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Author Note

Author Note

This book is the companion to Circuit Analysis and contains step-by-step solutions to each of the end of

chapter questions. The intent behind this solution manual is for students to check their work in detail, and

to provide help in case a student doesn’t know how to either start or continue working out an example.

I cannot guarantee that this resource is free from typos. I will, however, do my best to implement your

feedback if you find any issues with the text. Feel free to e-mail me at pasqualea185@cod.edu with your

notes.

License and Attribution Information

This book is licensed under creative commons as CC-BY-SA-NC. This license allows reusers to distribute,

remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and

only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must

license the modified material under identical terms. For more information, visit https://creativecommons.

org.

This license (CC-BY-SA-NC) includes the following elements:

b BY – Credit must be given to the creator

n NC – Only noncommercial uses of the work are permitted

a SA – Adaptations must be shared under the same terms

The suggested attribution for this book is “Circuit Analysis Solutions” by Alyssa J. Pasquale,

Ph.D., College of DuPage, is licensed under CC BY-NC-SA 4.0.

The entirety of this work was created by Alyssa J. Pasquale, Ph.D. The cover photograph is by the author

and is a collection of circuit components (capacitors, trimmer pots, trimmer capacitors, soft potentiometers,

inductors, toggle switches, transistors, resistors, diodes, light-emitting diodes, and incandescent lamps). All

circuit diagrams, equations, and figures in this text were created by the author using LATEX libraries.
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Changelog

Changelog

Date Chapter(s) Description of Change(s)
2021-06-02 all First edition of this book published online
2021-06-03 11 Changed terminology to inverse Laplace transform
2025-03-17 1 Corrected typo in question 13 solution
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1 Chapter 1 Solutions

1 Chapter 1 Solutions

1.1 Power

1. How much power is supplied by the unknown element shown in figure 1.1?

+10 mW

−5 mW

??

+3 mW

Figure 1.1: Circuit schematic for power question 1.

Use conservation of power to find the unknown quantity.

0 = 10 mW− 5 mW+ P + 3 mW

P = −8 mW

The unknown element supplies 8 mW of power. (The negative sign on the power means that power is

supplied. A positive sign means that power is absorbed by the circuit element.)

2. A voltage source supplies 12 V and has a power consumption of 5 W. How much current is

the voltage source supplying to the circuit?

Use the instantaneous power equation P = IV to solve for current.

I =
5 W

12 V

= 0.416 A

= 416.67 mA
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1 Chapter 1 Solutions 1.1 Power

3. Which of the circuit elements shown in figure 1.2 (a) absorb power and (b) deliver power?

Current flows clockwise through the circuit.

−

+

VA

+ −
VB

+

−

VC

+ −
VD

Figure 1.2: Circuit schematic for power question 3.

Analyze the direction of current flow relative to the voltage drops. Current flows from high to low

potential in elements A, B, and C. Therefore elements A, B, and C absorb power. Current flows from low

to high potential in element D. Therefore element D supplies power.

4. Calculate the power consumed by a circuit when the voltage is v(t) = 5 cos(2π50t) V and the

current is i(t) = 0.1 cos(2π50t) A.

Use the instantaneous power equation p(t) = i(t)v(t).

p(t) = (0.1 cos(2π50t) A) (5 cos(2π50t) V)

= 0.5 cos2(2π50t) W

5. Calculate the power consumed by a circuit when v(t) = 3t V and i(t) = 40δ(t− 5) mA.

Use the instantaneous power equation p(t) = i(t)v(t).

p(t) = (40δ(t− 5) mA)(3t V)

= 120tδ(t− 5) mW
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1.2 Sinusoidal Waves

6. What are Vm, VDC , f , and ϕ of the function v(t) = 3.8 cos(2π20t+ 25π/180) + 3 V?

A sinusoidal wave takes the form of Vm cos(2πft+ ϕπ/180) + VDC (given f in units of Hz and ϕ in units of

degrees). Therefore carefully analyze the function to determine the values of each property.

Vm = 3.8 V

VDC = 3 V

f = 20 Hz

ϕ = 25◦

7. What are Vm, VPP , and T of the function v(t) = 2.19 cos(2π40t− 20π/180) + 6 V?

A sinusoidal wave takes the form of Vm cos( 2πtT + ϕπ/180) + VDC (given ϕ in units of degrees). VPP is equal

to twice the amplitude. Therefore carefully analyze the function to determine the values of each property.

Vm = 2.19 V

VPP = 4.38 V

T = 0.025 s

8. What are Vm, VDC , and f of the function shown in figure 1.3?

0 2 4 6 8 10 12 14 16 18 20
−1
0
1
2
3

t (ms)

v
(t
)
(V

)

Figure 1.3: Waveform for sinusoidal waves question 8.

The sinusoidal wave voltages oscillate between –1 V and 3 V with an average value of 1 V. The amplitude

is equal to the distance between equilibrium (1 V) and peak displacement (3 V).

Vm = 3 V− 1 V

= 2 V
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1 Chapter 1 Solutions 1.2 Sinusoidal Waves

The DC offset is equal to the average value of the waveform.

VDC = 1 V

The first peak shown on the graph occurs at 0 s with the second peak occurring at 8 ms. Use the

relationship between period and frequency f = 1/T to calculate the frequency of the wave.

f =
1

T

=
1

0.008 s

= 125 Hz

9. Sketch the function i(t) = 400 cos(2π100t+ 45π/180) + 200 mA.

Identify the waveform properties.

Im = 400 mA

IDC = 200 mA

f = 100 Hz

T = 10 ms

ϕ = 45◦

The minimum and maximum currents can be calculated based on the values of Im and IDC .

IMAX = IDC + Im = 600 mA

IMIN = IDC − Im = −200 mA

The first minimum will occur when the argument of the cosine function is equal to π. 5 ms later the

maximum will occur.

π = 2π100tMIN +
45π

180

200tMIN = 1− 45

180

tMIN =
1− 45

180

200
= 0.00375 s = 3.75 ms

The waveform is shown in figure 1.4.
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1 Chapter 1 Solutions 1.3 Sources

0 2 4 6 8 10 12 14 16 18 20
−200

0
200
400
600

t (ms)

i(
t)

(m
A
)

Figure 1.4: Waveform for sinusoidal waves answer 9.

10. What minimum DC offset should be added to i(t) = 30 cos(2π200t− 50π/180) mA to prevent

any negative values from occurring on the output?

For i(t) to remain positive, the minimum allowable current will be 0 mA. Use the relationship between

minimum value, DC offset, and amplitude to calculate this value.

IMIN = IDC − Im

IDC = IMIN + Im

= 0 mA+ 30 mA

= 30 mA

1.3 Sources

11. What kind of dependent source is shown in figure 1.5? How do you know?

−
+

4VX

+ −
VX

−
+

Figure 1.5: Circuit schematic for sources question 11.

The dependent source is a VCVS. The controlling value is VX , a voltage drop. The symbol on the source

is a + and − sign indicating that it is a voltage source.
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1 Chapter 1 Solutions 1.3 Sources

12. What kind of dependent source is shown in figure 1.6? How do you know?

−+

3.2IX

IX

Figure 1.6: Circuit schematic for sources question 12.

The dependent source is a CCVS. The controlling value is IX , a current flow. The symbol on the source

is a + and − sign indicating that it is a voltage source.

13. Calculate the current supplied by the dependent source as shown in figure 1.7.

0.2IX

−+

+

A 4.8 mA

IX

Figure 1.7: Circuit schematic for sources question 13.

The ammeter reads a value of 4.8 mA, and the high potential end of the ammeter is depicted with a +

sign. The controlling current (IX) is therefore in the opposite direction as the measured current and has a

value of -4.8 mA. Use the relationship on the CCCS to determine the value of the source current.

IS = 0.2IX

= 0.2(−4.8 mA)

= −0.96 mA
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1 Chapter 1 Solutions 1.3 Sources

14. Reduce figure 1.8 to a circuit that contains only one independent source.

−
+3 V

−
+ 4 V

Figure 1.8: Circuit schematic for sources question 14.

The two voltage sources can be added because they are in series with each other. The reduced circuit

diagram is shown in figure 1.9.

−
+7 V

Figure 1.9: Reduced circuit schematic for sources question 14.

15. Reduce the circuit given in figure 1.10 as much as possible.

−
+10 V

−+

0.4IX

IX

−
+ 8 V

Figure 1.10: Circuit schematic for sources question 15.

Combine the 10 V independent source with the dependent source. The 8 V source cannot be combined

because it is not in series with the other sources. The reduced circuit diagram is shown in figure 1.11.

−
+10 V−0.4IX

IX

−
+ 8 V

Figure 1.11: Reduced circuit schematic for sources question 15.
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1.4 Elementary Signals

16. Find an equation for the signal shown in figure 1.12.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

t (s)

f
(t
)

Figure 1.12: Signal for elementary signals question 16.

The left-most delta function occurs at t = −4 s and has an amplitude of 2. The next occurs at t = −2 s

and has an amplitude of −1. The next occurs at t = 0 s and has an amplitude of −1. The right-most delta

function occurs at t = 5 s and has an amplitude of 1.5. Add each of the delta functions together.

f(t) = 2δ(t+ 4)− δ(t+ 2)− δ(t) + 1.5δ(t− 5)

17. Find an equation for the signal shown in figure 1.13.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

t (s)

f
(t
)

Figure 1.13: Signal for elementary signals question 17.

Option one is to use step functions to create this signal. The first step function occurs at t = −4 s with

an amplitude of 1. At t = −1 s another step function with amplitude of 1 is added. At t = 1 s another

step function of amplitude −3 is added. At t = 4 s a step function with amplitude of 1 is added. After that

point, the signal remains constant at zero.

f(t) = u(t+ 4) + u(t+ 1)− 3u(t− 1) + u(t− 4)

Option two is to use the rectangular pulse function to create this signal. The first pulse is centered at

t = −2.5 s, has a width of 3 s, and an amplitude of 1. The second pulse is centered at t = 0 s, has a width

of 2 s, and an amplitude of 2. The third pulse is centered at t = 2.5 s, has a width of 3 s, and an amplitude
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1 Chapter 1 Solutions 1.4 Elementary Signals

of −1.

f(t) = rect

(
t+ 2.5

3

)
+ 2 rect

(
t

2

)
− rect

(
t− 2.5

3

)

18. Sketch the function f(t) = 3 tri(t+ 2)− 2 tri
(
t−5
5

)
.

The first term in the expression is a triangle function centered at t = −2 s, has a half-width of 1 s, and an

amplitude of 3. The second term in the expression is centered at t = 5 s, has a half-width of 5 s, and an

amplitude of −2. The sketch is shown in figure 1.14.

−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12
−2

0

2

t (s)

f
(t
)

Figure 1.14: Signal function for elementary signals question 18.

19. Sketch the function f(t) = 3u(t+ 5) + t
2u(t).

The signal has a value of zero until t = −5 s when a step function with amplitude 3. The function will have

a constant amplitude of 3 until t = 0, at which time a ramp function with a slope of one-half is added. The

sketch is shown in figure 1.15.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

2

4

6

t (s)

f
(t
)

Figure 1.15: Signal function for elementary signals question 19.

20. If the charge in a circuit is measured as q(t) = 2 tri
(
t+6
2

)
+0.5tu(t)− 1.5(t− 4)u(t− 4)+ 1.5(t−

8)u(t− 8)− 0.5(t− 12)u(t− 12) C, sketch the current.

Current is equal to the derivative of charge. Charge is plotted below in figure 1.16 to make it easier to

visualize.
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−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−2

−1

0

1

2

t (s)

q(
t)

(C
)

Figure 1.16: Signal function (charge) for elementary signals question 20.

Calculate the slope at each interval of time. Current is shown below in figure 1.17.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

t (s)

i(
t)

(A
)

Figure 1.17: Signal function (current) for elementary signals question 20.
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2 Chapter 2 Solutions

2.1 Equivalent Resistance

1. Calculate the equivalent resistance of the resistors shown in figure 2.1.

R1

R2

R3

Figure 2.1: Circuit diagram for equivalent resistance question 1.

Combine R2 and R3 in parallel. Then combine that result in series with R1.

REQ = R1 +
R2R3

R2 +R3

2. Minimize the circuit diagram shown in figure 2.2 as much as possible.

10 Ω

24 Ω

18 Ω

−
+2 V

47 Ω

130 mA

33 Ω

Figure 2.2: Circuit diagram for equivalent resistance question 2.

The only things that can be combined in this circuit is the series combination of 10 Ω and 24 Ω. The

reduced circuit diagram is shown in figure 2.3.
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2 Chapter 2 Solutions 2.1 Equivalent Resistance

34 Ω

18 Ω

−
+2 V

47 Ω

130 mA

33 Ω

Figure 2.3: Circuit diagram for equivalent resistance answer 2.

3. Use the circuit diagram shown in figure 2.4 to calculate the equivalent resistance between

nodes a and b. Each resistor has a value of 1 kΩ.

a

b

c

Figure 2.4: Circuit diagram for equivalent resistance questions 3.

Re-draw the circuit.

a b

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

Combine all series resistors.
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2 Chapter 2 Solutions 2.1 Equivalent Resistance

a b

1 kΩ

2 kΩ

1 kΩ

1 kΩ

2 kΩ

Either a wye-delta transform or a delta-wye transform can be performed to solve this circuit. The

following solution utilizes a wye-delta transform.

a b

A

1 kΩ

2 kΩ

1 kΩ

C

1 kΩ

B

2 kΩ

Calculate each of the delta resistances.

R1 =
(2 kΩ)(1 kΩ) + (1 kΩ)(1 kΩ) + (2 kΩ)(1 kΩ)

1 kΩ
= 5 kΩ

R2 =
(2 kΩ)(1 kΩ) + (1 kΩ)(1 kΩ) + (2 kΩ)(1 kΩ)

2 kΩ
= 2.5 kΩ

R3 =
(2 kΩ)(1 kΩ) + (1 kΩ)(1 kΩ) + (2 kΩ)(1 kΩ)

1 kΩ
= 5 kΩ

Re-draw the circuit.

a b

A

1 kΩ

5 kΩ

5 kΩ

C

2.5 kΩ

B

2 kΩ
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2 Chapter 2 Solutions 2.1 Equivalent Resistance

The equivalent resistance can be calculated using parallel and series combinations.

REQ = ((2 kΩ)//(2.5 kΩ) + (1 kΩ)//(5 kΩ))//5 kΩ

= (1.11 kΩ + 0.83 kΩ)//5 kΩ

= 1.94 kΩ//5 kΩ

= 1.4 kΩ

4. Use the circuit diagram shown in figure 2.5 to calculate the equivalent resistance between

nodes b and c. Each resistor has a value of 1 kΩ.

a

b

c

Figure 2.5: Circuit diagram for equivalent resistance questions 4.

Re-draw the circuit.

1 kΩ

1 kΩ

1 kΩ

1 kΩ

1 kΩ

b

1 kΩ

c
1 kΩ

The equivalent resistance can be calculated using parallel and series combinations.

REQ = ((3 kΩ//1 kΩ) + 2 kΩ)//1 kΩ

= (0.75 kΩ + 2 kΩ)//1 kΩ

= 2.75 kΩ//1 kΩ

= 0.73 kΩ
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2 Chapter 2 Solutions 2.1 Equivalent Resistance

5. Calculate the equivalent resistance of the resistors shown in figure 2.6.

10 kΩ 4.7 kΩ

1.8 kΩ

24 kΩ

18 kΩ
2 kΩ

6.8 kΩ
5.6 kΩ

Figure 2.6: Circuit diagram for equivalent resistance question 5.

Combine all series resistances and re-draw.

10 kΩ

1.8 kΩ

24 kΩ

22.7 kΩ
2 kΩ

12.4 kΩ

Either a wye-delta transform or a delta-wye transform can be done to reduce the circuit. The following

solution utilizes a wye-delta transform.

10 kΩ

1.8 kΩ

24 kΩ

b

22.7 kΩ

a
2 kΩ

12.4 kΩ

c

Calculate each of the delta resistances.

R1 =
(2 kΩ)(12.4 kΩ) + (12.4 kΩ)(22.7 kΩ) + (2 kΩ)(22.7 kΩ)

12.4 kΩ
= 28.36 kΩ

R2 =
(2 kΩ)(12.4 kΩ) + (12.4 kΩ)(22.7 kΩ) + (2 kΩ)(22.7 kΩ)

2 kΩ
= 175.84 kΩ

R3 =
(2 kΩ)(12.4 kΩ) + (12.4 kΩ)(22.7 kΩ) + (2 kΩ)(22.7 kΩ)

22.7 kΩ
= 15.49 kΩ

Re-draw the circuit.
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2 Chapter 2 Solutions 2.2 Ohm’s Law

10 kΩ

1.8 kΩ

24 kΩ

b

175.84 kΩa

28.36 kΩ

15.49 kΩ

c

The equivalent resistance can be calculated using series and parallel combinations.

REQ = 10 kΩ + ((1.8 kΩ//28.36 kΩ) + (24 kΩ//15.49 kΩ))//157.84 kΩ

= 10 kΩ + (1.69 kΩ + 9.41 kΩ)//175.84 kΩ

= 10 kΩ + 11.11 kΩ//175.84 kΩ

= 10 kΩ + 10.45 kΩ

= 20.45 kΩ

2.2 Ohm’s Law

6. If the voltage source can supply a maximum current of 2 A, what is the minimum value of

RX that can be used in the circuit shown in figure 2.7.

−
+10 V

1.3 Ω

RX

Figure 2.7: Circuit diagram for Ohm’s law question 6.

Use Ohm’s law.

R =
V

I

1.3 Ω +RX =
10 V

2 A

= 5 Ω

RX = 3.7 Ω

cbna Alyssa J. Pasquale, Ph.D. 21 Last updated: 2025/03/17
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7. Calculate IX in the circuit shown in figure 2.8.

IS 8 kΩ

−

+

25 V

IX

20 kΩ

−
+VS

Figure 2.8: Circuit diagram for Ohm’s law question 7.

Use Ohm’s law. Pay attention to the direction of current flow, which is defined opposite to the direction

of the voltage.

IX =
−25 V

8 kΩ
= −3.125 mA

8. Calculate the amount of power consumed by the 20 Ω resistor in the circuit shown in

figure 2.9.

8 mA 20 Ω 5 Ω

Figure 2.9: Circuit diagram for Ohm’s law question 8.

Calculate the equivalent resistance of the circuit to determine the voltage dropped over each resistor.

REQ =
(20 Ω)(5 Ω)

20 Ω + 5 Ω)
= 4 Ω

V = (0.008 A)(4 Ω) = 0.032 V

Use the power equation to determine the power consumed by the 20 Ω resistor.

P =
V 2

R

=
(0.032 V)2

20 Ω

=
0.001024 V2

20 Ω

= 51.2× 10−6 W

= 51.2 µW
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9. Calculate the amount of power supplied by the load in the circuit shown in figure 2.10.

5 A 10 Ω

50 Ω

100 Ω

Figure 2.10: Circuit diagram for Ohm’s law question 9.

Calculate the equivalent resistance of the circuit.

REQ = (10 Ω)//(50 Ω + 100 Ω)

= (10 Ω)//(150 Ω)

= 9.375 Ω

Use the power equation to calculate the power supplied by the load.

P = I2R

= (5 A)2(9.375 Ω)

= 234.375 W

10. Calculate the minimum value of R that can be used to keep the power consumed by either

resistor to less than or equal to 250 mW in the circuit shown in figure 2.11.

−
+20 V

R

R

Figure 2.11: Circuit diagram for Ohm’s law question 10.
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Each resistor will experience a voltage drop of 10 V. Use the power equation to solve for R.

R =
V 2

P

=
(10 V)2

0.25 W

=
100 V2

0.25 W

= 400 Ω

2.3 Voltage and Current Divider

11. Use the voltage divider rule to calculate VX in the circuit shown in figure 2.12.

−
+7.2 V

3 kΩ

6 kΩ

+

−

VX

Figure 2.12: Circuit diagram for voltage and current divider question 11.

Use the voltage divider rule.

VX = 7.2 V

(
6 kΩ

3 kΩ + 6 kΩ

)
= 7.2 V(0.67)

= 4.8 V

12. Use the current divider rule to calculate IX in the circuit shown in figure 2.13.

500 mA 42 Ω 12 Ω 24 Ω

IX

Figure 2.13: Circuit diagram for voltage and current divider question 12.
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Calculate the equivalent resistance of the circuit.

REQ =
1

( 1
42 Ω ) + ( 1

12 Ω ) + ( 1
24 Ω )

= 6.72 Ω

Use the current divider rule.

IX = 500 mA

(
6.72 Ω

24 Ω

)
= 140 mA

13. Use the voltage divider rule to calculate VX in the circuit shown in figure 2.14.

−
+8 V

220 Ω

330 Ω

100 Ω

470 Ω

+

−

VX

Figure 2.14: Circuit diagram for voltage and current divider question 13.

Use a voltage divider to calculate the voltage dropped over the 300 Ω resistor.

VA = 8 V

(
(330 Ω)//(100 Ω + 470 Ω)

220 Ω + (330 Ω)//(100 Ω + 470 Ω)

)
= 8 V

(
209 Ω

220 Ω + 209 Ω

)
= 3.90 V

The circuit can now be re-drawn.

+

−

3.90 V

100 Ω

470 Ω

+

−

VX
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Use a voltage divider to calculate VX .

VX = 3.90 V

(
470 Ω

100 Ω + 470 Ω

)
= 3.21 V

14. Use the current divider rule to calculate IX in the circuit shown in figure 2.15.

210 mA 400 Ω

25 Ω

200 Ω 150 Ω

IX

Figure 2.15: Circuit diagram for voltage and current divider question 14.

Use the current divider rule to calculate the current flowing through the 25 Ω resistor.

IA = 210 mA

(
400 Ω//(200 Ω//150 Ω + 25 Ω)

200 Ω//150 Ω + 25 Ω

)
= 210 mA

(
400 Ω//110.71 Ω

110.71 Ω

)
= 210 mA

(
86.71 Ω

110.71 Ω

)
= 164.48 mA

The circuit can be re-drawn.

164.48 mA

200 Ω 150 Ω

IX

Use a current divider to calculate IX .

IA = 164.48 mA

(
200 Ω//150 Ω

150 Ω

)
= 164.48 mA

(
85.71 Ω

110.71 Ω

)
= 93.99 mA
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15. Use the voltage divider rule to calculate VX1 and VX2 in the circuit shown in figure 2.16.

−
+VS

R4

R5

R6

R7

+

−

VX2

R1R2

R3

+

−

VX1

Figure 2.16: Circuit diagram for voltage and current divider question 15.

Both “halves” of the circuit are in parallel with each other. From a perspective of voltage, they can be

treated independently. Re-draw the left-half of the circuit to calculate VX1.

−
+VS

R1R2

R3

+

−

VX1

Use a voltage divider to solve for VX1.

VX1 = VS

(
R3

R1 +R2 +R3

)

Re-draw the right-half of the circuit to calculate VX2.

−
+VS

R4

R5

R6

R7

+

−

VX2

Use a voltage divider to calculate the voltage dropped over resistor R5.

VA = VS

(
R5//(R6 +R7)

R4 +R5//(R6 +R7)

)

The circuit can be re-drawn.
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+

−

VS

(
R5//(R6+R7)

R4+R5//(R6+R7)

)
R6

R7

+

−

VX2

Use a voltage divider to calculate VX2.

VX2 = VS

(
R5//(R6 +R7)

R4 +R5//(R6 +R7)

)(
R7

R6 +R7

)

2.4 Kirchhoff’s Laws

16. Calculate VX in the circuit shown in figure 2.17.

−
+5 V

+ −
2 V

+

−

VX

Figure 2.17: Circuit diagram for Kirchhoff’s laws question 16.

Use KVL to solve for VX .

5 V = 2 V + VX

3 V = VX

17. Calculate IX in the circuit shown in figure 2.18.

10 mA

4 mA IX

Figure 2.18: Circuit diagram for Kirchhoff’s laws question 17.
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Use KCL to solve for IX .

10 mA = 4 mA+ IX

6 mA = IX

18. Calculate IX in the circuit shown in figure 2.19.

−
+5 V

1 kΩ

100 Ω

IX

1 kΩ

−
+3 V

Figure 2.19: Circuit diagram for Kirchhoff’s laws question 18.

Re-draw the circuit to define each branch current.

−
+5 V

1 kΩ I1

100 Ω

IX

1 kΩ I2

−
+3 V

Perform KCL at the node connecting each of the three resistors.

I1 − IX − I2 = 0

Perform KVL around the left loop, and then perform KVL around the right loop. (All units are in V,

mA, and kΩ.)

5 = I1 + 0.1Ix

−3 = −0.1IX + I2

Place all three equations into form αI1 + βI2 + γIX = c, and then place each coefficient into a matrix.
1 −1 −1 0

1 0 0.1 5

0 1 −0.1 −3


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Solve the matrix. IX = 6.67 mA.

