variable input non-homogeneous, 202

series RLC circuit, 183

short-circuit current, 81, 86, 251

source transformation, 77, 245

sources

alternating current, 17

current, 16, 17, 77, 82

dependent, 18, 73

direct current, 16

equivalent, 19

independent, 16, 73

s-domain, 328

sinusoidal wave, 17

voltage, 16, 17, 77, 82

stability, 278

summing op-amp, 112, 270

superposition, 73, 242

Thévenin’s theorem, 83, 247

transfer function, 272, 277, 278

Bode plot, 272

magnitude response, 272

phase response, 272

pole-zero diagram, 280

poles, 278, 318

zeros, 278, 318

transient analysis, 135, 163

underdamped circuit, 182, 197, 198, 278

variable resistor, 35

voltage, 10, 48, 124, 129, 161, 180

amplification, 97

divider, 35, 53, 106, 151, 234

ground, 12

open-circuit, 80, 84

Thévenin equivalent, 84, 248

voltage divider, 35, 53, 106, 151, 234

voltage follower, 106, 271

Wheatstone bridge, 55

wye-delta transform, 46, 226
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