19. Calculate VX in the circuit shown in figure 2.20.

−
+10 V

100 Ω

50 Ω

−+

2 V
200 Ω

1 kΩ

+

−

VX

Figure 2.20: Circuit diagram for Kirchhoff’s laws question 19.

Re-draw the circuit to define each branch current

−
+10 V

100 Ω I1

50 Ω

I2

−+

2 V
200 Ω I3

1 kΩ

+

−

VX

Perform KCL at the node connecting the 100 Ω resistor, the 50 Ω resistor, and the 2 V source.

I1 − I2 − I3 = 0

Perform KVL around the left loop, and then perform KVL around the right loop. (All units are in V,

mA, and kΩ.)

10 = 0.1I1 + 0.05I2

−2 = −0.05I2 + 1.2I3

Place all three equations into form αI1 + βI2 + γI3 = c, and then place each coefficient into a matrix.
1 −1 −1 0

0.1 0.05 0 10

0 −0.05 1.2 −2


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Solve the matrix for I3, which is 1.08 mA. Then use Ohm’s law to calculate VX .

VX = (1.08 mA)(1 kΩ)

= 1.08 V

20. Calculate VX in the circuit shown in figure 2.21.

0.2IX

20 kΩ

48 kΩ

+

−

VX

IX

100 kΩ

−
+ 320 V

Figure 2.21: Circuit diagram for Kirchhoff’s laws question 20.

Note that the branch current through the 20 kΩ resistor is equal to 0.2IX . The only branch current that

needs to be defined is the branch current through the 100 kΩ resistor, defined here as I2. Perform KCL at

the node connecting the three resistors.

0.2IX − IX − I2 = 0

The only perfect loop is the right-hand loop. Perform KVL around the loop. (All units are in V, mA,

and kΩ.)

−48IX + 100I2 = −320

Place all equations into form αIX + βI2 = c, and then place each coefficient into a matrix.−0.8 −1 0

−48 100 −320


Solve the matrix for IX , which is 2.5 mA. Then use Ohm’s law to calculate VX .

VX = (2.5 mA)(48 kΩ)

= 120 V
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2.5 Mesh Analysis

21. Calculate mesh currents IA and IB in the circuit shown in figure 2.22.

10 mA

2 mA

IA IB

Figure 2.22: Circuit diagram for mesh analysis question 21.

Because mesh IA contains a current source, IA = 10 mA. Use the relationship between branch and mesh

currents to calculate IB .

IA − IB = 2 mA

10 mA− IB = 2 mA

−IB = −8 mA

IB = 8 mA

22. A branch is shared by two clockwise meshes. The left mesh current is 3 A and the right

mesh current is –6 A. Calculate the branch current.

Draw the circuit to define the meshes and branch.

IX

3 A –6 A

Use the relationship between branch and mesh currents to calculate IX .

IX = 3 A− (−6 A)

= 9 A
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23. Calculate mesh current IX in the circuit shown in figure 2.23. Assume that each mesh

contains at least one linear circuit element.

I1 I2 I3

I4 IX I5

I6 I7 I8

Figure 2.23: Circuit diagram for mesh analysis question 23.

Note that all of the numbered mesh currents are also branch currents. The only mesh current that isn’t

a branch current is in the center (IX). Use the relationship between branch and mesh currents to calculate

IX .

IX = −I2 − I4 − I5 − I7

24. Use mesh analysis to calculate VX in the circuit shown in figure 2.20 (in the Kirchhoff’s

laws section).

Draw the circuit to define the mesh currents.

−
+10 V

100 Ω

50 Ω

−+

2 V
200 Ω

1 kΩ

+

−

VXIA IB

Derive the mesh equations. (All units are in V, mA, and kΩ.)

10 = 0.1IA + 0.05(IA − IB)

−2 = 0.05(IB − IA) + 1.2IB

Place all equations into form αIA + βIB = c, and then place each coefficient into a matrix. 0.15 −0.05 10

−0.05 1.25 −2


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Solve the matrix for IB , which is 1.08 mA. Then use Ohm’s law to calculate VX .

VX = (1.08 mA)(1 kΩ)

= 1.08 V

Note that this should be the same answer as question 19, and it is.

25. Use mesh analysis to calculate VX in the circuit shown in figure 2.24.

−
+20 V

10 Ω

20 Ω

+

−

VX

60 Ω

8 mA 10 Ω

Figure 2.24: Circuit diagram for mesh analysis question 25.

Redraw the circuit to define the mesh currents. (Note that some parameter values have been removed to

make it easier to read the mesh current labels.)

−
+20 V

10 Ω

+

−

VX

60 Ω

10 ΩIA IB IC

Derive equations for the left mesh and the supermesh. (All units are in V, A, and Ω.)

20 = 10IA + 20(IA − IB)

0 = 20(IB − IA) + 60IB + 10IC

Derive a KCL equation at the intersecting node of the supermesh.

IB + 0.008− IC = 0
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Place all three equations into form αIA + βIB + γIC = c, and then place each coefficient into a matrix.
30 −20 0 20

−20 80 10 0

0 1 −1 −0.008


Solve the matrix for IA and IB .

IA = 0.782 A

IB = 0.173 A

Use Ohm’s law to calculate VX .

VX = (0.782 A− 0.173 A)(20 Ω)

= 12.18 V
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3 Chapter 3 Solutions

3.1 Superposition

1. Use superposition to calculate VX in the circuit shown in figure 3.1.

−
+13 V

390 Ω

560 Ω

+

−

VX 22 mA

Figure 3.1: Circuit diagram for superposition question 1.

Draw the circuit with only the voltage source activated.

−
+13 V

390 Ω

560 Ω

+

−

VX1

Use the voltage divider rule to calculate VX1.

VX1 = 13 V

(
560 Ω

390 Ω + 560 Ω

)
= 7.66 V

Draw the circuit with only the current source activated.

390 Ω

560 Ω

+

−

VX2 22 mA
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Combine the resistors in parallel and use Ohm’s law to calculate VX2.

VX2 = (560 Ω//390 Ω)(0.022 A)

= (229.89 Ω)(0.022 mA)

= 5.06 V

Add the two values to find the voltage VX .

VX = VX1 + VX2

= 7.66 V + 5.06 V

= 12.72 V

2. Use superposition to calculate VX in the circuit shown in figure 3.2.

−
+20 V

100 Ω
24 mA

400 Ω

200 Ω

600 Ω

700 Ω

+ −
VX

Figure 3.2: Circuit diagram for superposition question 2.

Draw the circuit with only the voltage source activated.

−
+20 V

100 Ω 400 Ω 200 Ω

600 Ω

700 Ω

+ −
VX1

Combine resistors in series and re-draw.
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−
+20 V

1300 Ω

700 Ω

−

+

VX1

Use the voltage divider rule to calculate VX1.

VX1 = −20 V

(
700 Ω

1300 Ω + 700 Ω

)
= −7 V

Draw the circuit with only the current source activated.

100 Ω
24 mA

400 Ω

200 Ω

600 Ω

700 Ω

+ −
VX2

Combine resistors in series and re-draw.

24 mA

400 Ω

900 Ω

700 Ω

+ −
VX2
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Use the current divider rule to calculate the current flowing through the 700 Ω resistor.

I = 24 mA

(
400 Ω//1600 Ω

1600 Ω

)
= 24 mA

(
320 Ω

1600 Ω

)
= 4.8 mA

Use Ohm’s law to calculate VX2.

VX2 = (4.8 mA)(0.7 kΩ)

= 3.36 V

Add the two values to find the voltage VX .

VX = VX1 + VX2

= −7 V + 3.36 V

= −3.64 V

3. Use superposition to calculate IX in the circuit shown in figure 3.3.

6 mA 18 kΩ

12 kΩ

−
+24 V

− +

5 V
1 kΩ

10 kΩ

IX

Figure 3.3: Circuit diagram for superposition question 3.

Draw the circuit with only the current source activated.

6 mA 18 kΩ 12 kΩ

1 kΩ

10 kΩ

IX1

cbna Alyssa J. Pasquale, Ph.D. 39 Last updated: 2025/03/17



3 Chapter 3 Solutions 3.1 Superposition

Use the current divider rule to calculate IX1.

IX1 = 6 mA

(
18 kΩ//12 kΩ//11 kΩ

11 kΩ

)
= 6 mA

(
4.35 kΩ

11 kΩ

)
= 2.37 mA

Draw the circuit with only the 24 V source activated.

18 kΩ

12 kΩ

−
+24 V

1 kΩ

10 kΩ

IX2

Use the voltage divider rule to calculate the voltage dropped over the 18 kΩ resistor.

V = 24 V

(
18 kΩ//11 kΩ

12 kΩ + 18 kΩ//11 kΩ

)
= 24 V

(
6.83 kΩ

12 kΩ + 6.83 kΩ

)
= 8.70 V

Use Ohm’s law to calculate IX2.

IX2 =
8.70 V

11 kΩ

= 0.79 mA

Draw the circuit with only the 5 V source activated.

18 kΩ 12 kΩ

− +

5 V
1 kΩ

10 kΩ

IX3

Combine resistors in series and parallel, and re-draw.
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7.2 kΩ

− +

5 V

11 kΩ

IX3

Use the Ohm’s law to calculate IX3.

IX3 =
5 V

11 kΩ + 7.2 kΩ

= 0.27 mA

Add the three values to find the current IX .

IX = IX1 + IX2 + IX3

= 2.37 mA + 0.79 mA + 0.27 mA

= 3.43 mA

4. Use superposition to calculate VX in the circuit shown in figure 3.4.

−
+40 V

10 Ω

0.3VX 10 Ω

10 Ω

10 Ω

+

−

VX 2 A

Figure 3.4: Circuit diagram for superposition question 4.

Draw the circuit with only the voltage source activated.

−
+40 V

10 Ω

0.3VX1 10 Ω

10 Ω

10 Ω

+

−

VX1

Use mesh analysis. Define the left mesh as IA, the center mesh as IB , and the right mesh as IC . Calculate
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the supermesh and mesh equations. (All units are in V, A, and Ω.)

40 = 10IA + 10(IB − IC)

0 = 10(IC − IB) + 20IC

Perform KCL at the node between the supermesh.

0 = IA + 0.3VX1 − IB

Derive a dependent source equation.

VX1 = 10IC

Place all four equations into form αIA + βIB + γIC + δVX1 = c, and then place each coefficient into a

matrix. 
10 10 −10 0 40

0 −10 30 0 0

1 −1 0 0.3 0

0 0 −10 1 0


Solve the matrix for VX1.

VX1 = 20 V

Draw the circuit with only the current source activated.

10 Ω

0.3VX 10 Ω

10 Ω

10 Ω

+

−

VX 2 A

Combine resistors in parallel.

0.3VX2 5 Ω

10 Ω

10 Ω

+

−

VX2 2 A

cbna Alyssa J. Pasquale, Ph.D. 42 Last updated: 2025/03/17



3 Chapter 3 Solutions 3.1 Superposition

Use mesh analysis. Define the center mesh as IA. Both other meshes contain a current source. Calculate

the mesh equation for the center mesh. (All units are in V, A, and Ω.)

0 = 5(IA − 0.3VX2) + 10IA + 10(IA + 2)

Derive a dependent source equation.

VX2 = 10(IA + 2)

Place both equations into form αIA + βVX2 = c, and then place each coefficient into a matrix. 25 −1.5 −20

−10 1 20


Solve the matrix for VX2.

VX2 = 30 V

Add the two values to find the current VX .

VX = VX1 + VX2

= 20 V + 30 V

= 50 V

5. Use superposition to calculate VX in the circuit shown in figure 3.5.

12 mA 1 kΩ

IX

1 kΩ

1 kΩ

−
+18 V

1 kΩ

+ −
VX

1 kΩ 0.4IX

Figure 3.5: Circuit diagram for superposition question 5.

Draw the circuit with only the current source activated.
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12 mA 1 kΩ

IX1

1 kΩ

1 kΩ

1 kΩ

+ −
VX1

1 kΩ 0.4IX1

Use mesh analysis. Each mesh is defined below. (Note that some component values have been hidden so

that the mesh labels can be read.)

12 mA

IX1

1 kΩ 1 kΩ

+ −
VX1

12 mA IA IB –0.4IX1

Derive the mesh equations. (All units are in V, mA, and kΩ.)

0 = (IA − 12) + IA + (IA − IB)

0 = (IB − IA) + IB + (IB + 0.4IX1)

Derive a dependent source equation.

IX1 = 12− IA

Place all three equations into form αIA + βIB + γIX1 = c, and then place each coefficient into a matrix.
3 −1 0 12

−1 3 0.4 0

1 0 1 12


Solve the matrix for IB and use Ohm’s law to calculate VX1.

VX1 = (1 kΩ)(IB)

= (1 kΩ)(0.32 mA)

= 0.32 V

Draw the circuit with only the voltage source activated.
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1 kΩ

IX2

1 kΩ

1 kΩ

−
+18 V

1 kΩ

+ −
VX2

1 kΩ 0.4IX2

Use mesh analysis. Each mesh is defined below. (Note that some component values have been hidden so

that the mesh labels can be read.)

1 kΩ

IX2

1 kΩ

1 kΩ

−
+18 V

1 kΩ

+ −
VX2

IA IB –0.4IX2

Derive the mesh equations. (All units are in V, mA, and kΩ.)

−18 = IA + IA + (IA − IB)

18 = (IB − IA) + IB + (IB + 0.4IX2)

Derive a dependent source equation.

IX2 = −IA

Place all three equations into form αIA + βIB + γIX2 = c, and then place each coefficient into a matrix.
3 −1 0 −18

−1 3 0.4 18

1 0 1 0


Solve the matrix for IB and use Ohm’s law to calculate VX2.

VX2 = (1 kΩ)(IB)

= (1 kΩ)(3.79 mA)

= 3.79 V
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Add the two values to find the current VX .

VX = VX1 + VX2

= 0.32 V + 3.79 V

= 4.11 V

3.2 Source Transformation

6. Use source transformation to calculate VX in the circuit shown in figure 3.1 (in the super-

position section).

−
+13 V

390 Ω

560 Ω

+

−

VX 22 mA

Convert the 13 V source to a current source.

IS =
13 V

0.39 kΩ

= 33.33 mA

Re-draw the circuit.

33.33 mA 390 Ω 560 Ω

+

−

VX 22 mA

Combine current sources and parallel resistors and re-draw.

55.33 mA 229.89 Ω

+

−

VX
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Use Ohm’s law to calculate VX .

VX = (55.33 mA)(0.22989 kΩ)

= 12.72 V

This answer should be and is identical to question 1 in the superposition section.

7. Use source transformation to calculate VX in the circuit shown in figure 3.2 (in the super-

position section).

−
+20 V

100 Ω
24 mA

400 Ω

200 Ω

600 Ω

700 Ω

+ −
VX

Convert the 24 mA source to a voltage source.

VS = (24 mA)(0.4 kΩ)

= 9.6 V

−
+20 V

100 Ω

−+

9.6 V
400 Ω 200 Ω

600 Ω

700 Ω

+ −
VX

Combine voltage sources and series resistors and re-draw.
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−
+10.4 V

1300 Ω

700 Ω

+ −
VX

Use the voltage divider rule to solve for VX .

VX = −10.4 V

(
700 Ω

1300 Ω + 700 Ω

)
= −3.64 V

This answer should be and is identical to question 2 in the superposition section.

8. Use source transformation to calculate IX in the circuit shown in figure 3.3 (in the super-

position section).

6 mA 18 kΩ

12 kΩ

−
+24 V

− +

5 V
1 kΩ

10 kΩ

IX

Convert the 24 V source into a current source.

IS =
24 V

12 kΩ

= 2 mA

Re-draw the circuit.

6 mA 18 kΩ 12 kΩ2 mA

− +

5 V
1 kΩ

10 kΩ

IX
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Combine current sources and parallel resistors.

8 mA 7.2 kΩ

− +

5 V
1 kΩ

10 kΩ

IX

Convert the 8 mA source into a voltage source.

VS = (8 mA)(7.2 kΩ)

= 57.6 V

Re-draw the circuit.

−
+57.6 V

7.2 kΩ − +

5 V
1 kΩ

10 kΩ

IX

Combine voltage sources and series resistors.

−
+62.6 V 18.2 kΩ

IX

Use Ohm’s law to calculate IX .

IX =
62.6 V

18.2 kΩ

= 3.44 mA

This answer should be and is identical to question 3 in the superposition section.
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9. Use source transformation to calculate VX in the circuit shown in figure 3.4 (in the super-

position section).

−
+40 V

10 Ω

0.3VX 10 Ω

10 Ω

10 Ω

+

−

VX 2 A

Convert the 40 V source to a current source.

IS =
40 V

10 Ω

= 4 A

4 A 10 Ω 0.3VX 10 Ω

10 Ω

10 Ω

+

−

VX 2 A

Combine sources and resistors.

4 A + 0.3VX 5 Ω

10 Ω

10 Ω

+

−

VX 2 A

Convert the 4 A + 0.3VX source into a voltage source.

VS = (4 A + 0.3VX)(5 Ω)

= 20 V + 1.5VX

Re-draw the circuit.
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−
+20 V + 1.5VX

5 Ω 10 Ω

10 Ω

+

−

VX 2 A

Combine resistors in series.

−
+20 V + 1.5VX

15 Ω

10 Ω

+

−

VX 2 A

Convert the 20 V + 1.5VX source to a current source.

IS =
20 V + 1.5VX

15 Ω

= 1.33 A + 0.1VX

Re-draw the circuit.

1.33 A + 0.1VX 15 Ω 10 Ω

+

−

VX 2 A

Combine sources and resistors and re-draw the circuit.

3.33 A + 0.1VX 6 Ω

+

−

VX

cbna Alyssa J. Pasquale, Ph.D. 51 Last updated: 2025/03/17



3 Chapter 3 Solutions 3.2 Source Transformation

Calculate VX .

VX = (3.33 A + 0.1VX)(6 Ω)

= 20 V + 0.6VX

0.4VX = 20 V

VX =
20 V

0.4

= 50 V

This answer should be and is identical to question 4 in the superposition section.

10. Use source transformation to calculate VX and VY in the circuit shown in figure 3.6.

−
+

2VX

20 Ω

10 Ω 0.5 A

− +

3VY
40 Ω

+ −
VY

50 Ω

+

−

VX

Figure 3.6: Circuit diagram for source transformation question 10.

Convert the 2VX source into a current source.

IS =
2VX

20 Ω

= 0.1VX

Re-draw the circuit.

0.1VX 20 Ω 10 Ω 0.5 A

− +

3VY
40 Ω

+ −
VY

50 Ω

+

−

VX

Combine sources and resistors and re-draw the circuit.
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0.5 A + 0.1VX 6.67 Ω

− +

3VY
40 Ω

+ −
VY

50 Ω

+

−

VX

Convert the 0.5 A + 0.1VX source into a voltage source.

VS = (0.5 A + 0.1VX)(6.67 Ω)

= 3.33 V + 0.67VX

Re-draw the circuit.

−
+3.33 V + 0.67VX

6.67 Ω − +

3VY
40 Ω

+ −
VY

50 Ω

+

−

VX

Combine the voltage sources and re-draw.

−
+3.33 V + 0.67VX + 3VY

6.67 Ω 40 Ω

+ −
VY

50 Ω

+

−

VX

Use the voltage divider rule to find equations for VX and VY . (All units are in V, A, and Ω.)

VX = (3.33 + 0.67VX + 3VY )

(
40

96.67

)
VY = (3.33 + 0.67VX + 3VY )

(
50

96.67

)

Place both equations into form αVX + βVY = c, and then place each coefficient into a matrix.−0.28 −0.24 1.38

0.66 −1.55 1.72


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Solve the matrix for VX and VY .

VX = −2.94 V

VY = −2.35 V

3.3 Thévenin and Norton’s Theorems

11. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 3.7.

−
+10 V

60 Ω

10 Ω

30 Ω

a b

Figure 3.7: Circuit diagram for Thévenin and Norton’s theorems question 11.

Use the voltage divider rule to calculate the Thévenin equivalent voltage.

VTH = −10 V

(
30 Ω

100 Ω

)
= −3 V

Deactivate the voltage source and calculate the equivalent resistance as seen between nodes a and b.

RTH = 30 Ω//(10 Ω + 60 Ω)

= 30 Ω//70 Ω

= 21 Ω

Draw the Thévenin equivalent circuit.

−
+3 V

21 Ω
a

b
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3 Chapter 3 Solutions 3.3 Thévenin and Norton’s Theorems

12. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in

figure 3.8.

−
+3 V

1.5 kΩ

2.2 kΩ 26 mA

a

b

Figure 3.8: Circuit diagram for Thévenin and Norton’s theorems question 12.

Use Source transformation to convert the 3 V source into a current source.

IS =
3 V

1.5 kΩ

= 2 mA

Re-draw the circuit.

2 mA 1.5 kΩ 2.2 kΩ 26 mA

a

b

Combine both resistors and both current sources and re-draw the circuit, which is the Norton equivalent

circuit.

28 mA 891.89 Ω

a

b

cbna Alyssa J. Pasquale, Ph.D. 55 Last updated: 2025/03/17



3 Chapter 3 Solutions 3.3 Thévenin and Norton’s Theorems

13. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 3.9.

−
+6 V

3 kΩ

IX

5 kΩ 1 kΩ 4IX

a b

Figure 3.9: Circuit diagram for Thévenin and Norton’s theorems question 13.

Use Ohm’s law to calculate IX .

IX =
6 V

8 kΩ

= 0.75 mA

Use the voltage divider rule to calculate Va.

Va = 6 V

(
5 kΩ

8 kΩ

)
= 3.75 V

Use Ohm’s law to calculate Vb.

Vb = (1 kΩ)(−4IX)

= (1 kΩ)(−4(0.75 mA))

= (1 kΩ)(−3 mA))

= −3 V

The Thévenin equivalent voltage is equal to Va − Vb.

VTH = 3.75 V− (−3 V)

= 6.75 V

Short nodes a and b together and use mesh analysis to solve for ISC . (Note: some of the component

labels have been hidden so that the mesh current labels can be read.)
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−
+6 V

3 kΩ

IX

4IX
IX ISC 4IX

Use the left and middle meshes to derive mesh equations. (All units are in V, mA, and kΩ.)

6 = 3IX + 5(IX − ISC)

0 = 5(ISC − IX) + (ISC − 4IX)

Place both equations into form αISC + βIX = c, and then place each coefficient into a matrix.−5 8 6

6 −9 0


Solve the matrix for ISC .

ISC = 18 mA

Use Ohm’s law to calculate the Thévenin equivalent resistance.

RTH =
6.75 V

18 mA

= 375 Ω

Draw the Thévenin equivalent circuit.

−
+6.75 V

375 Ω
a

b
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14. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 3.10.

−
+2 V

200 Ω

100 Ω

IX

400 Ω

4IX 800 Ω

200 Ω

ab

Figure 3.10: Circuit diagram for Thévenin and Norton’s theorems question 14.

Use mesh analysis to calculate the Thévenin equivalent voltage. (Note: some of the component labels

have been hidden so that the mesh current labels can be read.)

−
+2 V

200 Ω

IX

400 Ω

800 Ω

200 Ω

ab

IA IB IC

Derive mesh equations. (All units are in V, mA, and kΩ.)

2 = 0.2IA + 0.1(IA − IB)

0 = 0.1(IB − IA) + 0.6IB + 0.8IC

Perform KCL at the node connecting the supermesh.

0 = IB + 4IX − IC

Derive a dependent source equation.

IX = IA − IB

Place all four equations into form αIA + βIB + γIC + δIX = c, and then place each coefficient into a
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matrix. 
0.3 −0.1 0 0 2

−0.1 0.7 0.8 0 0

0 1 −1 4 0

−1 1 0 1 0


Solve the matrix for IB .

IB = 31 mA

Use Ohm’s law to calculate VTH .

VTH = (31 mA)(0.2 kΩ)

= 6.2 V

Short nodes a and b together and use mesh analysis to calculate ISC . (Note: some of the component

labels have been hidden so that the mesh current labels can be read.)

−
+2 V

200 Ω

IX

400 Ω

800 Ω

ab

IA ISC IB

Derive mesh equations. (All units are in V, mA, and kΩ.)

2 = 0.2IA + 0.1(IA − ISC)

0 = 0.1(ISC − IA) + 0.4ISC + 0.8IB

Perform KCL at the node connecting the supermesh.

0 = ISC + 4IX − IB

Derive a dependent source equation.

IX = IA − ISC

Place all four equations into form αIA + βISC + γIB + δIX = c, and then place each coefficient into a
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matrix. 
0.3 −0.1 0 0 2

−0.1 0.5 0.8 0 0

0 1 −1 4 0

−1 1 0 1 0


Solve the matrix for ISC .

ISC = 23.851 mA

Use Ohm’s law to calculate RTH .

RTH =
6.2 V

23.85 mA

= 260 Ω

Draw the Thévenin equivalent circuit.

−
+6.2 V

260 Ω
a

b

15. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in

figure 3.11.

−
+20 V

50 Ω

IX

200 Ω

−
+

10VX 0.5IX 100 Ω

+

−

VX

a

b

Figure 3.11: Circuit diagram for Thévenin and Norton’s theorems question 15.

Combine resistors and voltage sources in series and re-draw.
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−
+20 V – 10VX

250 Ω

IX

0.5IX 100 Ω

+

−

VX

a

b

Use Ohm’s law to calculate IX .

IX =
20 V− 10VX

250 Ω

= 0.08 A− 0.04VX

Use Ohm’s law to calculate VX , which is the open-circuit voltage.

VX = (100 Ω)(0.5IX)

= (100 Ω)(0.5)(0.08 A− 0.04VX)

= 4 V− 2VX

3VX = 4 V

VX = 1.33 V

Short the nodes between a and b and re-draw the circuit. Because VX is zero, the VCVS contributes no

voltage to the circuit.

−
+20 V

250 Ω

IX

0.5IX IN

a

b

Use Ohm’s law to calculate IX .

IX =
20 V

250 Ω

= 0.08 A
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Use KCL to calculate IN .

IN = 0.5IX

= 0.5(0.08 A)

= 0.04 A

Use Ohm’s law to calculate RN .

RN =
1.33 V

0.04 A

= 33.33 Ω

Draw the Norton equivalent circuit.

0.04 A 33.33 Ω

a

b

3.4 Maximum Power Transfer

16. Calculate the resistance for maximum power transfer, and the maximum amount of power

transferred to the load under that condition, for the circuit shown in figure 3.7 (in the Thévenin

and Norton’s theorem section).

−
+3 V

21 Ω
a

b

RLOAD will be equal to the Thévenin equivalent resistance of 21 Ω. Calculate the maximum power
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transferred to the load.

PMAX =
V 2
TH

4RTH

=
(−3 V)2

4(21 Ω)

= 0.107 W

17. Calculate the resistance for maximum power transfer, and the maximum amount of power

transferred to the load under that condition, for the circuit shown in figure 3.8 (in the Thévenin

and Norton’s theorem section).

28 mA 891.89 Ω

a

b

RLOAD will be equal to the Norton equivalent resistance of 891.89 Ω. Calculate the maximum power

transferred to the load.

PMAX =
I2NRN

4

=
(0.028 A)2(891.89 Ω)

4

= 0.175 W

18. Calculate the resistance for maximum power transfer, and the maximum amount of power

transferred to the load under that condition, for the circuit shown in figure 3.9 (in the Thévenin

and Norton’s theorem section).

−
+6.75 V

375 Ω
a

b

RLOAD will be equal to the Thévenin equivalent resistance of 375 Ω. Calculate the maximum power
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transferred to the load.

PMAX =
V 2
TH

4RTH

=
(6.75 V)2

4(375 Ω)

= 0.03 W

19. Calculate the resistance for maximum power transfer, and the maximum amount of power

transferred to the load under that condition, for the circuit shown in figure 3.10 (in the

Thévenin and Norton’s theorem section).

−
+6.2 V

260 Ω
a

b

RLOAD will be equal to the Thévenin equivalent resistance of 260 Ω. Calculate the maximum power

transferred to the load.

PMAX =
V 2
TH

4RTH

=
(6.2 V)2

4(260 Ω)

= 0.37 W

Calculate the resistance for maximum power transfer, and the maximum amount of power

transferred to the load under that condition, for the circuit shown in figure 3.11 (in the

Thévenin and Norton’s theorem section).

0.04 A 33.33 Ω

a

b

RLOAD will be equal to the Norton equivalent resistance of 33.33 Ω. Calculate the maximum power
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transferred to the load.

PMAX =
I2NRN

4

=
(0.04 A)2(33.33 Ω)

4

= 0.013 W
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4 Chapter 4 Solutions

1. Calculate the output voltage and gain of the circuit shown in figure 4.1. (Assume that the

supply voltage is sufficient to generate any output value.)

−

+

VOUT

−
+0.5 V

1 kΩ

6 kΩ

Figure 4.1: Circuit diagram for op-amps question 1.

This circuit is an inverting op-amp. Calculate the gain.

A = −6 kΩ

1 kΩ

= −6

Calculate VOUT .

VOUT = AVIN

= (−6)(0.5 V)

= −3 V
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2. Calculate the output voltage of the circuit shown in figure 4.2. (Assume that the supply

voltage is sufficient to generate any output value.)

−

+

VOUT

−
+5 V

5 kΩ

10 kΩ

−
+3 V

1 kΩ

2 kΩ

Figure 4.2: Circuit diagram for op-amps question 2.

Use the voltage divider rule to calculate the voltage at the non-inverting input.

VP = 5 V

(
10 kΩ

15 kΩ

)
= 3.33 V

Use KCL, Ohm’s law, and the virtual node property to calculate VOUT .

3 V− VP

1 kΩ
=

VP − VOUT

2 kΩ
3 V− 3.33 V

1 kΩ
=

3.33 V− VOUT

2 kΩ

−0.67 V = 3.33 V− VOUT

4 V = VOUT
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3. Calculate the output voltage and gain of the circuit shown in figure 4.3. (Assume that the

supply voltage is sufficient to generate any output value.)

−

+

VOUT

−
+0.5 V

5 kΩ

2 kΩ

4 kΩ

1 kΩ

2 kΩ

Figure 4.3: Circuit diagram for op-amps question 3.

Use KCL at both the inverting and non-inverting nodes to find two equations for two unknowns. The

virtual node voltage is labeled VX in the equations below.

0− VX

1 kΩ
=

VX − VOUT

2 kΩ
0.5 V− VX

5 kΩ
=

VX

2 kΩ
+

VX − VOUT

4 kΩ

Place both equations into form αVX + βVOUT = c, and then place each coefficient into a matrix. (All

units are in V, mA, and kΩ.)  1.5 −0.5 0

0.95 −0.25 0.1


Solve the matrix for VOUT .

VOUT = 1.5 V

Calculate the gain.

A =
VOUT

VIN

=
1.5 V

0.5 V

= 3
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4. Calculate the gain of the circuit shown in figure 4.4.

−

+−
+VS

1 kΩ

2 kΩ

3 kΩ

−

+

6 kΩ

2 kΩ

VOUT

6 kΩ

Figure 4.4: Circuit diagram for op-amps question 4.

Perform KCL at the non-inverting node of the left op-amp. The virtual node voltage will be labeled VX

in the equations below, and solve for VX .

0− VX

3 kΩ
=

VX − VOUT

6 kΩ

−VX = 0.5VX − 0.5VOUT

−1.5VX = −0.5VOUT

VX =
1

3
VOUT

Perform KCL at the inverting node of the right op-amp. The output voltage of the left op-amp will be

labeled VY in the equations below. Solve for VY .

VY

2 kΩ
=

0− VOUT

6 kΩ

VY = −1

3
VOUT

Perform KCL at the inverting node of the left op-amp. Then, plug in the values of VX and VY defined
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above, and solve for VOUT /VS .

VS − VX

1 kΩ
=

VX − VY

2 kΩ

VS − VX = 0.5VX − 0.5VY

VS − 1

3
VOUT = 0.5(

1

3
VOUT )− 0.5(−1

3
VOUT )

VS =
1

3
VOUT +

1

6
VOUT +

1

6
VOUT

VS =
4

6
VOUT

VOUT

VS
= 1.5

5. Calculate the output voltage of the circuit shown in figure 4.5. (Assume that the supply

voltage is sufficient to generate any output value.)

−

+−
+0.5 V

2 kΩ

4 kΩ

2 kΩ

−

+

2 kΩ

3 kΩ

2 kΩ

VOUT− +

1 V

3 kΩ

Figure 4.5: Circuit diagram for op-amps question 5.

Perform KCL at the inverting input of the left op-amp. The virtual node voltage will be labeled as VX .

The op-amp output voltage will be labeled as VY .

0.5 V− VX

2 kΩ
=

VX − VY

4 kΩ
+

VX − VOUT

2 kΩ

Perform KCL at the non-inverting input of the left op-amp.

0− VX

2 kΩ
=

VX − VOUT

3 kΩ
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Perform KCL at the inverting input of the right op-amp.

VY − 1 V

2 kΩ
=

1 V− VOUT

3 kΩ

Place all three equations into form αIX+βVY +γVOUT = c, and then place each coefficient into a matrix.
1.25 −0.25 −0.5 0.25

0.83 0 −0.33 0

0 0.5 0.33 0.83


Solve the matrix for VOUT .

VOUT = 4 V
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5 Chapter 5 Solutions

5.1 Capacitance and Equivalent Capacitance

1. The current flowing through a 25 nF capacitor is i(t) = e−500tu(t) mA. Derive equations

for the voltage dropped over the capacitor and the instantaneous power consumed by the

capacitor.

Calculate the voltage drop. Convert the current to amps before inserting into the integral.

v(t) =
1

C

∫ t

−∞
i(t) dt

=
1

25× 10−9

∫ t

−∞

1

1000
e−500τu(τ) dτ

=
1

25× 10−6

∫ t

0

e−500τ dτ

= − 1

0.0125
e−500τ

∣∣∣t
0
u(t)

= −80
[
e−500(t) − e−500(0)

]
u(t)

= 80
[
1− e−500t

]
u(t)

Calculate the instantaneous power. The units will be mW, as the current is in terms of mA and the

voltage is in terms of V.

p(t) = i(t)v(t)

=
(
e−500tu(t)

) (
80
[
1− e−500t

]
u(t)

)
= 80

[
e−500t − e−1000t

]
u(t) mW

2. The voltage dropped over a 330 µF capacitor is v(t) = 100t u(t) V. Derive equations for the

current flowing through the capacitor and the instantaneous power consumed by the capacitor.

Calculate the current flow.

i(t) = C
d

dt
v(t)

=
(
330× 10−6

) d

dt
(100t u(t))

=
(
330× 10−6

)
(100 u(t))

= 0.033 u(t) A
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Calculate the instantaneous power.

p(t) = i(t)v(t)

= (0.033 u(t) A) (100t u(t) V)

= 3.3 u(t) W

3. Calculate the equivalent capacitance of the circuit shown in figure 5.1.

240 pF 120 pF

100 pF 320 pF

Figure 5.1: Circuit diagram for capacitance and equivalent capacitance question 3.

Calculate the equivalent capacitance.

CEQ = 240 pF//120 pF//(100 pF + 320 pF)

= 240 pF//120 pF//420 pF

= 80 pF//420 pF

= 67.2 pF

4. Calculate the equivalent capacitance of the circuit shown in figure 5.2.

10 nF

47 nF 33 nF

10 nF

33 nF

22 nF

Figure 5.2: Circuit diagram for capacitance and equivalent capacitance question 4.
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Calculate the equivalent capacitance.

CEQ = ((10 nF//33 nF) + 33 nF + 47 nF)//10 nF//22 nF

= (7.67 nF + 33 nF + 47 nF)//10 nF//22 nF

= 87.67 nF//10 nF//22 nF

= 8.98 nF//22 nF

= 6.38 nF

5. Determine the value of the capacitor CX given that the circuit shown in figure 5.3 has an

equivalent capacitance of 10 µF.

9 µF

CX

2 µF

Figure 5.3: Circuit diagram for capacitance and equivalent capacitance question 5.

Use parallel and series combinations of capacitors. All capacitor units are in µF.

10 = 9 + (CX//2)

= 9 +
2CX

CX + 2

1 =
2CX

CX + 2

CX + 2 = 2CX

2 = CX

CX = 2 µF

cbna Alyssa J. Pasquale, Ph.D. 74 Last updated: 2025/03/17



5 Chapter 5 Solutions 5.2 Resistor-Capacitor Circuits

5.2 Resistor-Capacitor Circuits

6. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.4. The switch

moves from position a to b at time of zero seconds.

10 mA 20 kΩ

a

10 kΩ

400 nF
+

−
v(t)

i(t)

b

10 kΩ

50 kΩ 75 kΩ

Figure 5.4: Circuit diagram for resistor-capacitor circuits question 6.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced as an open.

10 mA 20 kΩ

10 kΩ

+

−

v(0)

Use Ohm’s law to calculate v(0).

v(0) = (10 mA)(20 kΩ)

= 200 V

Draw the circuit in the final conditions.

400 nF

+

−

v(t)

i(t)

10 kΩ

50 kΩ 75 kΩ

Calculate the equivalent resistance as seen by the capacitor.

REQ = 75 kΩ//50 kΩ + 10 kΩ

= 30 kΩ + 10 kΩ

= 40 kΩ
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Calculate the RC time constant.

τ = RC

= (40000 Ω)(400× 10−9 F)

= 0.016 s

Plug these values into the equation for the voltage of a discharging RC circuit.

v(t) = 200 e−62.5t u(t) V

Calculate the current through a discharging RC circuit.

i(t) = −5 e−62.5t u(t) mA

7. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.5. The switch

opens at a time of zero seconds.

−
+18 V

10 kΩ

36 kΩ

15 kΩ

9 µF

+

−

v(t)

i(t)

30 kΩ

Figure 5.5: Circuit diagram for resistor-capacitor circuits question 7.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced as an open.

−
+18 V

10 kΩ

36 kΩ

15 kΩ

+

−

v(0) 30 kΩ
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Use the voltage divider rule to calculate v(0).

v(0) = 18 V

(
36 kΩ//(15 kΩ + 30 kΩ)

10 kΩ + 36 kΩ//(15 kΩ + 30 kΩ)

)(
30 kΩ

45 kΩ

)
= 18 V

(
36 kΩ//45 kΩ

10 kΩ + 36 kΩ//45 kΩ

)(
2

3

)
= 18 V

(
20 kΩ

10 kΩ + 20 kΩ

)(
2

3

)
= 8 V

Draw the circuit in the final conditions.

36 kΩ

15 kΩ

9 µF

+

−

v(t)

i(t)

30 kΩ

Calculate the equivalent resistance as seen by the capacitor.

REQ = 30 kΩ//(15 kΩ + 36 kΩ)

= 30 kΩ//51 kΩ

= 18.89 kΩ

Calculate the RC time constant.

τ = RC

= (18888.89 Ω)(9 µF)

= 0.17 s

Plus these values into the equation for the voltage of a discharging RC circuit.

v(t) = 8 e−5.88t u(t) V

Calculate the current through a discharging RC circuit.

i(t) = −0.42 e−5.88t u(t) mA
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8. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.6. The switch

closes at a time of zero seconds.

−
+20 V

2 kΩ

2 kΩ

4 kΩ

5 µF

+

−

v(t)

i(t)

4 kΩ

Figure 5.6: Circuit diagram for resistor-capacitor circuits question 8.

In the initial steady-state, the capacitor will be fully discharged and have an initial voltage of zero. Draw

the circuit in the final steady-state. The capacitor can be replaced as an open.

−
+20 V

2 kΩ

2 kΩ

4 kΩ

+

−

v(∞) 4 kΩ

Use the voltage divider rule to calculate v(∞).

v(∞) = 20 V

(
2 kΩ//(4 kΩ + 4 kΩ)

2 kΩ + 2 kΩ//(4 kΩ + 4 kΩ)

)(
4 kΩ

8 kΩ

)
= 20 V

(
2 kΩ//8 kΩ

2 kΩ + 2 kΩ//8 kΩ

)(
1

2

)
= 20 V

(
1.6 kΩ

3.6 kΩ

)(
1

2

)
= 4.44 V

Draw the circuit at t = 0+ and deactivate the source.

2 kΩ

2 kΩ

4 kΩ

5 µF

+

−

v(t)

i(t)

4 kΩ

cbna Alyssa J. Pasquale, Ph.D. 78 Last updated: 2025/03/17



5 Chapter 5 Solutions 5.2 Resistor-Capacitor Circuits

Calculate the equivalent resistance as seen by the capacitor.

REQ = (2 kΩ//2 kΩ + 4 kΩ)//4 kΩ

= (1 kΩ + 4 kΩ)//4 kΩ

= 5 kΩ//4 kΩ

= 2.22 kΩ

Calculate the RC time constant.

τ = RC

= (2222 Ω)
(
5× 10−6 F

)
= 0.011 s

Plug these values into the equation for the voltage of a charging RC circuit.

v(t) =
[
4.44− 4.44e−90t

]
u(t) V

Calculate the current through a charging RC circuit.

i(t) = 2e−90t u(t) mA

9. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.7. The switch

closes at a time of zero seconds.

−
+24 V

6 kΩ

1.4 kΩ

40 µF
+

−
v(t)

i(t)

6 kΩ 9 kΩ 3.5 mA

Figure 5.7: Circuit diagram for resistor-capacitor circuits question 9.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced as an open.
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−
+24 V

6 kΩ

1.4 kΩ

+

−
v(0)

6 kΩ

Use the voltage divider rule to calculate v(0).

v(0) = 24 V

(
6 kΩ

6 kΩ + 6 kΩ

)
= 12 V

Draw the circuit in the final steady-state condition. The capacitor can be replaced as an open.

−
+24 V

6 kΩ

1.4 kΩ

+

−
v(∞)

6 kΩ 9 kΩ 3.5 mA

Combine parallel resistors, and source transform the 24 V source and re-draw the circuit.

4 mA 6 kΩ

1.4 kΩ

+

−
v(∞)

3.6 kΩ 3.5 mA

Combine remaining resistors and both current sources.

7.5 mA 2.25 kΩ

1.4 kΩ

+

−
v(∞)
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Use Ohm’s law to calculate v(∞).

v(∞) = (7.5 mA)(2.25 kΩ)

= 16.875 V

Draw the circuit at t = 0+ and deactivate the sources.

6 kΩ

1.4 kΩ

40 µF
+

−
v(t)

i(t)

6 kΩ 9 kΩ

Calculate the equivalent resistance as seen by the capacitor.

REQ = 9 kΩ//6 kΩ//6 kΩ + 1.4 kΩ

= 9 kΩ//3 kΩ + 1.4 kΩ

= 2.25 kΩ + 1.4 kΩ

= 3.65 kΩ

Calculate the RC time constant.

τ = RC

= (3650 Ω)(40× 10−6 F)

= 0.146 s

Plug these values into the equation for a general RC circuit.

v(t) =
[
16.875− 4.875e−6.85t

]
u(t) V

Calculate the current.

i(t) = 1.34e−6.85t u(t) mA
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10. Calculate an expression for v(t) and i(t) given the circuit shown in figure 5.8. The switch

opens at a time of zero seconds.

−
+18 V

10 kΩ

50 kΩ 40 nF

+

−

v(t)

i(t)

25 kΩ

50 kΩ

50 kΩ

−
+16 V

Figure 5.8: Circuit diagram for resistor-capacitor circuits question 10.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced as an open.

−
+18 V

10 kΩ

50 kΩ

+

−

v(0)

25 kΩ

50 kΩ

50 kΩ

−
+16 V

Convert both sources to current sources.

1.8 mA 10 kΩ 50 kΩ

+

−

v(0)

25 kΩ

50 kΩ 50 kΩ 0.32 mA

Combine parallel resistors.

1.8 mA 8.33 kΩ

+

−

v(0)

25 kΩ

25 kΩ 0.32 mA

Convert the 0.32 mA source to a voltage source.
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1.8 mA 8.33 kΩ

+

−

v(0)

25 kΩ 25 kΩ

−
+8 V

Combine series resistors.

1.8 mA 8.33 kΩ

+

−

v(0)

50 kΩ

−
+8 V

Convert the voltage source to a current source.

1.8 mA 8.33 kΩ

+

−

v(0) 50 kΩ 0.16 mA

Combine sources and resistors.

1.96 mA 7.14 kΩ

+

−

v(0)

Use Ohm’s law to calculate v(0).

v(0) = (1.96 mA)(7.14 kΩ)

= 14 V

Draw the circuit in the final steady-state condition. The capacitor can be replaced as an open.
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50 kΩ

+

−

v(∞)

25 kΩ

50 kΩ

50 kΩ

−
+16 V

Use the voltage divider law to calculate v(∞).

v(∞) = 16 V

(
50 kΩ//75 kΩ

50 kΩ + 50 kΩ//75 kΩ

)(
50 kΩ

75 kΩ

)
= 16 V

(
30 kΩ

50 kΩ + 30 kΩ

)(
2

3

)
= 4 V

Draw the circuit at t = 0+ and deactivate the source.

50 kΩ 40 nF

+

−

v(t)

i(t)

25 kΩ

50 kΩ

50 kΩ

Calculate the equivalent resistance as seen by the capacitor.

REQ = (50 kΩ//50 kΩ + 25 kΩ)//50 kΩ

= (25 kΩ + 25 kΩ)//50 kΩ

= 50 kΩ//50 kΩ

= 25 kΩ

Calculate the RC time constant.

τ = RC

= (25000 Ω)(40× 10−9F)

= 0.001 s

Plug these values into the equation for a general RC circuit.

v(t) =
[
4 + 10e−1000t

]
u(t) V

cbna Alyssa J. Pasquale, Ph.D. 84 Last updated: 2025/03/17



5 Chapter 5 Solutions 5.2 Resistor-Capacitor Circuits

Calculate the current.

i(t) = −0.4e−1000t u(t) mA
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6 Chapter 6 Solutions

6.1 Inductance and Equivalent Inductance

1. The current flowing through a 20 mH inductor is i(t) = 50t u(t) mA. Derive equations for the

voltage dropped over the inductor and the instantaneous power consumed by the inductor.

Calculate the voltage drop. Use units of H and A.

v(t) = L
d

dt
i(t)

= 0.02
d

dt
(0.05t u(t))

= 0.001 u(t) V

= u(t) mV

Calculate the instantaneous power.

p(t) = i(t)v(t)

= (0.05t u(t) A)(0.001 u(t) V)

= 5× 10−5 u(t) W

= 0.05 u(t) mW

2. The voltage dropped over a 15 µH inductor is v(t) = cos(5000t)u(t) V. Derive equations for the

current flowing through the inductor and the instantaneous power consumed by the inductor.

Calculate the current flow. Use units of H and V.

i(t) =
1

L

∫ t

−∞
v(τ) dτ

=
1

15× 10−6

∫ t

−∞
cos(5000τ) u(τ) dτ

=
1

15× 10−6

∫ t

0

cos(5000τ) dτ

=
1

0.075
sin(5000τ)

∣∣∣t
0

= 13.33 sin(5000t) u(t) A
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Calculate the instantaneous power. Use the double angle formula.

p(t) = i(t)v(t)

= (13.33 sin(5000t) u(t) A)(cos(5000t) u(t) V)

= 6.67 sin(10000t) u(t) W

i(t) = 13.333 sin(5000t) u(t) A, p(t) = 6.667 sin(10000t) u(t) W – To calculate the current, use

equation. Use equation to calculate the instantaneous power.

3. Calculate the equivalent inductance of the circuit shown in figure 6.1.

10 mH

30 mH

20 mH

50 mH

40 mH 60 mH

Figure 6.1: Circuit diagram for inductance and equivalent inductance question 3.

Calculate the equivalent inductance.

LEQ = (50 mH+ 20 mH+ 60 mH)//30 mH + 10 mH+ 40 mH

= 130 mH//30 mH + 50 mH

= 24.375 mH + 50 mH

= 74.375 mH

4. Calculate the equivalent inductance of the circuit shown in figure 6.2.

80 µH

50 µH 90 µH

30 µH

50 µH 40 µH

20 mH

Figure 6.2: Circuit diagram for inductance and equivalent inductance question 4.
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Calculate the equivalent inductance.

LEQ = (40 µF//50 µF + 30 µF + 20 µF)//90 µF//50 µF + 80 µF

= (22.22 µF + 50 µF)//32.14 µF + 80 µF

= 72.22 µF//32.14 µF + 80 µF

= 22.24 µF + 80 µF

= 102.24 µF

5. Determine the value of the inductor LX given that the circuit shown in figure 6.3 has an

equivalent inductance of 250 µH.

100 µH

200 µH

LX

300 µH

Figure 6.3: Circuit diagram for inductance and equivalent inductance question 5.

Use the equivalent inductance relationships to calculate LX . All units are in µH below.

250 = (300 + LX)//200 + 100

150 =
200(300 + LX)

200 + 300 + LX

=
60000 + 200LX

500 + LX

75000 + 150LX = 60000 + 200LX

15000 = 50LX

300 = LX

LX = 300 µH
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6.2 Resistor-Inductor Circuits

6. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.4. The switch

moves from position a to b at time of zero seconds.

−
+6 V

300 Ω
a

b

700 Ω

900 Ω

320 mH

+

−

v(t)

i(t)

Figure 6.4: Circuit diagram for resistor-inductor circuits question 6.

Draw the circuit in the initial steady-state condition. The inductor can be replaced by a short.

−
+6 V

300 Ω 900 Ω

+

−
v(0)i(0)

Use Ohm’s law to calculate i(0).

i(0) =
6 V

300 Ω + 900 Ω

= 5 mA

Draw the circuit at t = 0+.

700 Ω

900 Ω

320 mH

+

−

v(t)

i(t)

Calculate the equivalent resistance as seen by the inductor.

REQ = 700 Ω + 900 Ω

= 1600 Ω
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Calculate the RL time constant.

τ =
L

R

=
0.32 H

1600 Ω

= 2× 10−4 s

Plug these values into the equation for a discharging RL circuit.

i(t) = 5e−5000t u(t) mA

Calculate the voltage drop.

v(t) = −8e−5000t u(t) V

7. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.5. The switch

opens at a time of zero seconds.

−
+5 V

200 Ω

750 Ω

500 Ω

20 mH

+

−

v(t)

i(t)

30 Ω

600 Ω 150 Ω

Figure 6.5: Circuit diagram for resistor-inductor circuits question 7.

Draw the circuit in the initial steady-state condition. The inductor can be replaced by a short.

−
+5 V

200 Ω

750 Ω

500 Ω

+

−
v(0)i(0)

30 Ω

600 Ω 150 Ω

The 30 Ω, 600 Ω, and 150 Ω resistors are shorted by the inductor in the steady-state.
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−
+5 V

200 Ω

750 Ω

500 Ω

+

−
v(0)i(0)

Convert the voltage source to a current source.

25 mA 200 Ω 750 Ω

500 Ω

+

−
v(0)i(0)

Use the current divider rule to calculate i(0).

i(0) = 25 mA

(
200 Ω//750 Ω//500 Ω

500 Ω

)
= 25 mA

(
120 Ω

500 Ω

)
= 6 mA

Draw the circuit at t = 0+.

20 mH

+

−

v(t)

i(t)

30 Ω

600 Ω 150 Ω

Calculate the equivalent resistance as seen by the inductor.

REQ = 600 Ω//150 Ω + 30 Ω

= 120 Ω + 30 Ω

= 150 Ω
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Calculate the RL time constant.

τ =
L

R

=
0.02 H

150 Ω

= 1.33× 10−4 s

Plug these values into the equation for a discharging RL circuit.

i(t) = 6e−7500t u(t) mA

Calculate the voltage drop.

v(t) = −0.9e−7500t u(t) V

8. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.6. The switch

closes at a time of zero seconds.

−
+8 V

4 kΩ

5 kΩ

6 kΩ

100 mH

+

−
v(t)

i(t)

20 kΩ

Figure 6.6: Circuit diagram for resistor-inductor circuits question 8.

Draw the circuit in the final steady-state condition. The inductor can be replaced by a short.

−
+8 V

4 kΩ

5 kΩ

6 kΩ

+

−
v(∞)i(∞)

20 kΩ

Convert the voltage source to a current source.
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2 mA 4 kΩ 5 kΩ

6 kΩ

+

−
v(∞)i(∞)

20 kΩ

Use the current divider rule to calculate i(∞).

i(∞) = 2 mA

(
4 kΩ//5 kΩ//6 kΩ//20 kΩ

6 kΩ

)
= 2 mA

(
1.5 kΩ

6 kΩ

)
= 0.5 mA

Draw the circuit at t = 0+ and deactivate the source.

4 kΩ

5 kΩ

6 kΩ

100 mH

+

−
v(t)

i(t)

20 kΩ

Calculate the equivalent resistance as seen by the inductor.

REQ = 4 kΩ//5 kΩ//20 kΩ + 6 kΩ

= 2 kΩ + 6 kΩ

= 8 kΩ

Calculate the RL time constant.

τ =
L

R

=
0.1 H

8000 Ω

= 1.25× 10−5 s

Plug these values into the equation for a charging RL circuit.

i(t) = 0.5
[
1− e−80000t

]
u(t) mA
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Calculate the voltage drop over the inductor.

v(t) = 4e−80000t u(t) V

9. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.7. The switch

closes at a time of zero seconds.

15 mA 2 kΩ

4 kΩ

6 kΩ

240 mH

+

−
v(t)

i(t)

4 kΩ

−
+24 V

Figure 6.7: Circuit diagram for resistor-inductor circuits question 9.

Draw the circuit in the initial steady-state condition. The inductor can be replaced by a short.

15 mA 2 kΩ

4 kΩ

6 kΩ

+

−
v(0)i(0)

Use the current divider rule to calculate i(0).

i(0) = 15 mA

(
2 kΩ//10 kΩ

10 kΩ

)
= 15 mA

(
1.67 kΩ

10 kΩ

)
= 2.5 mA

Draw the circuit in the final steady-state condition. The inductor can be replaced by a short.
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15 mA 2 kΩ

4 kΩ

6 kΩ

+

−
v(∞)i(∞)

4 kΩ

−
+24 V

Perform source transformation on both sources.

−
+30 V

2 kΩ 4 kΩ

6 kΩ

+

−
v(∞)i(∞)

4 kΩ 6 mA

Combine the series resistors.

−
+30 V

6 kΩ

6 kΩ

+

−
v(∞)i(∞)

4 kΩ 6 mA

Convert the voltage source to a current source.

5 mA 6 kΩ

6 kΩ

+

−
v(∞)i(∞)

4 kΩ 6 mA

Combine resistors and sources.
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11 mA 2.4 kΩ

6 kΩ

+

−
v(∞)i(∞)

Use the current divider rule to calculate i(∞).

i(∞) = 11 mA

(
2.4 kΩ//6 kΩ

6 kΩ

)
= 11 mA

(
1.71 kΩ

6 kΩ

)
= 3.14 mA

Draw the circuit at t = 0+ and deactivate the sources.

2 kΩ

4 kΩ

6 kΩ

240 mH

+

−
v(t)

i(t)

4 kΩ

Calculate the equivalent resistance as seen by the inductor.

REQ = (2 kΩ + 4 kΩ)//4 kΩ + 6 kΩ

= 6 kΩ//4 kΩ + 6 kΩ

= 2.4 kΩ + 6 kΩ

= 8.4 kΩ

Calculate the RL time constant.

τ =
L

R

=
.24 H

8400 Ω

= 2.86× 10−5 s
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Plug these values into the equation for a general RL circuit.

i(t) =
[
3.14− 0.64e−35000t

]
u(t) mA

Calculate the voltage drop.

v(t) = 5.4e−35000t u(t) V

10. Calculate an expression for i(t) and v(t) given the circuit shown in figure 6.7. Switch S1

opens at a time of zero seconds, and switch S2 closes at a time of zero seconds.

−
+8 V

4 kΩ

S1

5 kΩ 100 mH

+

−

v(t)

i(t)

20 kΩ

S2

4 kΩ

−
+20 V

Figure 6.8: Circuit diagram for resistor-inductor circuits question 10.

Draw the circuit in the initial steady-state condition. The inductor can be replaced by a short.

−
+8 V

4 kΩ

5 kΩ

+

−
v(0)i(0) 20 kΩ

The 5 kΩ and 20 kΩ resistors are shorted by the inductor in the steady-state.

−
+8 V

4 kΩ

+

−
v(0)i(0)

Use Ohm’s law to calculate i(0).

i(0) =
8 V

4 kΩ

= 2 mA
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Draw the circuit in the final steady-state condition. The inductor can be replaced by a short.

5 kΩ

+

−
v(∞)i(∞) 20 kΩ

4 kΩ

−
+20 V

The 5 kΩ and 20 kΩ resistors are shorted by the inductor in the steady-state.

+

−
v(∞)i(∞)

4 kΩ

−
+20 V

Use Ohm’s law to calculate i(∞).

i(∞) =
20 V

4 kΩ

= 5 mA

Draw the circuit at t = 0+ and deactivate the source.

5 kΩ 100 mH

+

−

v(t)

i(t)

20 kΩ

4 kΩ

Calculate the equivalent resistance as seen by the inductor.

REQ = 5 kΩ//20 kΩ//4 kΩ

= 2 kΩ
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Calculate the RL time constant.

τ =
L

R

=
.1 H

2000 Ω

= 5× 10−5 s

Plug these values into the equation for a general RL circuit.

i(t) =
[
5− 3e−20000t

]
u(t) mA

Calculate the voltage drop.

v(t) = 6e−20000t u(t) V
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7 Chapter 7 Solutions

7.1 Homogeneous Second Order Circuits

1. Calculate an expression for v(t) given the circuit shown in figure 7.1. The switch opens at

a time of zero seconds.

−
+10 V

4 kΩ

500 mH

i(t)

200 Ω

50 µF

+

−

v(t)

Figure 7.1: Circuit diagram for homogeneous second order circuits question 1.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+10 V

4 kΩ

i(0)

200 Ω

+

−

v(0)

Because the initial voltage drop is measured over the inductor (short), it will be zero. Use Ohm’s law to

calculate the initial current flow.

i(0) =
−10 V

4 kΩ

= −2.5 mA

Draw the circuit for t = 0+.

500 mH

i(t)

200 Ω

50 µF

+

−

v(t)
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This is a series RLC circuit. Calculate the damping parameter.

α =
R

2L

=
200 Ω

2(0.5 H)

= 200 Np/s

Calculate the resonant frequency.

ω0 =
1√
LC

=
1√

(0.5 H)(50× 10−6 F)

=
1

0.005

= 200 rad/s

Calculate the initial first derivative of the voltage drop.

v′(0) =
i(0)

C

=
−0.0025 A

50 × 10−6 F

= −50 V/s

The circuit is critically damped. Calculate the coefficients.

A1 = v(0)

= 0

A2 = v′(0) + αv(0)

= −50 V/s

Plug these values into the equation for a critically damped homogeneous circuit.

v(t) = −50te−200t u(t) V
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2. Calculate an expression for i(t) given the circuit shown in figure 7.2. The switch opens at

a time of zero seconds.

−
+20 V

200 Ω

150 Ω 20 mH

i(t)

100 nF

+

−

v(t)

Figure 7.2: Circuit diagram for homogeneous second order circuits question 2.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+20 V

200 Ω

150 Ω i(0)

+

−

v(0)

Because the initial voltage drop is measured over the inductor (short), it will be zero. Use Ohm’s law to

calculate the initial current flow.

i(0) =
20 V

0.2 kΩ

= 100 mA

Draw the circuit at t = 0+.

150 Ω 20 mH

i(t)

100 nF

+

−

v(t)
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This is a parallel RLC circuit. Calculate the damping parameter.

α =
1

2RC

=
1

2(150 Ω)(100× 10−9 F)

=
1

3× 10−5

= 33333.33 Np/s

Calculate the resonant frequency.

ω0 =
1√
LC

=
1√

(0.02 H)(100× 10−9 F)

=
1

4.47× 10−5

= 22360.68 rad/s

This circuit is overdamped. Calculate the roots.

s1 = −α+
√
α2 − ω2

0

= −33333.33 +
√
33333.332 − 22360.682

= −33333.33 + 24720.66

= −8612.67

s2 = −α−
√
α2 − ω2

0

= −33333.33−
√
33333.332 − 22360.682

= −33333.33− 24720.66

= −58056.99

The first derivative of the initial current flow through the inductor will be zero due to the initial voltage
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drop of zero. Calculate the coefficients of the equation.

A1 =
i(0)s2 − i′(0)

s2 − s1

=
(100)(−58056.99)

−58056.99− (−8612.67)

= 117.42 mA

A2 =
i′(0)− i(0)s1

s2 − s1

=
−(100)(−8612.67)

−58056.99− (−8612.67)

= −17.42 mA

Plug into the equation for an overdamped homogeneous circuit.

i(t) =
[
117.42e−8612.67t − 17.4e−58056.99t

]
u(t) mA

3. Calculate an expression for v(t) given the circuit shown in figure 7.3. The switch opens at

a time of zero seconds.

40 mA 20 Ω 5 mF

+

−

v(t)

0.1 H

i(t)

10 Ω

35 Ω

Figure 7.3: Circuit diagram for homogeneous second order circuits question 3.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

40 mA 20 Ω

+

−

v(0)

i(0)

10 Ω

35 Ω
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Use Ohm’s law to calculate v(0).

v(0) = (0.04 A)(20 Ω//10 Ω//35 Ω)

= (0.04 A)(5.6 Ω)

= 0.224 V

Use the current divider rule to calculate i(0).

i(0) = 40 mA

(
20 Ω//10 Ω//35 Ω

10 Ω

)
= 40 mA

(
5.6 Ω

10 Ω

)
= 22.4 mA

Draw the circuit at t = 0+.

5 mF

+

−

v(t)

0.1 H

i(t)

10 Ω

35 Ω

This is a parallel RLC circuit with parasitic resistance. Calculate the damping parameter. (All units are

in Ω, H, and F.)

α =
1

2RC
+

RP

2L

=
1

2(35)(0.005)
+

10

2(0.1)

= 2.86 + 50

= 52.86 Np/s

Calculate the resonant frequency.

ω0 =

√
1

LC
+

RP

RLC

=

√
1

(0.1)(0.005)
+

10

(35)(0.1)(0.005)

=
√
2000 + 571.43

= 50.71 rad/s
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This circuit is overdamped. Calculate the roots.

s1 = −α+
√

α2 − ω2
0

= −52.86 +
√
52.862 − 50.712

= −52.86 + 14.91

= −37.94

s2 = −α−
√
α2 − ω2

0

= −52.86−
√
52.862 − 50.712

= −52.86− 14.91

= −67.77

Calculate v′(0).

v′(0) =
−v(0)−Ri(0)

RC

=
−0.224 V− (35 Ω)(0.0224 A)

(35 Ω)(0.005 F)

=
−0.224 V− 0.784 V

0.175 s

=
−1.008 V

0.175 s

= −5.76 V/s

Calculate the coefficients of the equation.

A1 =
v(0)s2 − v′(0)

s2 − s1

=
(0.224)(−67.77) + 5.76

−67.77− (−37.94)

= 0.32 V

A2 =
v′(0)− v(0)s1

s2 − s1

=
−5.76− (0.224)(−37.94)

−67.77− (−37.94)

= −0.09 V

Plug into the equation for an overdamped homogeneous circuit.

v(t) =
[
315.83e−37.94 − 91.83e−67.77

]
u(t) mV
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4. Calculate an expression for v(t) given the circuit shown in figure 7.4. The switch moves

from position a to position b at a time of zero seconds.

−
+5 V

100 Ω
a

b

5 mHi(t)

60 Ω

40 Ω

2 µF

+

−
v(t)

Figure 7.4: Circuit diagram for homogeneous second order circuits question 4.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+5 V

100 Ω i(0)

60 Ω

40 Ω

+

−

v(0)

Use Ohm’s law to calculate i(0).

i(0) =
−5 V

0.16 kΩ

= 31.25 mA

Use the voltage divider rule to calculate v(0).

v(0) = 5 V

(
60 Ω

100 Ω + 60 Ω

)
= 1.875 V

Draw the circuit at t = 0+.

5 mHi(t)

60 Ω

40 Ω

2 µF

+

−

v(t)

Solve for the second order differential equation using symbolic form. L = 5 mH, R1 = 60 Ω, R2 = 40 Ω,
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C = 2 µF.

Perform KCL.

0 = i(t) +
L

R1

d

dt
i(t) + C

d

dt
v(t)

Perform KVL around the right loop.

L
d

dt
i(t) = R2C

d

dt
v(t) + v(t)

Solve the KVL equation for i(t).

L
d

dt
i(t) = R2C

d

dt
v(t) + v(t)

d

dt
i(t) =

R2C

L

d

dt
v(t) +

1

L
v(t)

i(t) =
R2C

L
v(t) +

1

L

∫
v(t)

Plug the equation for i(t) into the KCL equation, and put into standard form.

0 =
R2C

L
v(t) +

1

L

∫
v(t) +

L

R1

d

dt

[
R2C

L
v(t) +

1

L

∫
v(t)

]
+ C

d

dt
v(t)

=
R2C

L
v(t) +

1

L

∫
v(t) +

R2C

R1

d

dt
v(t) +

1

R1
v(t) + C

d

dt
v(t)

=

[
R2C

R1
+ C

]
d

dt
v(t) +

[
R2C

L
+

1

R1

]
v(t) +

1

L

∫
v(t)

=

[
R2C

R1
+ C

]
d2

dt2
v(t) +

[
R2C

L
+

1

R1

]
d

dt
v(t) +

1

L
v(t)

=
d2

dt2
v(t) +

[
R1R2C + L

LC(R1 +R2)

]
d

dt
v(t) +

[
R1

LC(R1 +R2)

]
v(t)

Plug in component values.

0 =
d2

dt2
v(t) + 9800

d

dt
v(t) + 60000000v(t)

Calculate the damping parameter and resonant frequency.

α = 4900 Np/s

ω0 = 7745.97 rad/s
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The circuit is underdamped. Calculate the oscillation frequency.

β =
√
ω2
0 − α2

=
√
7745.972 − 49002

= 5999.17 rad/s

The KCL equation can be restated to calculate the initial first derivative of the voltage, where iR1(0) is

the initial current flow through the 60 Ω resistor.

0 = i(0) + iR1(0) + Cv′(0)

= −31.25 mA + 31.25 mA + (2× 10−6 F)v′(0)

v′(0) = 0 V/s

Calculate the coefficients of the underdamped equation.

B1 = v(0)

= 1.875 V

B2 =
v′(0) + αv(0)

β

=
4900(1.875)

5999.17

= 1.531 V

Plug into the equation for an underdamped homogeneous circuit.

v(t) = e−4900t [1.875 cos(5999.17t) + 1.531 sin(5999.17t)] u(t) V

5. Derive a second order differential equation in terms of i(t) given the circuit shown in

figure 7.5. The switch opens at a time of zero seconds.

IS RS R1

L1

R2

L2

R3

i(t)

Figure 7.5: Circuit diagram for homogeneous second order circuits question 5.
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Draw the circuit at t = 0+. It is useful at this time to define ix(t) and vx(t).

R1

ix(t)

L1

R2

L2

R3

i(t)

Perform KVL around the outer loop.

0 = −R1ix(t)− L1
d

dt
ix(t) + L2

d

dt
i(t) +R3i(t)

=

[
−R1 − L1

d

dt

]
ix(t) + L2

d

dt
i(t) +R3i(t)

Perform KCL and solve for ix(t).

0 = ix(t) + i(t) +
L2

d
dt i(t) +R3i(t)

R2

ix(t) = −i(t)− L2

R2

d

dt
i(t)− R3

R2
i(t)

= −
[
1 +

R3

R2

]
i(t)− L2

R2

d

dt
i(t)

Plug the expression for ix(t) into the KVL equation. Then normalize the second order equation.

0 =

[
−R1 − L1

d

dt

](
−
[
1 +

R3

R2

]
i(t)− L2

R2

d

dt
i(t)

)
+ L2

d

dt
i(t) +R3i(t)

=

[
R1 + L1

d

dt

]([
1 +

R3

R2

]
i(t) +

L2

R2

d

dt
i(t)

)
+ L2

d

dt
i(t) +R3i(t)

=

[
R1 +

R1R3

R2

]
i(t) +

[
L1 +

L1R3

R2

]
d

dt
i(t) +

R1L2

R2

d

dt
i(t) +

L1L2

R2

d2

dt2
i(t) + L2

d

dt
i(t) +R3i(t)

=
L1L2

R2

d2

dt2
i(t) +

[
L1 + L2 +

L1R3

R2
+

R1L2

R2

]
d

dt
i(t) +

[
R1 +

R1R3

R2
+R3

]
i(t)

=
d2

dt2
i(t) +

[
R2

L1
+

R2

L2
+

R3

L2
+

R1

L1

]
d

dt
i(t) +

[
R1R2

L1L2
+

R1R3

L1L2
+

R2R3

L1L2

]
i(t)

cbna Alyssa J. Pasquale, Ph.D. 110 Last updated: 2025/03/17



7 Chapter 7 Solutions 7.2 Non-Homogeneous Second Order Circuits

7.2 Non-Homogeneous Second Order Circuits

6. Calculate an expression for v(t) given the circuit shown in figure 7.6. The switch moves

from position a to b at a time of zero seconds.

−
+28 V

160 Ω

a

b

960 Ω

480 Ω

12.5 nF

+

−

v(t)

500 µH

−
+20 V

Figure 7.6: Circuit diagram for non-homogeneous second order circuits question 6.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+28 V

160 Ω 480 Ω

+

−

v(0) −
+20 V

Use superposition and the voltage divider rule to calculate v(0).

v(0) = 28 V

(
480 Ω

480 Ω + 160 Ω

)
+ 20 V

(
160 Ω

480 Ω + 160 Ω

)
= 21 V + 5 V

= 26 V

Use Ohm’s law to calculate the initial current flow through the inductor (from right to left to be consistent

with the direction of the defined capacitor voltage).

i(0) =
−8 V

480 Ω + 160 Ω

= −12.5 mA

Draw the circuit in the final steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.
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960 Ω

480 Ω

+

−

v(∞) −
+20 V

The value of v(∞) is 20 V.

Draw the circuit at t = 0+.

960 Ω

480 Ω

12.5 nF

+

−

v(t)

500 µH

−
+20 V

Combine resistors in parallel.

320 Ω

12.5 nF

+

−

v(t)

500 µH

−
+20 V

This is a series RLC circuit. Calculate the damping parameter.

α =
R

2L

=
320 Ω

2(500× 10−6 H)

= 320000 Np/s
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Calculate the resonant frequency.

ω0 =
1√
LC

=
1√

(500× 10−6 H)(12.5× 10−9 F)

= 400000 rad/s

The circuit is underdamped. Calculate the oscillation frequency.

β =
√
ω2
0 − α2

=
√

4000002 − 3200002

= 240000 rad/s

Calculate the initial first derivative of the voltage drop.

v′(0) =
i(0)

C

=
−0.0125 A

12.5× 10−9 F

= −1000000 V/s

Calculate the coefficients of the underdamped equation.

B1 = v(0)− v(∞)

= 26 V− 20 V

= 6 V

B2 =
v′(0) + α[v(0)− v(∞)]

β

=
−1000000 + 320000[26− 20]

240000

= 3.83 V

Plug these values into the equation for an underdamped non-homogeneous circuit.

v(t) =
[
20 + e−320000t (6 cos(240000) + 3.83 sin(240000t))

]
u(t) V
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7. Calculate an expression for i(t) given the circuit shown in figure 7.7. The switch closes at

a time of zero seconds.

−
+25 V

125 Ω

6.25 µF 250 mH

i(t)

Figure 7.7: Circuit diagram for non-homogeneous second order circuits question 7.

The initial voltage drops and current flows are zero.

Draw the circuit in the final steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+25 V

125 Ω

i(∞)

Use Ohm’s law to calculate i(∞).

i(∞) =
25 V

125 Ω

= 0.2 A

Draw the circuit at t = 0+.

−
+25 V

125 Ω

6.25 µF 250 mH

i(t)
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This is a non-homogeneous parallel RLC circuit. Calculate the damping parameter.

α =
1

2RC

=
1

2(125 Ω)(6.25× 10−6 F)

= 640 Np/s

Calculate the resonant frequency.

ω0 =
1√
LC

=
1√

(0.25 H)(6.25× 10−6 F)

= 800 rad/s

The circuit is underdamped. Calculate the oscillation frequency.

β =
√

ω2
0 − α2

=
√

8002 − 6402

= 480 rad/s

The initial first derivative of the current will be zero. Calculate the coefficients of the underdamped

equation.

B1 = i(0)− i(∞)

= 0 A− 0.2 A

= −0.2 A

= −200 mA

B2 =
i′(0) + α[i(0)− i(∞)]

β

=
640[0− 0.2]

480

= −0.267 A

= −266.67 mA

Plug these values into the equation for an underdamped non-homogeneous circuit.

i(t) =
[
200− e−640t (200 cos(480t) + 266.67 sin(480t))

]
u(t) mA
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8. Calculate an expression for v(t) given the circuit shown in figure 7.8. The switch moves

from position a to b at a time of zero seconds.

200 mA 100 Ω

b

a

20 Ω

500 nF

40 Ω

200 nF

+

−
v(t)

Figure 7.8: Circuit diagram for non-homogeneous second order circuits question 8.

The initial voltage drops and current flows are zero.

Draw the circuit in the final steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

200 mA 100 Ω

20 Ω 40 Ω

+

−

v(∞)

Use Ohm’s law to calculate v(∞).

v(∞) = (0.2 A)(100 Ω)

= 20 V

Draw the circuit at t = 0+.

200 mA 100 Ω

20 Ω

500 nF

40 Ω

200 nF

+

−

v(t)

Convert the current source to a voltage source. Then combine the series resistors.
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−
+20 V

120 Ω

500 nF

40 Ω

200 nF

+

−

v(t)

Define symbolic values for each component, and define the voltage drop over C1.

−
+VS

R1

C1

+

−

vx(t)

R2

C2

+

−

v(t)

Perform KCL and collect like terms.

VS − vx(t)

R1
= C1

d

dt
vx(t) + C2

d

dt
v(t)

VS

R1
=

[
1

R1
+ C1

d

dt

]
vx(t) + C2

d

dt
v(t)

Perform KVL around the right loop.

vx(t) = R2C2
d

dt
v(t) + v(t)

Plug the KVL equation into the KCL equation and find the normalized second order differential equation.

VS

R1
=

[
1

R1
+ C1

d

dt

] [
R2C2

d

dt
v(t) + v(t)

]
+ C2

d

dt
v(t)

=
R2C2

R1

d

dt
v(t) +

1

R1
v(t) + C1C2R2

d2

dt2
v(t) + C1

d

dt
v(t) + C2

d

dt
v(t)

= C1C2R2
d2

dt2
v(t) +

[
R2C2

R1
+ C1 + C2

]
d

dt
v(t) +

1

R1
v(t)

VS

R1R2C1C2
=

d2

dt2
v(t) +

[
1

R1C1
+

1

R2C2
+

1

R2C1

]
d

dt
v(t) +

1

R1R2C1C2
v(t)

Plug in component values.

4.167× 1010 =
d2

dt2
v(t) + 191666.667

d

dt
v(t) + 2.083× 109v(t)
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Calculate the damping parameter and resonant frequency.

α = 95833.33 Np/s

ω0 = 45643.55 rad/s

The circuit is overdamped. Calculate the roots

s1 = −α+
√
α2 − ω2

0

= −95833.33 +
√
95833.332 − 45643.552

= −95833.33 + 84265.61

= −11567.72

s2 = −α−
√
α2 − ω2

0

= −95833.33−
√
95833.332 − 45643.552

= −95833.33− 84265.61

= −180098.94

The initial first derivative of the voltage will be zero. Calculate the coefficients of the equation.

A1 =
[v(0)− v(∞)]s2 − v′(0)

s2 − s1

=
(0− 20)(−180098.94)

−180098.94− (−11567.72)

= −21.373 V

A2 =
v′(0)− [v(0)− v(∞)]s1

s2 − s1

=
−(0− 20)(−11567.72)

−180098.94− (−11567.72)

= 1.373 V

Plug these values into the equation for an overdamped non-homogeneous circuit.

v(t) =
[
20− 21.373e−11567.72t + 1.373e−180098.94t

]
u(t) V
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9. Calculate an expression for i(t) given the circuit shown in figure 7.9. Switch S1 opens at a

time of zero seconds and switch S2 closes at a time of zero seconds.

−
+6 V

5 Ω

S1

50 mH

i(t)

10 Ω

20 µF

20 Ω

S2

−
+15 V

Figure 7.9: Circuit diagram for non-homogeneous second order circuits question 9.

Draw the circuit in the initial steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

−
+6 V

5 Ω

i(0)

10 Ω

Use Ohm’s law to calculate i(0).

i(0) =
6 V

5 Ω

= 1.2 A

Draw the circuit in the final steady-state condition. The capacitor can be replaced by an open and the

inductor can be replaced by a short.

i(∞)

10 Ω 20 Ω

−
+15 V

Use Ohm’s law to calculate i(∞).

i(∞) =
15 V

30 Ω

= 0.5 A
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Draw the circuit at t = 0+.

50 mH

i(t)

10 Ω

20 µF

20 Ω

−
+15 V

Define symbolic values for each component, and define the voltage drop over the capacitor.

L

i(t)

R2

C

+

−

vx(t)

R1

−
+VS

Perform KCL and collect like terms.

VS − vx(t)

R1
= C

d

dt
vx(t) + i(t)

VS

R1
=

[
1

R1
+ C

d

dt

]
vx(t) + i(t)

Perform KVL around the left loop.

vx(t) = R2i(t) + L
d

dt
i(t)

Plug the KVL equation into the KCL equation, and normalize the second order differential equation.

VS

R1
=

[
1

R1
+ C

d

dt

] [
R2i(t) + L

d

dt
i(t)

]
vx(t) + i(t)

=
R2

R1
i(t) +

L

R1

d

dt
i(t) +R2C

d

dt
i(t) + LC

d2

dt2
i(t) + i(t)

= LC
d2

dt2
i(t) +

[
R2C +

L

R1

]
d

dt
i(t) +

[
R2

R1
+ 1

]
i(t)

VS

R1LC
=

d2

dt2
i(t) +

[
R2

L
+

1

R1C

]
d

dt
i(t) +

[
R2

R1LC
+

1

LC

]
i(t)

Plug in component values.

750000 =
d2

dt2
i(t) + 2700

d

dt
i(t) + 1500000i(t)
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Calculate the damping parameter and resonant frequency.

α = 1350 Np/s

ω0 = 1224.74 rad/s

The circuit is overdamped. Calculate the roots.

s1 = −α+
√

α2 − ω2
0

= −1350 +
√
13502 − 1224.742

= −1350 + 567.89

= −782.10

s2 = −α−
√

α2 − ω2
0

= −1350−
√
13502 − 1224.742

= −1350− 567.89

= −1917.90

Use the KVL equation to calculate i′(0). The initial voltage drop over the capacitor (vx(0)) is zero.

vx(0) = R2i(0) + Li′(0)

0 = (10 Ω)(1.2 A) + (0.05 H)i′(0)

i′(0) =
−12

0.05
A/s

= −240 A/s

Calculate the coefficients of the equation.

A1 =
[i(0)− i(∞)]s2 − i′(0)

s2 − s1

=
(1.2− 0.5)(−1917.90)− (−240)

−1917.90− (−782.10)

= 0.97 A

A2 =
i′(0)− [i(0)− i(∞)]s1

s2 − s1

=
−240− (1.5− 0.5)(−782.10)

−1917.90− (−782.10)

= −0.27 A
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Plug these values into the equation for an overdamped non-homogeneous circuit.

i(t) =
[
0.5 + 0.97e−782.10 − 0.27e−1917.90

]
u(t) A

i(t) = [0.5 + 0.971 e–782.099t – 0.271 e–1917.901t] u(t) A – This is an overdamped general second

order circuit.

10. Calculate an expression for v(t) given the circuit shown in figure 7.10. The switch closes

at a time of zero seconds.

10 sin(2π40t) V

10 Ω

10 Ω

0.5 H

2 mF

+

−

v(t)

Figure 7.10: Circuit diagram for non-homogeneous second order circuits question 10.

The initial values of the RLC circuit will be zero.

Draw the circuit at t = 0+.

10 sin(2π40t) V

10 Ω

10 Ω

0.5 H

2 mF

+

−

v(t)

Define symbolic values for each component, and define the voltage drop over the resistor.

VS

R

R

+

−

vx(t)

L

C

+

−

v(t)

Perform KCL and combine like terms.

VS − vx(t)

R
=

1

R
vx(t) + C

d

dt
v(t)

VS

R
=

2

R
vx(t) + C

d

dt
v(t)
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Perform KVL around the right loop.

vx(t) = LC
d2

dt2
v(t) + v(t)

Plug the KVL equation into the KVL equation, and normalize the second order differential equation.

VS

R
=

2

R

[
LC

d2

dt2
v(t) + v(t)

]
+ C

d

dt
v(t)

=
2LC

R

d2

dt2
v(t) +

2

R
v(t) + C

d

dt
v(t)

VS

2LC
=

d2

dt2
v(t) +

R

2L

d

dt
v(t) +

1

LC
v(t)

Plug in component values.

5000 sin(2π40t) =
d2

dt2
v(t) + 10

d

dt
v(t) + 1000v(t)

Find the form of the particular solution.

vp(t) = K1 sin(2π40t) +K2 cos(2π40t)

Plug the particular solution into the differential equation.

5000 sin(2π40t) =
d2

dt2
[K1 sin(2π40t) +K2 cos(2π40t)]

+ 10
d

dt
[K1 sin(2π40t) +K2 cos(2π40t)]

+ 1000 [K1 sin(2π40t) +K2 cos(2π40t)]

= −6400π2 [K1 sin(2π40t) +K2 cos(2π40t)]

+ 800π [K1 cos(2π40t)−K2 sin(2π40t)]

+ 1000 [K1 sin(2π40t) +K2 cos(2π40t)]

One equation will relate all of the sine terms. Divide the sin(2π40t) term out of each term.

5000 = −6400π2K1 − 800πK2 + 1000K1

The other equation will relate all of the cosine terms. Divide the cos(2π40t) term out of each term.

0 = −6400π2K2 + 800πK1 + 1000K2
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Place both equations into form αK1 + βK2 = c, and then place each coefficient into a matrix.−6400π2 + 1000 −800π 5000

800π −6400π2 + 1000 0


Solve the matrix for K1 and K2.

K1 = −0.08 V

K2 = 0.00 V

The particular form of the equation is now known.

vp(t) = −0.080 sin(2π40t) V

To find the solution to the homogeneous equation, first calculate the damping parameter and resonant

frequency.

α = 5 Np/s

ω0 = 31.62 rad/s

The circuit is underdamped. Calculate the oscillation frequency.

β =
√

ω2
0 − α2

=
√

31.622 − 52

= 31.22 rad/s

Find the form of the homogeneous equation.

vc(t) = e−5t [B1 cos(31.22t) +B2 sin(31.22t)]

Find the form of v(t).

v(t) = vp(t) + vc(t)

= −0.080 sin(2π40t) + e−5t [B1 cos(31.22t) +B2 sin(31.22t)]
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Use the initial conditions to calculate B1 and B2. Start with v(0).

v(0) = B1

B1 = 0

Use the initial first derivative of the voltage to calculate B2.

v′(t) = −20.11 cos(2π40t) + e−5t [31.22B2 cos(31.22t)− 5B2 sin(31.22t)]

v′(0) = −20.11 + 31.22B2

0 = −20.11 + 31.22B2

B2 =
20.11

31.22

= 0.64 V

Now v(t) is known.

v(t) =
[
−0.080 sin(2π40t) + 0.64e−5t sin(31.22t)

]
u(t) V

A graph of v(t) is shown below.

0 100 200 300 400 500 600 700 800 900 1,000

0

0.5

t (ms)

v
(t
)
(V

)
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8 Chapter 8 Solutions

8.1 Phasor Arithmetic

1. Convert −200− j100 to polar form.

Use the Pythagorean theorem to calculate the magnitude.

r =
√
2002 + 1002

= 223.61

Use the atan2 function to calculate the angle.

θ = atan2(−100,−200)

= −153.43◦

2. Convert 5 ̸ − 120◦ to Cartesian form.

Use sine and cosine to calculate the real and imaginary parts.

Z = 5 cos(−120◦) + j5 sin(−120◦)

= −2.5− j4.33

3. Calculate the value of (10 + j20)(−30 + j50) + (−15 − j40) and express the answer in both

Cartesian and polar forms.

Complete the addition in Cartesian form.

Z = (10 + j20)(−30 + j50) + (−15− j40)

= −1300− j100− 15− j40

= −1315− j140

Convert to polar form.

Z =
√
13152 + 1402 ̸ atan2(−140,−1315)

= 1322.43 ̸ − 173.92◦
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4. Calculate the value of (10̸ 60◦ − 4̸ − 140◦)(20 ̸ 20◦) and express the answer in both Cartesian

and polar forms.

Convert the phasors to Cartesian form.

10 ̸ 60◦ = 5 + j8.66

4̸ − 140◦ = −3.06− j2.57

20̸ 20◦ = 18.79 + j6.84

Perform the arithmetic.

Z = [(5 + j8.66)− (−3.06− j2.57)] (18.79 + j6.84)

= (8.06 + j11.23)(18.79 + j6.84)

= 74.73 + j266.24

Convert to polar form.

Z =
√
74.732 + 266.242 ̸ atan2(266.24, 74.73)

= 276.53 ̸ 74.32◦

5. Calculate the value of (10 + j14)(60̸ − 140◦) + (38̸ 20◦)/(−5 − j18) and express the answer in

both Cartesian and polar forms.

Convert polar phasors to Cartesian form.

60 ̸ − 140◦ = −45.96− j38.57

38 ̸ 20◦ = 35.71 + j13.00

Perform the arithmetic.

Z = (10 + j14)(−45.96− j38.57) +
35.71 + j13.00

−5− j18

= (80.31− j1029.15) + (−1.18 + j1.66)

= 79.13− j1027.49
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Convert to polar form.

Z =
√
79.132 + 1027.492 ̸ atan2(−1027.49, 79.13)

= 1030.54 ̸ − 85.60◦

8.2 Impedance and Equivalent Impedance

6. Calculate the impedance of a 25 mH inductor at a frequency of 60 Hz.

ZL = jωL

= j(2π60)(0.025)

= j9.42 Ω

7. Calculate the impedance of a 470 nF capacitor at a frequency of 2 kHz.

ZC =
−j

ωC

=
−j

(2π2000)(470× 10−9

= −j169.34 Ω

8. Calculate the equivalent impedance of the circuit shown in figure 8.1. The frequency of

operation is 200 Hz.

65 Ω

85 mH 45 Ω

Figure 8.1: Circuit diagram for impedance and equivalent impedance question 8.

Calculate the impedance of the inductor

ZL = jωL

= j(2π200)(0.085)

= j106.81 Ω
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Calculate the equivalent impedance.

ZEQ = 45 Ω//j106.81 Ω + 65 Ω

= 38.22 + j16.10 Ω + 65 Ω

= 103.22 + j16.10 Ω

9. Calculate the equivalent impedance of the circuit shown in figure 8.2. The frequency of

operation is 450 Hz.

100 mH

330 nF 24 Ω

460 mH

86 Ω

Figure 8.2: Circuit diagram for impedance and equivalent impedance question 9.

Calculate the impedance of the capacitor and inductors.

ZL100 = j(2π450)(0.1)

= j282.74 Ω

ZL460 = j(2π450)(0.46)

= j1300.62 Ω

ZC =
−j

(2π450)(330× 10−9)

= −j1071.75 Ω

Calculate the equivalent impedance.

ZEQ = (86 Ω + j1300.62 Ω)//24 Ω//− j1071.75 Ω + j282.74 Ω

= 86 + j1300.62 Ω//24 Ω//− j1071.75 Ω + j282.74 Ω

= 23.97− j0.10 Ω + j282.74 Ω

= 23.97 + j282.65 Ω
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10. Calculate the equivalent impedance of the circuit shown in figure 8.3. The frequency of

operation is 6 kHz.

50 µF

2 Ω

6 Ω

68 µF

5 Ω

33 µH

Figure 8.3: Circuit diagram for impedance and equivalent impedance question 10.

Calculate the impedances of the inductor and both capacitors.

ZC50 =
−j

(2π6000)(50× 10−6)

= −j0.53 Ω

ZC68 =
−j

(2π6000)(68× 10−6)

= −j0.39 Ω

ZL = j(2π6000)(33× 10−6)

= j1.24 Ω

Calculate the equivalent impedance.

ZEQ = ((5 Ω + j1.24 Ω)//(6 Ω− j0.39 Ω) + 2 Ω)//− j0.53 Ω

= (2.79 + j0.28 Ω + 2 Ω)//− j0.53 Ω

= 58.56− j527.51 mΩ
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8.3 Delta-Wye and Wye-Delta Transforms

11. Convert the circuit shown in figure 8.4 to a delta circuit.

a

j8 Ω

–j10 Ω

b

30 Ω

c

Figure 8.4: Circuit diagram for delta-wye and wye-delta transforms question 11.

Calculate each of the delta impedances.

Z1 =
ZaZb + ZbZc + ZaZc

Zc

=
(j8 Ω)(−j10 Ω) + (−j10 Ω)(30 Ω) + (j8 Ω)(30 Ω)

30 Ω

=
80− j60 Ω2

30 Ω

= 2.67− j2 Ω

Z2 =
ZaZb + ZbZc + ZaZc

Za

=
80− j60 Ω2

j8 Ω

= −7.5− j10 Ω

Z3 =
ZaZb + ZbZc + ZaZc

Zb

=
80− j60 Ω2

−j10 Ω

= 6 + j8 Ω

Draw the delta circuit diagram.

a

2.67–j2 Ω

b

–7.5–j10 Ω
c

6+j8 Ω
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12. Convert the circuit shown in figure 8.5 to a wye circuit.

a

–j6.2 Ω

b

20 Ω
–j3.9 Ω

c

j13.4 Ω

Figure 8.5: Circuit diagram for delta-wye and wye-delta transforms question 12.

Calculate each of the wye impedances.

Za =
Z1Z3

Z1 + Z2 + Z3

=
(−j6.2 Ω)(j13.4 Ω)

(−j6.2 Ω) + (20− j3.9 Ω) + (j13.4 Ω)

=
83.08 Ω2

20 + j3.3 Ω

= 4.04− j0.67 Ω

Zb =
Z1Z2

Z1 + Z2 + Z3

=
(−j6.2 Ω)(20− j3.9 Ω)

20 + j3.3 Ω

= −2.17− j5.84 Ω

Zc =
Z2Z3

Z1 + Z2 + Z3

=
(20− j3.9 Ω)(j13.4 Ω)

20 + j3.3 Ω

= 4.70 + j12.63 Ω

Draw the wye circuit diagram.

a

4.04–j0.67 Ω

–2.17–j5.84 Ω

b

4.70+j12.63 Ω

c
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13. Calculate the equivalent impedance of the circuit shown in figure 8.6.

4 Ω

–j3 Ω

j5 Ω

9 Ω

6 Ω

Figure 8.6: Circuit diagram for delta-wye and wye-delta transforms question 13.

-2.67+j5 Ω

1.6-j3 Ω

3.75+j2 Ω
9 Ω

6 Ω

Calculate the equivalent impedance.

ZEQ = (9 Ω//(3.75 + j2 Ω) + 6 Ω//(−2.67 + j5 Ω))//(1.6− j3 Ω)

= ((2.80 + 0.97 Ω) + (2.68 + j4.98 Ω))//(1.6− j3 Ω)

= (5.48 + j5.96 Ω)//(1.6− j3 Ω)

= 2.86− j2.17 Ω

Draw the equivalent circuit.

2.86 Ω

–j2.17 Ω
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14. Calculate the equivalent impedance of the circuit shown in figure 8.7. The frequency of

operation is 10 kHz.

220 Ω

470 Ω

5 mH

100 nF

150 Ω

Figure 8.7: Circuit diagram for delta-wye and wye-delta transforms question 14.

Convert to impedances.

220 Ω

470 Ω

j314.16 Ω

–j159.15 Ω

150 Ω

Perform a wye-delta transform.

220
Ω

470
Ω

33
3.3
3+
j15
5
Ω 74.01–j159.15

Ω

–146.09+j314.16
Ω
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Calculate the equivalent impedance.

ZEQ = [(220 Ω)//(333.33 + j155 Ω) + (470 Ω)//(−j146.09 + j314.16 Ω)] //(74.01− j159.15 Ω)

= [(138.89 + j22.72 Ω) + (118.59 + j340.83 Ω)] //(74.01− j159.15 Ω)

= (257.49 + j363.55 Ω)//(74.01− j159.15 Ω)

= 149.15− j134.42 Ω

15. Calculate the equivalent impedance of the circuit shown in figure 8.8. The frequency of

operation is 50 Hz.

10 Ω

60 µF

20 Ω

60 mH

50 µF

80 mH

40 Ω

Figure 8.8: Circuit diagram for delta-wye and wye-delta transforms question 15.

Convert to impedances.

10–j53.05 Ω

20 Ω

j18.85 Ω

–j63.66 Ω

j25.13 Ω

40 Ω

Do a wye-delta transform.
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10–j53.05 Ω

20 Ω

–j92.56 Ω

–j123.41 Ω

j36.54 Ω
40 Ω

Calculate the equivalent impedance.

ZEQ = [(10− j53.05 Ω)//(−j92.56 Ω) + (20 Ω)//(j36.54 Ω)] //(−j123.41 Ω) + 40 Ω

= [(4.02− j34.00 Ω) + (15.39 + j8.42 Ω)] //(−j123.41 Ω) + 40 Ω

= (19.41− j25.58 Ω)//(−j123.41 Ω) + 40 Ω

= 13.10− j22.89 Ω + 40 Ω

= 53.10− j22.89 Ω
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9 Chapter 9 Solutions

9.1 Complex Voltage and Current Divider

1. Calculate v(t) given the circuit diagram shown in figure 9.1.

50 cos(2π60t + 60π/180) V

50 Ω

35 µF

+

−

v(t)

Figure 9.1: Circuit diagram for complex voltage and current divider circuits question 1.

Convert the source to phasor form.

VS = 50 cos(60◦) + j50 sin(60◦) V

= 25 + j43.30 V

Convert the capacitor to an impedance.

ZC =
−j

(2π60)(35× 10−6

= −j75.79 Ω

Apply the complex voltage divider rule.

VOUT = (25 + j43.30 V)

(
−j75.79 Ω

50 Ω− j75.79 Ω

)
= 37.32 + j18.68 V

= 41.74 V ̸ 26.59◦

Convert to time-varying form.

vout(t) = 41.74 cos(2π60t+ 26.59π/180) V
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2. Calculate v(t) given the circuit diagram shown in figure 9.2. The frequency of operation is

80 Hz.

160 V ̸ 150◦

j26.4 Ω

120 Ω

–j75.8 Ω

+

−

v(t)

Figure 9.2: Circuit diagram for complex voltage and current divider circuits question 2.

Apply the complex voltage divider rule.

VOUT = (−138.56 + j80 V)

(
120− j75.8 Ω

120− j75.8 Ω + j26.4 Ω

)
= −134.25 + j112.26 V

= 175.00 V ̸ 140.10◦

Convert to time-varying form.

vout(t) = 175.00 cos(2π80t+ 140.10π/180) V

3. Calculate i(t) given the circuit diagram shown in figure 9.3. The frequency of operation is

150 Hz.

20 A ̸ –120◦ –j7 Ω

6 Ω

j5 Ω

i(t)

Figure 9.3: Circuit diagram for complex voltage and current divider circuits question 3.
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Apply the complex current divider rule.

IOUT = (−10− j17.32 A)

(
(−j7 Ω)//(6 + j5 Ω)

6 + j5 Ω

)
= −21.69 + j4.44 A

= 22.14 A ̸ 168.43◦

Convert to time-varying form.

iout(t) = 22.14 cos(2π150t+ 168.43π/180) A

4. Calculate v(t) given the circuit diagram shown in figure 9.4.

7 cos(2π100t) V

28 Ω 52 mH

48 µF 30 Ω

+

−

v(t)

Figure 9.4: Circuit diagram for complex voltage and current divider circuits question 4.

Calculate equivalent impedances.

7 V

28+j32.67 Ω

16.50-j14.93 Ω

+

−

VOUT

Apply the complex voltage divider rule.

VOUT = 7 V

(
16.50− j14.93 Ω

16.50− j14.93 Ω + 28 + j32.67 Ω

)
= 1.43− j2.92 V

= 3.23 V ̸ − 63.88◦

Convert to time-varying form.

vout(t) = 3.23 cos(2π100t− 63.88π/180) V
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5. Calculate i(t) given the circuit diagram shown in figure 9.5.

4.5 cos(2π6000t+30π/180) A 40 Ω

i(t)

330 nF 1 mH

Figure 9.5: Circuit diagram for complex voltage and current divider circuits question 5.

Convert to phasors and impedances.

3.90+j2.25 A 40 Ω

i(t)

–j80.38 Ω j37.70 Ω

Apply the complex current divider rule.

IOUT = (3.90 + j2.25 A)

(
(40 Ω)//(−j80.38 Ω)//(j37.70 Ω)

40 Ω

)
= (3.90 + j2.25 A)

(
30.36 + j17.11 Ω

40 Ω

)
= (3.90 + j2.25 A)(0.76 + j0.43)

= 2.00 + j3.37 A

= 3.92 A ̸ 59.40◦

Convert to time-varying form.

iout(t) = 3.92 cos(2π6000t+ 59.40π/180) A
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9.2 Complex Kirchhoff’s Laws

6. Calculate i(t) given the circuit diagram shown in figure 9.6.

24 cos(2π60t) V

40 Ω

330 µF

10 mH

80 Ω

i(t)

Figure 9.6: Circuit diagram for complex Kirchhoff’s laws question 6.

Convert to impedances and define branch currents.

24 V

40 Ω I1

–j8.04 Ω

I2

j3.77 Ω

80 Ω

IOUT

Perform KCL.

0 = I1 − I2 − IOUT

Perform KVL.

24 = 40I1 − j8.04I2

0 = j8.04I2 + (80 + j3.77)IOUT

Place the equations into form αI1 + βI2 + γIOUT = c, and then place each coefficient into a matrix.
1 −1 −1 0

40 −j8.04 0 24

0 j8.04 80 + j3.77 0


Solve the matrix for IOUT.

IOUT = 14.15− j56.16 mA
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Convert to time-varying form.

iout(t) = 57.91 cos(2π60t− 75.86π/180) mA

7. Calculate v(t) given the circuit diagram shown in figure 9.7. The frequency of operation is

20 Hz.

80 V ̸ 120◦

8 Ω

10 Ω

5 Ω

–j6 Ω j5 Ω

+

−

v(t)

Figure 9.7: Circuit diagram for complex Kirchhoff’s laws question 7.

Define branch currents.

–40+j69.28 V

8 Ω I1

10 Ω

I2

5 Ω I3

–j6 Ω

I4

j5 Ω

+

−

VOUT

I5

Perform KCL.

0 = I1 − I2 − I3

0 = I3 − I4 − I5

Perform KVL.

−40 + j69.28 = 8I1 + 10I2

0 = −10I2 + 5I3 − j6I4

0 = −10I2 + 5I3 + j5I5

Place the equations into form αI1 + βI2 + γI3 + δI4 + ϵI5 = c, and then place each coefficient into a
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matrix. 

1 −1 −1 0 0 0

0 0 1 −1 −1 0

8 10 0 0 0 −40 + j69.28

0 −10 5 −j6 0 0

0 −10 5 0 j5 0


Solve the matrix for I5.

I5 = 5.73 + j6.25 A

Use Ohm’s law to calculate VOUT.

VOUT = (5.73 + j6.25 A)(j5 Ω)

= −31.24 + j28.65 V

= 42.39 V ̸ 137.47◦

Convert to time-varying form.

vout(t) = 42.39 cos(2π20t+ 137.47π/180) V

8. Calculate v(t) given the circuit diagram shown in figure 9.8. The frequency of operation is

20 kHz.

15 A ̸ 0◦ 6 Ω

j9 Ω

–j3 Ω

4 Ω

+

−

v(t)

8 Ω

j5 Ω

Figure 9.8: Circuit diagram for complex Kirchhoff’s laws question 8.

Define branch currents.
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15 A 6 Ω

I1

j9 Ω I2

–j3 Ω
I3

4 Ω

+

−

VOUT

8 Ω

j5 Ω

I4

Perform KCL.

15 = I1 + I2

0 = I2 − I3 − I4

Perform KVL.

0 = −6I1 + j9I2 + (4− j3)I3

0 = −6I1 + j9I2 + (8 + j5)I4

Place the equations into form αI1 + βI2 + γI3 + δI4 = c, and then place each coefficient into a matrix.
1 1 0 0 15

0 1 −1 −1 0

−6 j9 4− j3 0 0

−6 j9 0 8 + j5 0


Solve the matrix for I3.

I3 = 5.28− j1.61 A

Use Ohm’s law to calculate VOUT.

VOUT = (5.28− j1.61 A)(4− j3 Ω)

= 16.29− j22.28 V

= 27.60 V ̸ − 53.82◦

Convert to time-varying form.

vout(t) = 27.60 cos(2π20000t− 53.82π/180) V
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9. Calculate v(t) given the circuit diagram shown in figure 9.9. The frequency of operation is

30 Hz.

100 V ̸ 0◦

5 Ω

–j10 Ω

10 Ω

j10 Ω

+

−

v(t)

–j5 Ω

Figure 9.9: Circuit diagram for complex Kirchhoff’s laws question 9.

Define branch currents.

100 V

5 Ω I2

–j10 Ω

I3

10 Ω I4

j10 Ω

+

−

VOUT

I5

–j5 Ω
I1

Perform KCL.

0 = I2 − I3 − I4

0 = I1 + I4 − I5

Perform KVL.

100 = 5I2 − j10I3

0 = j10I3 + 10I4 + j10I5

0 = −j5I1 − 10I4 − 5I2

Place the equations into form αI1 + βI2 + γI3 + δI4 + ϵI5 = c, and then place each coefficient into a
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matrix. 

0 1 −1 −1 0 0

1 0 0 1 −1 0

0 5 −j10 0 0 100

0 0 j10 10 j10 0

−j5 −5 0 −10 0 0


Solve the matrix for I5.

I5 = 3.53− j14.12 A

Use Ohm’s law to calculate VOUT.

VOUT = (3.53− j14.12 A)(j10 Ω)

= 141.18 + j35.29 V

= 145.52 V ̸ 14.04◦

Convert to time-varying form.

vout(t) = 145.52 cos(2π30t+ 14.04π/180) V

10. Calculate v(t) given the circuit diagram shown in figure 9.10.

5 cos(2π200t) V

2 Ω

5 Ω

+

−

v(t)

40 µF

0.5v(t) 7 Ω 100 µF

Figure 9.10: Circuit diagram for complex Kirchhoff’s laws question 10.

Define branch currents.

5 V

2 Ω I1

5 Ω

+

−

V

I2

40 µF
I3

0.5V 7 Ω

I4

100 µF

I5
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Perform KCL.

0 = I1 − I2 − I3

0 = I3 − 0.5V − I4 − I5

Perform KVL.

5 = 2I1 + 5I2

0 = −5I2 − j19.89I3 + 7I4

0 = −7I4 − j7.96I5

Derive a dependent source equation.

V = 5I2

Place the equations into form αI1 + βI2 + γI3 + δI4 + ϵI5 + ζV = c, and then place each coefficient into

a matrix. 

1 −1 −1 0 0 0 0

0 0 1 −1 −1 −0.5 0

2 5 0 0 0 0 5

0 −5 −j19.89 7 0 0 0

0 0 0 −7 −j7.96 0 0

0 5 0 0 0 −1 0


Solve the matrix for V.

V = 3.09− j0.43 V

= 3.12 V ̸ − 8.00◦

Convert to time-varying form.

v(t) = 3.12 cos(2π200t− 8.00π/180) V
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9.3 Complex Mesh Analysis

11. Calculate v(t) given the circuit diagram shown in figure 9.11. The frequency of operation

is 50 Hz.

105 V ̸ 0◦

12 Ω

24 Ω

+

−

v(t)

9 Ω

j12 Ω

Figure 9.11: Circuit diagram for complex mesh analysis question 11.

Define mesh currents. Component values may be hidden so that mesh current labels can be read.

105 V

12 Ω 9 Ω

IA IB

Derive the mesh equations.

105 = 12IA + 24(IA − IB)

0 = 24(IB − IA) + (9 + j12)IB

Place the equations into form αIA + βIB = c, and then place each coefficient into a matrix. 36 −24 105

−24 33 + j12 0


Solve the matrix for IA and IB.

IA = 4.75− j1.29 A

IB = 2.75− j1.94 A
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Calculate the voltage.

V = (24 Ω)(IA − IB)

= (24 Ω)((4.75− j1.29 A)− (2.75− j1.94 A))

= 48.01 + j15.52 V

= 50.46 V ̸ 17.91◦

Convert to time-varying form.

v(t) = 50.46 cos(2π50t+ 17.91π/180) V

12. Calculate i(t) given the circuit diagram shown in figure 9.12.

30 cos(2π100t + 45π/180) V

15 Ω

160 µF

i(t)

8 mH

20 Ω

30 Ω
250 µF

Figure 9.12: Circuit diagram for complex mesh analysis question 12.

Define mesh currents. Component values may be hidden so that mesh current labels can be read.

21.21+j21.21 V

15 Ω

I

8 mH

20 Ω

30 Ω
250 µF

IA

IB IC
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Derive the mesh equations.

0 = (30− j6.37)IA + j5.03(IA − IC) + 15(IA − IB)

21.21 + j21.21 = 15(IB − IA)− j9.95(IB − IC)

0 = −j9.95(IC − IB) + j5.03(IC − IA) + 20IC

Place the equations into form αIA + βIB + γIC = c, and then place each coefficient into a matrix.
45− j1.34 −15 −j5.03 0

−15 15− j9.95 j9.95 21.21 + j21.21

−j5.03 j9.95 20− j4.92 0


Solve the matrix for IB and IC.

IB = 0.31 + j1.83 A

IC = 0.73 + j0.05 A

Calculate the branch current.

I = (IB − IC)

= (0.31 + j1.83 A)− (0.73 + j0.05 A)

= −0.42 + j1.79 A

= 1.83 A ̸ 103.18◦

Convert to time-varying form.

i(t) = 1.83 cos(2π100t+ 103.18π/180) A
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13. Calculate v(t) given the circuit diagram shown in figure 9.13.

12 cos(2π200t) V

130 Ω

5 µF

80 Ω

210 Ω

56 Ω

95 mH

+

−

v(t)

Figure 9.13: Circuit diagram for complex mesh analysis question 13.

Define mesh currents. Component values may be hidden so that mesh current labels can be read.

12 V

130 Ω

5 µF

80 Ω

210 Ω

56 Ω

+

−

V

IA

IB

IC

Derive the mesh equations.

12 = 130IA − j159.15(IA − IB) + 80(IA − IC)

0 = −j159.15(IB − IA) + 56IB + 210(IB − IC)

0 = 80(IC − IA) + 210(IC − IB) + j119.38IC

Place the equations into form αIA + βIB + γIC = c, and then place each coefficient into a matrix.
210− j159.15 j159.15 −80 12

j159.15 266− j159.15 −210 0

−80 −210 290 + j119.38 0


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Solve the matrix for IC.

IC = 22.68− j35.74 mA

Use Ohm’s law to calculate V.

V = (j119.38 Ω)(IC)

= (j0.11938 kΩ)(22.68− j35.74 mA)

= 4.27 + j2.71 V

= 5.05 V ̸ 32.40◦

Convert to time-varying form.

v(t) = 5.05 cos(2π200t+ 32.40π/180) V

14. Calculate v(t) given the circuit diagram shown in figure 9.14. The frequency of operation

is 5 kHz.

10 V ̸ –50◦

20 Ω

50 Ω

+

−

v(t)

1.4 µF

20 Ω

−
+

2v(t)

60 Ω

Figure 9.14: Circuit diagram for complex mesh analysis question 14.

Define mesh currents. Component values may be hidden so that mesh current labels can be read.
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10 V

20 Ω

+

−

V

1.4 µF

20 Ω

−
+

2V

60 ΩIA IB IC

Derive the mesh equations.

10 = 20IA + 50(IA − IB)

0 = 50(IB − IA)− j22.75IB + 20(IB − IC) + 2V

0 = −2V + 20(IC − IB) + 60IC

Derive an equation for the dependent source.

V = 50(IA − IB)

Place the equations into form αIA + βIB + γIC + δV = c, and then place each coefficient into a matrix.
70 −50 0 0 10

−50 70− j22.74 −20 2 0

0 −20 80 −2 0

−50 50 0 1 0


Solve the matrix for V.

V = 7.84 + j2.00 V

= 8.09 V ̸ 14.35◦

Convert to time-varying form.

v(t) = 8.09 cos(2π5000t+ 14.35π/180) V
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15. Calculate v(t) given the circuit diagram shown in figure 9.15.

15 cos(2π600t + 25π/180) V

30 Ω

0.3v(t)

60 Ω

6.6 µF

20 Ω

+ −
v(t)

5.3 µF

Figure 9.15: Circuit diagram for complex mesh analysis question 15.

Define mesh currents. Component values may be hidden so that mesh current labels can be read.

13.59+j6.34 V

30 Ω 60 Ω

6.6 µF

20 Ω

+ −
V

5.3 µF

IA

IB IC

Derive the mesh equations.

0 = (20− j50.05)IA + 60(IA − IC) + 30(IA − IB)

13.59 + j6.34 = 30(IB − IA) + 60(IC − IA)− j40.19IC

Perform KCL at the supermesh.

0 = IB − 0.3V − IC

Derive an equation for the dependent source.

V = 20IA
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Place the equations into form αIA + βIB + γIC + δV = c, and then place each coefficient into a matrix.
110− j50.05 −30 −60 0 0

−90 30 60− j40.19 0 13.59 + j6.34

0 1 −1 −0.3 0

−20 0 0 1 0


Solve the matrix for V.

V = −8.43 + j13.42 V

= 15.84 V ̸ 122.13◦

Convert to time-varying form.

v(t) = 15.84 cos(2π600t+ 122.13π/180) V

9.4 Complex Superposition

16. Calculate v(t) given the circuit diagram shown in figure 9.16. The frequency of operation

is 10 kHz.

5 V ̸ 15◦

20 Ω

j15 Ω

+

−

v(t)

–j40 Ω

30 V ̸ 0◦

Figure 9.16: Circuit diagram for complex superposition question 16.

Calculate the voltage drop contributed by the 5 V source.

5 V ̸ 15◦

20 Ω

j15 Ω

+

−

V1

–j40 Ω
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Use the complex voltage divider rule to calculate V1.

V1 = (4.83 + j1.29 V)

(
j15 Ω//− j40 Ω

j15 Ω//− j40 Ω + 20 Ω

)
= (4.83 + j1.29 V)

(
j24 Ω

j24 Ω + 20 Ω

)
= 2.21 + j3.14 V

Calculate the voltage drop contributed by the 30 V source.

20 Ω

j15 Ω

+

−

V2

–j40 Ω

30 V ̸ 0◦

Use the complex voltage divider rule to calculate V2.

V2 = (30 V)

(
j15 Ω//20 Ω

j15 Ω//20 Ω− j40 Ω

)
= (30 V)

(
7.2 + j9.6 Ω

−32.8 + j9.6 Ω

)
= −7.38 + j8.85 V

Calculate V.

V = V1 +V2

= (2.21 + j3.14 V) + (−7.38 + j8.85 V)

= −5.16 + j11.99 V

= 13.06 V ̸ 113.30◦

Convert to time-varying form.

v(t) = 13.06 cos(2π10000t+ 113.30π/180) V
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17. Calculate v(t) given the circuit diagram shown in figure 9.17. The frequency of operation

is 40 Hz.

10 A ̸ 0◦ 5 Ω

+

−

v(t) –j20/9 Ω j5 Ω

20 Ω

100 V ̸ –90◦

Figure 9.17: Circuit diagram for complex superposition question 17.

Calculate the voltage drop contributed by the 10 A source.

10 A ̸ 0◦ 5 Ω

+

−

V1 –j20/9 Ω j5 Ω

20 Ω

Calculate the equivalent impedance.

ZEQ = 5 Ω//− j20/9 Ω//j5 Ω//20 Ω

= 2− j2 Ω

Use Ohm’s law to calculate V1.

V1 = (10 A)(2− j2 Ω)

= 20− j20 V

Calculate the voltage drop contributed by the 100 V source.

5 Ω

+

−

V2 –j20/9 Ω j5 Ω

20 Ω

100 V ̸ –90◦

Calculate the equivalent impedance of the parallel impedances.
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1.95–j2.44 Ω

+

−

V2

20 Ω

100 V ̸ –90◦

Use the complex voltage divider rule to calculate V2.

V2 = (−j100 V)

(
1.95− j2.44 Ω

21.95− j2.44 Ω

)
= −10− j10 V

Calculate V.

V = V1 +V2

= (20− j20 V) + (−10− j10 V)

= 10− j30 V

= 31.62 V ̸ − 71.57◦

Convert to time-varying form.

v(t) = 31.62 cos(2π100t− 71.57π/180) V

18. Calculate v(t) given the circuit diagram shown in figure 9.18. The frequency of operation

is 100 Hz.

100–j50 V

20 Ω

j5 Ω

12 Ω j16 Ω

+ −v(t)

–j10 Ω 30+j20 A

Figure 9.18: Circuit diagram for complex superposition question 18.

Calculate the voltage drop contributed by the voltage source.
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100–j50 V

20 Ω

j5 Ω

12 Ω j16 Ω

+ −V1

–j10 Ω

Use the complex voltage divider rule to calculate V1.

V1 = (100− j50 V)

(
j5 Ω//(12 + j6 Ω)

j5 Ω//(12 + j6 Ω) + 20 Ω

)(
12 + j16 Ω

12 + j6 Ω

)
= (100− j50 V)

(
1.13 + j3.96 Ω

21.13 + j3.96 Ω

)
(1.33 + j0.67)

= (100− j50 V)(0.09 + j0.17) (1.33 + j0.67)

= 14.29 + j28.57 V

Calculate the voltage drop contributed by the current source.

20 Ω

j5 Ω

12 Ω j16 Ω

+ −V2

–j10 Ω 30+j20 A

Combine parallel impedances.

1.18+j4.71 Ω

12 Ω j16 Ω

+ −V2

–j10 Ω 30+j20 A

Use the complex current divider rule to calculate the current through the branch with many elements.

I = (30 + j20 A)

(
−j10 Ω//13.18 + j20.71 Ω

13.18 + j20.71 Ω

)
= −2− j21.14 A
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Use Ohm’s law to calculate V2.

V2 = (12 + j16 Ω)(−2− j21.14 A)

= 314.29− j285.71 V

Calculate V.

V = V1 +V2

= (14.29 + j28.57 V) + (314.29− j285.71 V)

= 328.57− j257.14 V

= 417.23 V ̸ − 38.05◦

Convert to time-varying form.

v(t) = 417.23 cos(2π100t− 38.05π/180) V

19. Calculate i(t) given the circuit diagram shown in figure 9.19. The frequency of operation

is 2 kHz.

5 A ̸ 0◦

10 µF

310 µH

i(t)

12 Ω

20 V ̸ 90◦

20 µF

Figure 9.19: Circuit diagram for complex superposition question 19.

Calculate the current contributed by the voltage source.

cbna Alyssa J. Pasquale, Ph.D. 160 Last updated: 2025/03/17



9 Chapter 9 Solutions 9.4 Complex Superposition

10 µF

310 µH

I1

12 Ω

20 V ̸ 90◦

20 µF

Calculate the equivalent impedance.

j3.90 Ω

I1

5.97-j6.00 Ω

20 V ̸ 90◦

Use the Ohm’s law to calculate I1.

I1 =
j20 V

5.97− j6.00 Ω + j3.90 Ω

= −1.05 + j2.98 A

Calculate the voltage drop contributed by the current source.

5 A ̸ 0◦

10 µF

310 µH

I2

12 Ω

20 µF

Convert to impedances.
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5 A

-7.96 Ω

j3.90 Ω

I2

12 Ω

-j3.98 Ω

Use the complex current divider rule to calculate I2.

I2 = (5 A)

(
(−j7.96 Ω + 12 Ω//j3.90 Ω)//− j3.98 Ω

−j7.96 Ω + 12 Ω//j3.90 Ω

)(
j3.90 Ω//12 Ω

j3.90 Ω

)
= (5 A)

(
(1.14− j4.43 Ω)//− j3.98 Ω

1.14− j4.43 Ω

)
(0.90− j0.29)

= (5 A) (0.46− j0.06) (0.90− j0.29)

= 2.01− j0.97 A

Calculate I.

I = I1 + I2

= (−1.05 + j2.98 A) + (2.01− j0.97 A)

= 0.96 + j2.01 A

= 2.23 A ̸ 64.57◦

Convert to time-varying form.

i(t) = 2.23 cos(2π2000t+ 64.57π/180) A
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20. Calculate i(t) given the circuit diagram shown in figure 9.20. The frequency of operation

is 20 Hz.

5 V ̸ 0◦

200 Ω

j80 Ω

i(t)

150 Ω

100 Ω

10 V ̸ 60◦

j60 Ω

120 Ω 600 mA ̸ 45◦

Figure 9.20: Circuit diagram for complex superposition question 20.

Calculate the current contributed by the 5 V source.

5 V ̸ 0◦

200 Ω

j80 Ω

I1

150 Ω

100 Ω

j60 Ω

120 Ω

Calculate the equivalent impedance.

5 V ̸ 0◦

200 Ω

j80 Ω

I1

207.69+j11.54 Ω

Use the complex voltage divider rule to calculate the voltage drop over the inductor.

VL = 5 V

(
(j80 Ω)//(207.69 + j11.54 Ω)

200 Ω + (j80 Ω)//(207.69 + jj.54 Ω)

)
= 0.95 + j1.23 V

Use Ohm’s law to calculate I1.

I1 =
0.95 + j1.23 V

j80 Ω

= 15.40− j11.82 mA
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Calculate the current contributed by the 10 V source.

200 Ω

j80 Ω

I2

150 Ω

100 Ω

10 V ̸ 60◦

j60 Ω

120 Ω

Convert to a simpler circuit to take a voltage divider. Find the equivalent impedance of all but the 100 Ω

resistor. All units are ohms.

ZEQ = ((200//j80) + 150)//(120 + j60)

= (177.79 + j68.97)//(120 + j60)

= 71.79 + j32.50 Ω

10 V ̸ 60◦

100 Ω

71.79+j32.50 Ω

+

−

V

Use the complex voltage divider rule to calculate V.

V = (5 + j8.66 V)

(
71.79 + j32.50 Ω

171.79 + j32.50 Ω

)
= 1.27 + j4.32 V

Re-draw the reduced circuit.

200 Ω

j80 Ω

I2

150 Ω

1.27+j4.32 V

j60 Ω

120 Ω

The 120+j60 Ω branch, bering in parallel with the circuitry containing the inductor of interest, can be
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removed from the circuit in the interest of calculating voltage.

200 Ω

j80 Ω

I2

150 Ω

1.27+j4.32 V

Use the complex voltage divider rule to calculate the voltage drop over the inductor. Units are volts and

ohms.

V = (1.27 + j4.32)

(
200//j80

150 + 200//j80

)
= −0.90 + j1.51 V

Use Ohm’s law to calculate I2.

I2 =
−0.90 + j1.51 V

j80 Ω

= 18.90 + j11.19 mA

Calculate the current contributed by the current source.

200 Ω

j80 Ω

I3

150 Ω

100 Ω

j60 Ω

120 Ω 600 mA ̸ 45◦

Reduce to a circuit with two impedances.

66.07+j68.43 Ω 120 Ω 600 mA ̸ 45◦

Use the complex current divider rule to calculate the current flowing through the 66.07+j68.43 Ω branch.
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Units are mA and ohms.

IX = (424.26 + j424.26)

(
120//(66.07 + j68.43)

66.07 + j68.43

)
= 329.66 + j152.38 mA

Re-draw the circuit.

200 Ω

j80 Ω

I3

150 Ω

100 Ω 329.66+j152.38 mA

Reduce to a circuit with two impedances.

177.59+j68.97 Ω 100 Ω 329.66+j152.38 mA

Use the complex current divider rule to calculate the current flowing through the 177.59+j68.97 Ω branch.

Units are mA and ohms.

IY = (329.66 + j152.38)

(
100//(177.59 + j68.97)

177.59 + j68.97

)
= 124.70 + j23.91 mA

Re-draw the circuit.

200 Ω

j80 Ω

I3

124.70+j23.91 mA
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Use the complex current divider rule to calculate I3. Units are mA and ohms.

I3 = (124.70 + j23.91)

(
200//j80

j80

)
= 115.75− j22.38 mA

Calculate I.

I = I1 + I2 + I3

= (15.40− j11.82 mA) + (18.90 + j11.19 mA) + (115.75− j22.38 mA)

= 150.05− j23.02 mA

= 151.81 mA ̸ − 8.72◦

Convert to time-varying form.

i(t) = 151.81 cos(2π20t− 8.72π/180) mA

9.5 Complex Source Transformation

21. Use source transformation to calculate v(t) in the circuit shown in figure 9.16 (in the

complex superposition section).

5 V ̸ 15◦

20 Ω

j15 Ω

+

−

v(t)

–j40 Ω

30 V ̸ 0◦

Convert both sources to current sources.

IS1 =
5 cos(15◦) + j5 sin(15◦) V

20 Ω

= 0.24 + j0.06 A

IS2 =
30 V

−j40 Ω

= j0.75 A

Re-draw the circuit.

cbna Alyssa J. Pasquale, Ph.D. 167 Last updated: 2025/03/17



9 Chapter 9 Solutions 9.5 Complex Source Transformation

0.24+j0.06 A 20 Ω j15 Ω

+

−

V –j40 Ω j0.75 A

Combine sources and impedances.

0.24+j0.81 A 11.8+j9.84 Ω

+

−

V

Use Ohm’s law to calculate V.

V = (0.24 + j0.81 A)(11.80 + j9.84 Ω)

= −5.16 + j11.99 V

= 13.06 V ̸ 113.30◦

Convert to time-varying form.

v(t) = 13.06 cos(2π10000t+ 113.30π/180) V

This answer should be and is identical to question 16 in the complex superposition section.

22. Use source transformation to calculate v(t) in the circuit shown in figure 9.17 (in the

complex superposition section).

10 A ̸ 0◦ 5 Ω

+

−

v(t) –j20/9 Ω j5 Ω

20 Ω

100 V ̸ –90◦

Convert the voltage source to a current source.

IS =
−j100 V

20 Ω

= −j5 A
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10 A 5 Ω

+

−

V –j20/9 Ω j5 Ω 20 Ω –j5 A

Combine sources and impedances.

10–j5 A 2–j2 Ω

+

−

V

Use Ohm’s law to calculate V.

V = (10− j5 A)(2− j2 Ω)

= 10− j30 V

= 31.62 V ̸ − 71.57◦

Convert to time-varying form.

v(t) = 31.62 cos(2π40t− 71.57π/180) V

This answer should be and is identical to question 17 in the complex superposition section.

23. Use source transformation to calculate i(t) for the circuit shown in figure 9.21. The

frequency of operation is 10 Hz.

20 V ̸ 0◦

6 Ω

–j5 Ω

j4 Ω

11 Ω

i(t)

–j7 Ω

30 V ̸ 0◦

Figure 9.21: Circuit diagram for complex source transformation question 23.
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20 V ̸ 0◦

6 Ω

–j5 Ω

j4 Ω

11 Ω

i(t)

–j7 Ω

30 V ̸ 0◦

Convert both voltage sources into current sources.

I1 =
20 V

6 Ω

= 3.33 A

I2 =
30 V

−j7 Ω

= j4.28 A

Re-draw the circuit.

3.33 A 6 Ω –j5 Ω

j4 Ω

11 Ω

I

–j7 Ω j4.28 A

Combine impedances in parallel.

3.33 A 2.46–j2.95 Ω

j4 Ω

11 Ω

I

–j7 Ω j4.28 A

Convert the 3.33 A source to a voltage source.

VS = (3.33 A)(2.46− j2.95 Ω)

= 8.20− j9.84 V

Re-draw the circuit. Combine series impedances.
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8.20–j9.84 V

2.46+j1.05 Ω

11 Ω

I

–j7 Ω j4.28 A

Convert the voltage source back to a current source.

IS =
8.20− j9.84 V

2.46 + j1.05 Ω

= 1.38− j4.59 A

Re-draw the circuit.

1.38–j4.59 A 2.46+j1.05 Ω 11 Ω

I

–j7 Ω j4.28 A

Combine current sources. Combine all impedances but the 11 Ω resistor.

1.38–j0.30 A 2.91+j0.03 Ω 11 Ω

I

Use the complex current divider rule to calculate I.

I = (1.38− j0.30 A)

(
(2.91 + j0.03 Ω)//(11 Ω)

11 Ω

)
= 0.29− j0.06 A

= 288.18− j60.40 mA

= 294.44 mA ̸ − 11.84◦

Convert to time-varying form.

i(t) = 294.44 cos(2π10t− 11.84π/180) mA
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24. Use source transformation to calculate v(t) for the circuit shown in figure 9.22.

3 cos(2π50000t) A 25 µH

500 nF

+ −
v(t)

12 Ω

9 Ω

15 cos(2π50000t) V

Figure 9.22: Circuit diagram for complex source transformation question 24.

Convert both sources.

IS =
15 V

9 Ω

= 1.67 A

VS = (3 A)(j2π50000)(25× 10−6) Ω

= j23.56 V

j23.56 V

j7.85 Ω
500 nF

+ −
V

12 Ω 9 Ω 1.67 A

Combine parallel resistors.

j23.56 V

j7.85 Ω
500 nF

+ −
V
5.14 Ω 1.67 A

Convert the current source to a voltage source.

VS = (1.67 A)(5.14 Ω)

= 8.57 V
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Re-draw the circuit.

j23.56 V

j7.85 Ω
500 nF

+ −
V

5.14 Ω

8.57 V

Combine the voltage sources and the inductor and resistor impedances.

–8.57+j23.56 V

5.14+j7.85 Ω

–j6.37 Ω

+

−

V

Use the complex voltage divider rule to calculate V.

V = (−8.57 + j23.56 V)

(
−j6.37 Ω

(−j6.37 Ω) + (5.14 + j7.85 Ω)

)
= 29.75 + j2.00 V

= 29.81 V ̸ 3.86◦

Convert to time-varying form.

v(t) = 29.81 cos(2π50000t+ 3.86π/180) V

25. Use source transformation to calculate v(t) for the circuit shown in figure 9.23.

3 cos(2π100t) V

2 Ω

1.6 mF

+

−

v(t)

0.3 mF

2 v(t) 5 Ω

Figure 9.23: Circuit diagram for complex source transformation question 25.
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Convert both sources.

IS =
3 V

2 Ω

= 1.5 A

VS = (−2V)(5)

= −10V

1.5 A 2 Ω 1.6 mF

+

−

V

0.3 mF
5 Ω

−
+ 10 V

Combine impedances.

1.5 A 0.4-j0.8 Ω

+

−

V

5-j5.31 Ω

−
+ 10 V

Convert the dependent source to a VCCS.

IS =
10V

5− j5.31

= (0.94 + j1.00)V

1.5 A 0.4-j0.8 Ω

+

−

V 5-j5.31 Ω (0.94+j1)V

Combine sources and impedances.
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1.5 – (0.94+j1)V 0.38–j0.70 Ω

+

−

V

Use Ohm’s law to calculate V.

V = (0.38− j0.70)(1.5− (0.94 + j1)V)

= (0.57− j1.05)− (1.06− j0.28)V

(2.06− j0.28)V = (0.57− j1.05)

V =
(0.57− j1.05)

(2.06− j0.28)

= 0.34− j0.47 V

= 339.57− j465.34 mV

= 576.06 mV ̸ − 53.88◦

Convert to time-varying from.

v(t) = 576.06 cos(2π100t− 53.88π/180) mV

9.6 Complex Thévenin and Norton’s Theorems

26. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 9.24. The frequency of operation is 50 Hz.

10 V ̸ 30◦

5 Ω

25 mH

750 µF

a

b

Figure 9.24: Circuit diagram for complex Thévenin and Norton theorems question 26.

Phasor transform the circuit.
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8.66+j5 V

5 Ω

j7.85 Ω

–j4.24 Ω

a

b

Use the complex voltage divider rule to calculate VTH.

VTH = (8.66 + j5 V)

(
j7.85 Ω

5 + j7.85 Ω

)
= 3.90 + j7.48 V

= 8.44 V ̸ 62.48◦

Deactivate the source and calculate the equivalent impedance of the circuit.

ZTH = (−j4.24 Ω) + (5 Ω)//(j7.85 Ω)

= (−j4.24 Ω) + (3.56 + j2.27 Ω)

= 3.56− j1.98 Ω

Calculate the capacitance from the reactance.

C = − 1

2πfX

= − 1

2π50(−1.98)

= 1.61 mF

Draw the Thévenin equivalent circuit.

8.44 V ̸ 62.48◦

3.56 Ω
1.61 mF

a

b
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27. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 9.25.

60 cos(2π1500t) mA

50 Ω

10 mH

2 µF

100 Ω

a

b

Figure 9.25: Circuit diagram for complex Thévenin and Norton theorems question 27.

Phasor transform the circuit.

60 mA

50 Ω

j94.25 Ω

–j53.05 Ω

100 Ω

a

b

Use the complex current divider rule to calculate the current flow through the 100 Ω resistor.

IX = 60 mA

(
(50 + j94.25)//(100− j53.05)

100− j53.05

)
= 28.22 + j29.95 mA

Use Ohm’s law to calculate the Thévenin equivalent voltage.

VTH = (28.22 + j29.95 mA)(0.1 kΩ)

= 2.82 + j2.99 V

= 4.12 V ̸ 46.70◦

Deactivate the source and calculate the equivalent impedance.

ZTH = (100 Ω)//(50 Ω + j94.25 Ω− 53.05 Ω)

= 38.01 + j17.03 Ω
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Calculate the inductance from the reactance.

L =
X

2πf

=
17.03

2π50

= 1.81 mH

Draw the Thévenin equivalent circuit.

4.12 V ̸ 46.70◦

38.01 Ω 1.81 mH
a

b

28. Derive the Thévenin equivalent circuit between nodes a and b in the circuit shown in

figure 9.26. The frequency of operation is 2 kHz.

50 V ̸ 0◦

10 Ω 600 µH

10 µF

a

6 Ω

400 µH

b

Figure 9.26: Circuit diagram for complex Thévenin and Norton theorems question 28.

Phasor transform the circuit.
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50 V

10 Ω j7.54 Ω

–j7.96 Ω

a

6 Ω

j5.03 Ω

b

Combine impedances.

50 V

10+j7.54 Ω

8.52–j3.80 Ω

a

b

Use the complex voltage divider rule to calculate VTH.

VTH = 50 V

(
8.52− j3.80 Ω

(10 + j7.54 Ω) + (8.52− j3.80 Ω)

)
= 20.11− j14.31 V

= 24.68 V ̸ − 35.44◦

Deactivate the source and calculate the equivalent impedance.

ZTH = (10 + j7.54 Ω)//(8.52− j3.80 Ω)

= 6.18 + j0.17 Ω

Calculate the inductance from the reactance.

L =
X

2πf

=
0.17

2π2000

= 13.54 µH

Draw the Thévenin equivalent circuit.
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24.68 V ̸ –35.44◦

6.18 Ω 13.54 µH
a

b

29. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in

figure 9.27. The frequency of operation is 60 Hz.

3 V ̸ 0◦

5 Ω

500 µF

+

−

v(t)

200 µF

0.3 v(t)

a

8 Ω

b

Figure 9.27: Circuit diagram for complex Thévenin and Norton theorems question 29.

Phasor transform the circuit.

3 V

5 Ω

–j5.31 Ω

+

−

V

–j13.26 Ω

0.3 V

a

8 Ω

b

Perform complex mesh analysis. The circuit drawn below may have component values hidden so that

the mesh current labels can be read.

3 V

5 Ω
–j13.26 Ω

a

b

IA IB IC
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Derive the mesh equations.

3 = 5IA +−j5.31(IA − IB)

0 = −j5.31(IB − IA)− j13.26IB + 8IC

Perform KCL at the supermesh.

0 = IB − 0.3V − IC

Derive a dependent source equation.

Z = −j5.31(IA − IB)

Place the equations into form αIA + βIB + γIC + δV = c, and then place each coefficient into a matrix.
5− j5.31 j5.31 0 0 3

j5.31 −j18.57 8 0 0

0 1 −1 −0.3 0

j5.31 −j5.31 0 1 0


Solve the matrix for IC.

IB = 0.03 + j0.32 A

Calculate the open-circuit voltage.

VOC = (8 Ω)(0.03 + j0.32 A)

= 0.25 + j2.58 V

Short terminals a and b to calculate the Norton equivalent current.

3 V

5 Ω

–j5.31 Ω

+

−

V

–j13.26 Ω

0.3 V

a

IN

b

Perform complex mesh analysis. The circuit drawn below may have component values hidden so that
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the mesh current labels can be read.

3 V

5 Ω
–j13.26 Ω

a

IN

b

IA IB IN

Derive the mesh equations.

3 = 5IA +−j5.31(IA − IB)

0 = −j5.31(IB − IA)− j13.26IB

Perform KCL at the supermesh.

0 = IB − 0.3V − IN

Derive a dependent source equation.

Z = −j5.31(IA − IB)

Place the equations into form αIA + βIB + γIN + δV = c, and then place each coefficient into a matrix.
5− j5.31 j5.31 0 0 3

j5.31 −j18.57 0 0 0

0 1 −1 −0.3 0

j5.31 −j5.31 0 1 0


Solve the matrix for IN.

IN = −0.22 + j0.52 A

= 560.52 mA ̸ 113.05◦

Calculate the norton equivalent impedance.

ZN =
0.25 + j2.58 V

−0.22 + j0.52 A

= 4.07− j2.21 Ω
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Calculate the capacitance from the reactance.

C = − 1

2πfX

= − 1

2π(60)(−2.21)

= 1.2 mF

Draw the Norton equivalent circuit.

560.52 mA ̸ 113.05◦

a

4.07 Ω

1.2 mF

b

30. Derive the Norton equivalent circuit between nodes a and b in the circuit shown in

figure 9.28. The frequency of operation is 300 Hz.

10 V ̸ 0◦

6 Ω

100 µF

+

−

v(t)

20 µF

10 Ω

−
+

0.8 v(t)

a

b

Figure 9.28: Circuit diagram for complex Thévenin and Norton theorems question 30.

Phasor transform the circuit.

cbna Alyssa J. Pasquale, Ph.D. 183 Last updated: 2025/03/17



9 Chapter 9 Solutions 9.6 Complex Thévenin and Norton’s Theorems

10 V

6 Ω

–j5.31 Ω

+

−

V

–j26.53 Ω

10 Ω

−
+

0.8 V

a

b

Transform the voltage source to a current source.

IS =
10 V

6 Ω

= 1.67 A

1.67 A 6 Ω –j5.31 Ω

+

−

V

–j26.53 Ω

10 Ω

−
+

0.8 V

a

b

Combine parallel impedances.

1.67 A 2.63–j2.98 Ω

+

−

V

–j26.53 Ω

10 Ω

−
+

0.8 V

a

b
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Convert the current source to a voltage source.

VS = (1.67 A)(2.63− j2.98 Ω)

= 4.39− j4.96 V

4.39–j4.96 V

2.63–j2.98 Ω

+

−

V

–j26.53 Ω

10 Ω

−
+

0.8 V

a

b

Perform KVL around the entire loop. Then perform KVL around the left side to calculate V. Obtain

two equations with two unknowns. All units are V, A, and Ω.

(4.39− j4.96) = (2.63− j2.98− j26.53 + 10)I+ 0.8V

= (2.63− j2.98)I+V

Place the equations into form αV + βI = c, and then place each coefficient into a matrix.0.8 12.63− j29.50 4.39− j4.96

1 2.63− j2.98 4.39− j4.96


Solve the matrix for V and I.

V = 4.23− j4.88 V

I = 0.04 + j0.016 A

Calculate the open-circuit voltage.

VOC = 0.8V + 10I

= 0.8(4.23− j4.88 V) + 10(0.04 + j0.016 A)

= 3.81− j3.74 V

Short nodes a and b to calculate the Norton equivalent current.
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4.39–j4.96 V

2.63–j2.98 Ω

+

−

V

–j26.53 Ω

10 Ω

−
+

0.8 V

IN

Perform KVL three times: around the left half of the left loop, around the right half of the left loop, and

around the right loop. All units are V, A, and Ω.

(4.39− j4.96) = (2.63− j2.98)I+V

0.8V = 10(IN − I)

V = −j26.53I

Place the equations into form αI+ βIN + γV = c, and then place each coefficient into a matrix.
−j26.53 0 −1 0

10 −10 0.8 0

(2.63− j2.98) 0 1 (4.39− j4.96)


Solve the matrix for IN.

IN = 461.54− j249.39 mA

= 524.61 mA ̸ − 28.38◦

Calculate the Norton equivalent impedance.

ZN =
3.81− j3.74 V

0.46− j0.25 A

= 9.78− j2.23 Ω
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Calculate the capacitance from the reactance.

C = − 1

2πfX

= − 1

2π(300)(−2.23)

= 187.74 µF

Draw the Norton equivalent circuit.

524.61 mA ̸ –28.38◦

a

9.78 Ω

187.74 µF

b

9.7 Filters

31. Given the circuit shown in figure 9.29, determine the filter type, calculate the center

frequency, bandwidth, and quality factor.

vin(ω)

R L

C

+

−

vout(ω)

Figure 9.29: Circuit diagram for filters question 31.

Draw the circuit at ω = 0.

vin(0)

R

+

−

vout(0)

Draw the circuit at ω = 0.
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vin(∞)

R

+

−
vout(∞)

This is an LPF. This is a series RLC circuit with a homogeneous differential equation shown below.

0 =
d2v(t)

dt2
+

R

L

dv(t)

dt
+

1

LC
v(t)

The center frequency is equal to the resonant frequency.

ω0 =
1√
LC

The bandwidth equals a1.

β =
R

L

Calculate the quality factor.

Q =
ω0

a1

=

1√
LC
R
L

=
L

R
√
LC

=

√
L

R
√
C

32. Given the circuit shown in figure 9.30, determine the filter type, calculate the center

frequency, bandwidth, and quality factor.

vin(ω)

C

R L

+

−

vout(ω)

Figure 9.30: Circuit diagram for filters question 32.
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Draw the circuit at ω = 0.

vin(0) R

+

−
vout(0)

Draw the circuit at ω → ∞.

vin(∞) R

+

−

vout(∞)

This is an HPF. This is a parallel RLC circuit with a homogeneous differential equation shown below.

0 =
d2i(t)

dt2
+

1

RC

di(t)

dt
+

1

LC
i(t)

The center frequency is equal to the resonant frequency.

ω0 =
1√
LC

The bandwidth equals a1.

β =
1

RC

Calculate the quality factor.

Q =
ω0

a1

=

1√
LC
1

RC

=
RC√
LC

=
R
√
C√
L
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33. Given the circuit shown in figure 9.31, determine the filter type, calculate the center

frequency, bandwidth, and quality factor.

vin(ω)

1 kΩ

10 mH

0.01 µF

+

−

vout(ω)

Figure 9.31: Circuit diagram for filters question 33.

Draw the circuit at ω = 0.

vin(0)

1 kΩ

+

−

vout(0)

Draw the circuit at ω → ∞.

vin(∞)

1 kΩ

+

−

vout(∞)

This is a a BSF. This is a series RLC circuit with a homogeneous differential equation shown below.

0 =
d2v(t)

dt2
+

R

L

dv(t)

dt
+

1

LC
v(t)
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Plug in component values.

0 =
d2v(t)

dt2
+ 100000

dv(t)

dt
+ 1× 1010v(t)

The center frequency is equal to the resonant frequency.

ω0 = 100000 rad/s

The bandwidth equals a1.

β = 100000 rad/s

Calculate the quality factor.

Q =
ω0

a1

=
100000 rad/s

100000 rad/s

= 1

34. Given the circuit shown in figure 9.32, determine the filter type and calculate the cutoff

frequency.

−

+
+

−

vout(ω)

C
R1

vin(ω)

R2

Figure 9.32: Circuit diagram for filters question 34.

Draw the circuit at ω = 0.

cbna Alyssa J. Pasquale, Ph.D. 191 Last updated: 2025/03/17



9 Chapter 9 Solutions 9.7 Filters

−

+
+

−

vout(0)

R1

vin(0)

R2

Draw the circuit at ω → ∞.

−

+
+

−

vout(∞)

R1

vin(∞)

R2

This is a an HPF. Perform KVL in the loop including the source, R1 and the capacitor. The voltage

between the resistor and capacitor is labeled v(t).

vin(t) = R1C
d

dt
v(t) + v(t)

Perform KCL at the inverting node and solve for v(t).

C
d

dt
v(t) = − 1

R2
vout(t)

v(t) = − 1

R2C

∫
vout(t)

Plug v(t) into the KVL equation and normalize the first order differential equation.

vin(t) = R1C
d

dt

[
− 1

R2C

∫
vout(t)

]
+

[
− 1

R2C

∫
vout(t)

]
= −R1

R2
vout(t)−

1

R2C

∫
vout(t)

d

dt
vin(t) = −R1

R2

d

dt
vout(t)−

1

R2C

−R2

R1

d

dt
vin(t) =

d

dt
vout(t) +

1

R1C
vout(t)
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The cutoff frequency is equal to a0.

ω0 =
1

R1C

35. Given the circuit shown in figure 9.33, determine the filter type and calculate the cutoff

frequency.

−

+
+

−

vout(ω)

30 kΩ

vin(ω)

5 µF

20 kΩ

Figure 9.33: Circuit diagram for filters question 35.

Draw the circuit at ω = 0.

−

+
+

−

vout(0)

30 kΩ

vin(0)

20 kΩ

Draw the circuit at ω → ∞.

−

+
+

−

vout(∞)

30 kΩ

vin(∞)

This is a an LPF. Replace component values with symbols.
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−

+
+

−

vout(ω)

R1

vin(ω)

C

R2

Perform KCL at the inverting node and normalize the first order differential equation.

1

R1
vin(t) = −C

d

dt
vout(t)−

1

R2
vout(t)

− 1

R1C

d

dt
vin(t) =

d

dt
vout(t) +

1

R2C
vout(t)

The cutoff frequency is equal to a0. Plug in component values.

ω0 =
1

R2C

=
1

(20000 Ω)(5× 10−6 F)

= 10 rad/s

9.8 Transfer Functions

36. Derive a transfer function for the circuit shown in figure 9.34. Then, determine the filter

type.

vin(ω)

R1

R2 C

+

−

vout(ω)

Figure 9.34: Circuit diagram for transfer functions question 36.
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Calculate the equivalent impedance of R2 in parallel with C.

ZEQ = R2//C

= R2//
1

jωC

=

R2

jωC

R2 +
1

jωC

=
R2

jωCR2 + 1

Use the complex voltage divider rule to calculate H(ω) and normalize.

H(ω) =

R2

jωCR2+1

R1 +
R2

jωCR2+1

=
R2

jωCR2R1 +R1 +R2

=
1

CR1

jω + R1+R2

CR1R2

Analyze the circuit at ω = 0.

vin(0)

R1

R2

+

−

vout(0)

Analyze the circuit at ω → ∞.

vin(∞)

R1

R2

+

−
vout(∞)

This circuit is an LPF.
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37. Derive a transfer function for the circuit shown in figure 9.35. Then, determine the filter

type.

vin(ω)

L
C

R

+

−

vout(ω)

Figure 9.35: Circuit diagram for transfer functions question 37.

Use the complex voltage divider rule to calculate H(ω).

H(ω) =
R

R+ jωL+ 1
jωC

=
jωCR

jωCR− ω2LC + 1

=
jωR

L

−ω2 + jωR
L + 1

LC

Analyze the circuit at ω = 0.

vin(0) R

+

−

vout(0)

Analyze the circuit at ω → ∞.

vin(∞) R

+

−

vout(∞)

This circuit is a BPF.
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38. Derive a transfer function for the circuit shown in figure 9.36. Then, determine the filter

type.

vin(ω)

C

R

L

+

−

vout(ω)

Figure 9.36: Circuit diagram for transfer functions question 38.

Calculate the equivalent impedance of the resistor and capacitor in parallel.

ZEQ = R//C

= R//
1

jωC

=

R
jωC

R+ 1
jωC

=
R

jωCR+ 1

Use the complex voltage divider rule to calculate H(ω).

H(ω) =
jωL

jωL+ R
jωCR+1

=
−ω2LCR+ jωL

−ω2LCR+ jωL+R

=
−ω2 + jω 1

RC

−ω2 + jω 1
RC + 1

LC

Analyze the circuit at ω = 0.

vin(0)

R

+

−
vout(0)

Analyze the circuit at ω → ∞.
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vin(∞)

+

−

vout(∞)

This circuit is an HPF.

39. Derive a transfer function for the circuit shown in figure 9.37. Then, determine the filter

type.

vin(ω)

C

R1

R2

L

+

−

vout(ω)

Figure 9.37: Circuit diagram for transfer functions question 39.

Use the complex voltage divider rule to calculate H(ω).

H(ω) =

(
R1//(jωL+R2)

1
jωC +R1//(jωL+R2)

)(
jωL

R2 + jωL

)

=

(
(jωL+R2)R1

jωL+R1+R2

1
jωC + (jωL+R2)R1

jωL+R1+R2

)(
jωL

R2 + jωL

)

=

(
R1

jωL+R1+R2

1
jωC + (jωL+R2)R1

jωL+R1+R2

)
(jωL)

=

jωLR1

jωL+R1+R2

1
jωC + (jωL+R2)R1

jωL+R1+R2

=
jωLR1

jωLR1 +R1R2 +
L
C + R2+R1

jωC

=
−ω2LR1C

−ω2LR1C + jωCR1R2 + jωL+R1 +R2

=
−ω2

−ω2 + jω
(

R2

L + 1
R1C

)
+ R1+R2

R1R2

Analyze the circuit at ω = 0.
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vin(0) R1

R2

+

−
vout(0)

Analyze the circuit at ω → ∞.

vin(∞) R1

R2

+

−

vout(∞)

This circuit is an HPF.

40. Derive a transfer function for the circuit shown in figure 9.38. Then, determine the filter

type.

−

+
R1

C1vin(ω)

+

−

vout(ω)

R2

C2

R3

Figure 9.38: Circuit diagram for transfer functions question 40.

Use the complex voltage divider rule to calculate the voltage at the non-inverting node, denoted as vx(ω).

vx(ω)

vin(ω)
=

1
jωC1

R1 +
1

jωC1

=
1

jωCR1 + 1

cbna Alyssa J. Pasquale, Ph.D. 199 Last updated: 2025/03/17



9 Chapter 9 Solutions 9.8 Transfer Functions

Perform KCL at the inverting node. Everything will be expressed as generic phasor for now.

− 1

R2
VX =

VX −VO

R3//ZC2

−R3//ZC2

R2
VX = VX −VO

VO =

(
1 +

R3//ZC2

R2

)
VX

VO

VI
=

(
1 +

R3//ZC2

R2

)
VX

VI

Reduce the impedance defined in the KCL equation.

Z = 1 +
R3//ZC2

R2

= 1 +

R3

R2jωC2

R3 +
1

jωC2

= 1 +
R3

R2

jωC2R3 + 1

=
jωC2R3 + 1 + R3

R2

jωC2R3 + 1

Plug the value of vx/vin into the KCL equation. Then normalize the transfer function.

H(ω) =

(
jωC2R3 + 1 + R3

R2

jωC2R3 + 1

)(
1

jωCR1 + 1

)

=
jωC2R3 + 1 + R3

R2

−ω2C2R3C1R1 + jωC1R1 + jωC2R3 + 1

=
jω 1

C1R1
+ R2+R3

C1C2R1R2R3

−ω2 + jω
(

1
C2R3

+ 1
C1R1

)
+ 1

C1C2R1R3

Analyze the circuit at ω = 0.

−

+
R1

vin(0)

+

−

vout(0)

R2

R3
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Analyze the circuit at ω → ∞.

−

+
R1

vin(∞)

+

−

vout(∞)

R2

This circuit is an LPF.
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10 Chapter 10 Solutions

10.1 Phase and Root Mean Square

1. Calculate the RMS value of the voltage and current signals, as well as the phase difference.

v(t) = 120 cos(2π60t+ 120π/180) V, i(t) = 5 cos(2π60t+ 60π/180) A

Calculate the RMS value of the voltage and current.

|VRMS| =
120 V√

2

= 84.85 VRMS

|IRMS| =
5 A√
2

= 3.54 ARMS

Calculate the phase difference.

θ = ϕv − ϕi

= 120◦ − 60◦

= 60◦

2. Calculate the RMS value of the voltage and current signals, as well as the phase difference.

v(t) = 150 cos(2π60t+ 60π/180) V, i(t) = 3 cos(2π60t+ 35π/180) A

Calculate the RMS value of the voltage and current.

|VRMS| =
150 V√

2

= 106.07 VRMS

|IRMS| =
3 A√
2

= 2.12 ARMS

Calculate the phase difference.

θ = ϕv − ϕi

= 60◦ − 35◦

= 25◦
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3. Calculate the RMS value of the voltage and current signals, as well as the phase difference.

v(t) = 220 cos(2π50t+ 120π/180) V, i(t) = 6 cos(2π50t− 40π/180) A

Calculate the RMS value of the voltage and current.

|VRMS| =
220 V√

2

= 155.56 VRMS

|IRMS| =
6 A√
2

= 4.24 ARMS

Calculate the phase difference.

θ = ϕv − ϕi

= 120◦ + 40◦

= 160◦

4. Calculate the RMS value of the voltage and current signals, as well as the phase difference,

given the circuit shown in figure 10.1.

60 V ̸ 20◦

8 Ω

–j5 Ω

i(t)

Figure 10.1: Circuit diagram for phase and root mean square question 4.

Calculate the RMS value of the voltage.

|VRMS| =
60 V√

2

= 42.43 VRMS
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Use Ohm’s law to calculate the current.

I =
39.87 + 14.51 VRMS

8− j5 Ω

= 2.77 + j3.54 ARMS

= 4.50 ARMS ̸ 52.01◦

Calculate the phase difference.

θ = ϕv − ϕi

= 20◦ − 52.01◦

= −32.01◦

5. Calculate the RMS value of the voltage and current signals, as well as the phase difference,

given the circuit shown in figure 10.2.

100 V ̸ 0◦

6 Ω

j8 Ω

i(t)

Figure 10.2: Circuit diagram for phase and root mean square question 5.

Calculate the RMS value of the voltage.

|VRMS| =
100 V√

2

= 70.71 VRMS

Use Ohm’s law to calculate the current.

I =
70.71 VRMS

6 + j8 Ω

= 4.24− j5.66 ARMS

= 7.07 ARMS ̸ − 53.13◦
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Calculate the phase difference.

θ = ϕv − ϕi

= 0◦ + 53.13◦

= 53.13◦

10.2 Complex Power

6. Calculate the power consumed by the load (indicated with dashed lines), as well as the

power factor, for the circuit given in figure 10.3. The frequency of operation is 50 Hz.

7 ARMS ̸ 0◦

10 Ω

8 µF

90 Ω

155 mH

35 µF

Figure 10.3: Circuit diagram for complex power question 6.

Phasor transform the circuit.

7 ARMS

10 Ω

–j397.89 Ω

90 Ω

j48.69 Ω

–j90.95 Ω
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Calculate the equivalent impedance of the load.

ZLOAD = (10− j397.89 Ω)//(90− j42.25 Ω)

= 70.47− j52.16 Ω

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (7 ARMS)2(70.47− j52.16 Ω)

= 3453.00− j2555.89 VA

Calculate the power factor.

pf =
P

|S|

=
3453.00

4296.02

= 0.804

7. Calculate the power consumed by the load (indicated with dashed lines), as well as the

power factor, for the circuit given in figure 10.4. The frequency of operation is 60 Hz.

250 VRMS ̸ 0◦

40 Ω

–j200 Ω

50 Ω

j40 Ω

Figure 10.4: Circuit diagram for complex power question 7.

Calculate the equivalent impedance of the load.

ZLOAD = (50 + j40 Ω)//(−j200 Ω)

= 71.17 + j27.76 Ω
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Use Ohm’s law to calculate the current flowing through the load.

ILOAD =
250 VRMS

111.17 + j27.76 Ω

= 2.12− j0.53 ARMS

= 2.18 ARMS ̸ − 14.02◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (2.18 ARMS)2(71.17 + j27.76 Ω)

= 338.79 + j132.13 VA

Calculate the power factor.

pf =
P

|S|

=
338.79

363.64

= 0.932

8. Calculate the power consumed by the load (indicated with dashed lines), as well as the

power factor, for the circuit given in figure 10.5. The frequency of operation is 60 Hz.

60 VRMS ̸ 0◦

20 Ω j60 Ω

60 Ω

j80 Ω

Figure 10.5: Circuit diagram for complex power question 8.

Use Ohm’s law to calculate the current flowing through the load.

ILOAD =
60 VRMS

80 + j140 Ω

= 0.18− j0.32 ARMS

= 0.37 ARMS ̸ − 60.26◦
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Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (0.37 ARMS)2(60 + j80 Ω)

= 8.31 + j11.08 VA

Calculate the power factor.

pf =
P

|S|

=
8.31

13.85

= 0.600

9. Calculate the power consumed by the load (indicated with dashed lines), as well as the

power factor, for the circuit given in figure 10.6. The frequency of operation is 60 Hz.

120 VRMS ̸ 60◦

5 Ω

20 mH

10 mH

10 Ω

2 Ω

100 µF

Figure 10.6: Circuit diagram for complex power question 9.

Phasor transform the circuit.

60+j103.92 VRMS

5 Ω

j7.54 Ω

j3.77 Ω

10 Ω

2 Ω

–j26.53 Ω
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Calculate the impedance of the load.

ZLOAD = (10 Ω)//(2− j26.53 Ω)

= 8.58 + j3.13 Ω

Transform the voltage source to a current source.

IS =
60 + j103.92 VRMS

5 Ω

= 12 + j20.78 ARMS

Combine the 5 Ω and 20 mH impedances in parallel.

Z = (5 Ω)//(j7.54 Ω)

= 3.47 + j2.30 Ω

Re-draw the circuit.

12+j20.78 ARMS 3.47+j2.30 Ω

j3.77 Ω

8.58+j3.13 Ω

Use the complex current divider rule to calculate the current flowing through the load.

ILOAD = (12 + j20.78 ARMS)

(
(3.47 + j2.30 Ω)//(8.58 + j6.90 Ω)

8.58 + j6.90 Ω

)
= 1.42 + j7.93 ARMS

= 8.06 ARMS ̸ 79.83◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (8.06 ARMS)2(8.58 + j3.13 Ω)

= 557.38− j203.20 VA
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Calculate the power factor.

pf =
P

|S|

=
557.38

593.26

= 0.940

10. Calculate the power consumed by the load (indicated with dashed lines), as well as the

power factor, for the circuit given in figure 10.7. The frequency of operation is 50 Hz.

660 VRMS ̸ 30◦

25 Ω 190 mH

140 mH

65 Ω

40 µF

Figure 10.7: Circuit diagram for complex power question 10.

Phasor transform the circuit.

571.58+j330 VRMS

25 Ω j59.69 Ω

j43.98 Ω

65 Ω

–j79.58 Ω

Calculate the impedance of the load.

ZLOAD = (j43.98 Ω)//(65− j79.58 Ω)

= 22.89 + j56.52 Ω

Re-draw the circuit.
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571.58+j330 VRMS

25+j59.69 Ω

22.89+j56.52 Ω

Use Ohm’s law to calculate the current flowing through the load.

ILOAD =
571.58 + j330 VRMS

(22.89 + j56.52 Ω) + (25 + j59.69 Ω)

= 4.16− j3.20 ARMS

= 5.25 ARMS ̸ − 37.60◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (5.25 ARMS)2(22.89 + j56.52 Ω)

= 631.25 + j1558.36 VA

Calculate the power factor.

pf =
P

|S|

=
631.25

1681.36

= 0.375
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10.3 Maximum Power Transfer

11. Determine the circuit elements that must be placed on the load (shown as a generic

circuit element) for maximum power transfer given the circuit in figure 10.8. Then, calculate

the power consumed by that load. The frequency of operation is 60 Hz.

250 VRMS ̸ 0◦

190 Ω

120 mH

100 Ω
25 µF

Figure 10.8: Circuit diagram for maximum power transfer question 11.

Phasor transform the circuit.

250 VRMS ̸ 0◦

190 Ω

j45.24 Ω

100 Ω
–j106.10 Ω

Deactivate the source and calculate the Thévenin equivalent impedance.

ZTH = 190 Ω + (100− j106.10 Ω)//(j45.24 Ω)

= 204.93 + j54.33 Ω

For maximum power transfer, the load must be equal to ZTH
∗.

ZLOAD = 204.93− j54.33 Ω
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Calculate the capacitance from the reactance.

C = − 1

2πfX

= − 1

2π(60)(−54.33)

= 48.83 µF

Calculate the power transferred to the load.

PLOAD,MAX =
|VTH,RMS|2

4RTH

=
|250 VRMS|2

4(204.93 Ω)

= 76.24 W

12. Determine the circuit elements that must be placed on the load (shown as a generic

circuit element) for maximum power transfer given the circuit in figure 10.9. Then, calculate

the power consumed by that load. The frequency of operation is 60 Hz.

50 VRMS ̸ 60◦

10 Ω

–j12 Ω

j15 Ω

Figure 10.9: Circuit diagram for maximum power transfer question 12.

Deactivate the source and calculate the Thévenin equivalent impedance.

ZTH = j15 Ω + (−j12 Ω)//(10 Ω)

= 5.90 + j10.08 Ω

Use the complex voltage divider rule to calculate VTH.

VTH = (25 + j43.30 VRMS)

(
−j12 Ω

10− j12 Ω

)
= 36.05 + j13.26 VRMS

= 38.41 VRMS ̸ 20.19◦
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For maximum power transfer, the load must be equal to ZTH
∗.

ZLOAD = 5.90− j10.08 Ω

Calculate the capacitance from the reactance.

C = − 1

2πfX

= − 1

2π(60)(−10.08)

= 263.10 µF

Calculate the power transferred to the load.

PLOAD,MAX =
|VTH,RMS|2

4RTH

=
|38.41 VRMS|2

4(5.90 Ω)

= 62.50 W

13. Determine the circuit elements that must be placed on the load (shown as a generic circuit

element) for maximum power transfer given the circuit in figure 10.10. Then, calculate the

power consumed by that load. The frequency of operation is 50 Hz.

40 VRMS ̸ 50◦

50 mH
2 µF

80 Ω

Figure 10.10: Circuit diagram for maximum power transfer question 13.

Phasor transform the circuit.

25.71+j30.64 VRMS

j15.71 Ω
–j1591.55 Ω

80 Ω
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Deactivate the source and calculate the Thévenin equivalent impedance.

ZTH = (−j1575.84 Ω)//(80 Ω)

= 79.79− j4.05 Ω

Use the complex voltage divider rule to calculate VTH.

VTH = (25.71 + j30.64 VRMS)

(
80 Ω

80− j1575.84 Ω

)
= −1.49 + j1.38 VRMS

= 20.3 VRMS ̸ 137.09◦

For maximum power transfer, the load must be equal to ZTH
∗.

ZLOAD = 79.79 + j4.05 Ω

Calculate the inductance from the reactance.

L =
X

2πf

=
4.05

2π50

= 12.89 mH

Calculate the power transferred to the load.

PLOAD,MAX =
|VTH,RMS|2

4RTH

=
|20.3 VRMS|2

4(79.79 Ω)

= 12.89 mW
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14. Determine the circuit elements that must be placed on the load (shown as a generic circuit

element) for maximum power transfer given the circuit in figure 10.11. Then, calculate the

power consumed by that load. The frequency of operation is 50 Hz.

20 ARMS ̸ 45◦ 5 Ω

40 mH

0.5 mF

8 Ω

Figure 10.11: Circuit diagram for maximum power transfer question 14.

Phasor transform the circuit.

14.14+j14.14 ARMS 5 Ω

j12.57 Ω

–j6.37 Ω

8 Ω

Deactivate the source and calculate the Thévenin equivalent impedance.

ZTH = 8 Ω + (−j6.37 Ω)//(5 + j12.57 Ω)

= 11.19− j10.33 Ω

Convert the source to a voltage source.

VS = (14.14 + j14.14 ARMS)(5 Ω)

= 70.71 + j70.71 VRMS

70.71+j70.71 VRMS

5 Ω j12.57 Ω

–j6.37 Ω

8 Ω
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Use the complex voltage divider rule to calculate VTH.

VTH = (70.71 + j70.71 VRMS)

(
−j6.37 Ω

5 + j12.57− j6.37 Ω

)
= −8.52− j79.47 VRMS

= 79.93 VRMS ̸ − 96.12◦

For maximum power transfer, the load must be equal to ZTH
∗.

ZLOAD = 11.19 + j10.33 Ω

Calculate the inductance from the reactance.

L =
X

2πf

=
10.33

2π50

= 32.87 mH

Calculate the power transferred to the load.

PLOAD,MAX =
|VTH,RMS|2

4RTH

=
|79.93 VRMS|2

4(11.19 Ω)

= 142.67 W

15. Determine the circuit elements that must be placed on the load (shown as a generic circuit

element) for maximum power transfer given the circuit in figure 10.12. Then, calculate the

power consumed by that load. The frequency of operation is 60 Hz.

28 ARMS ̸ 0◦ 0.4 mF

10 Ω 16 mH

18 Ω

Figure 10.12: Circuit diagram for maximum power transfer question 15.

Phasor transform the circuit.
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28 ARMS –j6.63 Ω

10 Ω j6.03 Ω

18 Ω

Deactivate the source and calculate the Thévenin equivalent impedance.

ZTH = (18 Ω)//(10 + j6.03− j6.63 Ω)

= 6.43− j0.25 Ω

Convert the source to a voltage source.

VS = (28 ARMS)(−j6.63 Ω)

= −j185.68 VRMS

–j185.68 VRMS

–j6.63 Ω
10 Ω j6.03 Ω

18 Ω

Use the complex voltage divider rule to calculate VTH.

VTH = (−j185.68 VRMS)

(
18 Ω

28 + j6.03− j6.63 Ω

)
= 2.55− j119.31 VRMS

= 119.34 VRMS ̸ − 88.77◦

For maximum power transfer, the load must be equal to ZTH
∗.

ZLOAD = 6.43 + j0.25 Ω
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Calculate the inductance from the reactance.

L =
X

2πf

=
0.25

2π50

= 656.99 µH

Calculate the power transferred to the load.

PLOAD,MAX =
|VTH,RMS|2

4RTH

=
|119.34 VRMS|2

4(6.43 Ω)

= 553.39 W

10.4 Power Factor Correction

16. Calculate the initial power factor consumed by the load (indicated with dashed lines) in

the circuit shown in figure 10.13. Then, determine the circuit element that must be placed

in parallel with the load to increase the power factor to 0.800. The frequency of operation is

60 Hz.

80 VRMS ̸ 0◦

33 Ω

47 Ω

130 mH

Figure 10.13: Circuit diagram for power factor correction question 16.

Phasor transform the circuit.

80 VRMS

33 Ω

47 Ω

j49.01 Ω
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Calculate the load impedance.

ZLOAD = 47 + j49.01 Ω

Calculate the current through the load.

ILOAD =
80 VRMS

80 + j49.01 Ω

= 0.73− j0.45 ARMS

= 0.85 ARMS ̸ − 31.49◦

Calculate the voltage dropped over the load.

VLOAD = (0.73− j0.45 ARMS)(47 + j49.01 Ω)

= 56.01 + j14.70 VRMS

= 57.90 VRMS ̸ 14.71◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (0.85 ARMS)2(47 + j49.01 Ω)

= 34.17 + j35.64 VA

Calculate the initial power factor.

pf =
P

|S|

=
34.17

49.37

= 0.692

Calculate the final reactive power required to increase the power factor to the desired level.

Qf = P

√
1

pf2
f

− 1

= 34.17

√
1

0.8002
− 1

= 25.63 VAR
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Calculate QC .

QC = Qf −Q

= 25.63 VAR− 35.64 VAR

= −10.00 VAR

Calculate the compensating capacitance.

C =
−QC

|VLOAD,RMS|2ω

=
10.00

|57.90|2(2π60)

= 7.92 µF

17. Calculate the initial power factor consumed by the load (indicated with dashed lines) in

the circuit shown in figure 10.14. Then, determine the circuit element that must be placed

in parallel with the load to increase the power factor to 0.860. The frequency of operation is

60 Hz.

160 VRMS ̸ 0◦

4 Ω

6 Ω

100 µF

Figure 10.14: Circuit diagram for power factor correction question 17.

Phasor transform the circuit.

160 VRMS

4 Ω

6 Ω

–j26.53 Ω
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Calculate the load impedance.

ZLOAD = 6− j26.53 Ω

Calculate the current through the load.

ILOAD =
160 VRMS

10− j26.53 Ω

= 1.99 + j5.28 ARMS

= 5.64 ARMS ̸ 69.34◦

Calculate the voltage dropped over the load.

VLOAD = (1.99 + j5.28 ARMS)(6− j26.53 Ω)

= 152.04− j21.13 VRMS

= 153.50 VRMS ̸ − 7.91◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (5.64 ARMS)2(6− j26.53 Ω)

= 191.14− j845.00 VA

Calculate the initial power factor.

pf =
P

|S|

=
191.14

866.35

= 0.221

Calculate the final reactive power required to increase the power factor to the desired level.

Qf = −P

√
1

pf2
f

− 1

= −191.14

√
1

0.8602
− 1

= −113.41 VAR
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Calculate QL.

QL = Qf −Q

= −113.41 VAR+ 845.00 VAR

= 731.59 VAR

Calculate the compensating inductance.

L =
|VLOAD,RMS|2

ωQL

=
|153.50|2

2π(60)(731.59)

= 85.43 mH

18. Calculate the initial power factor consumed by the load (indicated with dashed lines) in

the circuit shown in figure 10.15. Then, determine the circuit element that must be placed

in parallel with the load to increase the power factor to 0.990. The frequency of operation is

60 Hz.

170 VRMS ̸ 0◦

35 Ω 45 mH

75 Ω

65 mH

Figure 10.15: Circuit diagram for power factor correction question 18.

Phasor transform the circuit.

170 VRMS

35 Ω j16.96 Ω

75 Ω

j24.50 Ω
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Calculate the load impedance.

ZLOAD = 75 + j24.50 Ω

Calculate the current through the load.

ILOAD =
170 VRMS

110 + j16.96 + j24.50 Ω

= 1.35− j0.51 ARMS

= 1.45 ARMS ̸ − 20.66◦

Calculate the voltage dropped over the load.

VLOAD = (1.35− j0.51 ARMS)(75 + j24.50 Ω)

= 113.99− j5.10 VRMS

= 114.10 VRMS ̸ − 2.56◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (1.45 ARMS)2(75 + j24.50 Ω)

= 156.84 + j51.24 VA

Calculate the initial power factor.

pf =
P

|S|

=
156.84

165.00

= 0.951

Calculate the final reactive power required to increase the power factor to the desired level.

Qf = P

√
1

pf2
f

− 1

= 156.84

√
1

0.9902
− 1

= 22.35 VAR
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Calculate QC .

QC = Qf −Q

= 22.35 VAR− 51.24 VAR

= −28.90 VAR

Calculate the compensating capacitance.

C =
−QC

|VLOAD,RMS|2ω

=
28.90

|114.10|2(2π60)

= 5.89 µF

19. Calculate the initial power factor consumed by the load (indicated with dashed lines) in

the circuit shown in figure 10.16. Then, determine the circuit element that must be placed

in parallel with the load to increase the power factor to 0.980. The frequency of operation is

60 Hz.

160 VRMS ̸ 0◦

30 Ω 33 mH

90 Ω

70 µF

Figure 10.16: Circuit diagram for power factor correction question 19.

Phasor transform the circuit.

160 VRMS

30 Ω j12.44 Ω

90 Ω

–j37.89 Ω
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Calculate the load impedance.

ZLOAD = 90− j37.89 Ω

Calculate the current through the load.

ILOAD =
160 VRMS

120 + j12.44− j37.89 Ω

= 1.28 + j0.27 ARMS

= 1.30 ARMS ̸ 11.98◦

Calculate the voltage dropped over the load.

VLOAD = (1.28 + j0.27 ARMS)(90− j37.89 Ω)

= 125.09− j23.99 VRMS

= 127.37 VRMS ̸ − 10.86◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (1.30 ARMS)2(90− j37.89 Ω)

= 153.11− j64.47 VA

Calculate the initial power factor.

pf =
P

|S|

=
153.11

166.13

= 0.922

Calculate the final reactive power required to increase the power factor to the desired level.

Qf = −P

√
1

pf2
f

− 1

= −153.11

√
1

0.9802
− 1

= −31.09 VAR
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Calculate QL.

QL = Qf −Q

= −31.09 VAR+ 64.47 VAR

= 33.38 VAR

Calculate the compensating inductance.

L =
|VLOAD,RMS|2

ωQL

=
|127.37|2

2π(60)(33.38)

= 1.29 H

20. Calculate the initial power factor consumed by the load (indicated with dashed lines) in

the circuit shown in figure 10.17. Then, determine the circuit element that must be placed

in parallel with the load to increase the power factor to 0.960. The frequency of operation is

60 Hz.

190 VRMS ̸ 0◦

23 Ω 29 mH

65 Ω

72 mH

73 Ω

83 mH

Figure 10.17: Circuit diagram for power factor correction question 20.

Phasor transform the circuit.

190 VRMS

23 Ω j10.93 Ω

65 Ω

j27.14 Ω

73 Ω

j31.29 Ω
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Calculate the load impedance.

ZLOAD = (65 + j27.14 Ω)//(73 + j31.29 Ω)

= 34.38 + j14.54 Ω

Calculate the current through the load.

ILOAD =
190 VRMS

23 + j10.93 + 34.38 + j14.54 Ω

= 2.77− j1.23 ARMS

= 3.03 ARMS ̸ − 23.93◦

Calculate the voltage dropped over the load.

VLOAD = (2.77− j1.23 ARMS)(34.38 + j14.54 Ω)

= 112.96− j2.00 VRMS

= 112.98 VRMS ̸ − 1.02◦

Calculate the power consumed by the load.

SLOAD = |ILOAD,RMS|2ZLOAD

= (3.03 ARMS)2(34.38 + j14.54 Ω)

= 314.91 + j133.13 VA

Calculate the initial power factor.

pf =
P

|S|

=
314.91

341.90

= 0.921

Calculate the final reactive power required to increase the power factor to the desired level.

Qf = P

√
1

pf2
f

− 1

= 314.91

√
1

0.9602
− 1

= 91.85 VAR
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Calculate QC .

QC = Qf −Q

= 91.85 VAR− 133.13 VAR

= −41.29 VAR

Calculate the compensating capacitance.

C =
−QC

|VLOAD,RMS|2ω

=
41.29

|112.98|2(2π60)

= 8.58 µF
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11 Chapter 11 Solutions

11.1 Laplace Transforms

1. Derive the Laplace transform of f(t) = 2 e−5t u(t).

Use the Laplace transform describing the exponential function as well as the multiplication property.

F (s) =
2

s+ 5

2. Derive the Laplace transform of f(t) =
[
6 t e−4t + 2 e−4t + 5

]
u(t).

Use the Laplace transforms describing the exponential function, exponential function times time, and con-

stant.

F (s) =
6

(s+ 4)2
+

2

(s+ 4)
+

5

s

Multiply all terms so they share a common denominator, and simplify to obtain F (s).

F (s) =
6s+ 2s(s+ 4) + 5(s+ 4)2

s(s+ 4)2

=
7s2 + 54s+ 80

s(s2 + 8s+ 16)

3. Derive the Laplace transform of f(t) = e−t [2 cos(10t) + 4 sin(10t)] u(t).

Use the Laplace transforms describing exponential functions multiplied by sine and cosine. Simplify to obtain

F (s).

F (s) =
2(s+ 1)

(s+ 1)2 + 100
+

40

(s+ 1)2 + 100

=
2s+ 42

s2 + 2s+ 101

4. Derive the Laplace transform of v(t). The differential equation describing v(t) is given in

equation 11.1. Note that v(0) = 3 V.

dv(t)

dt
+ 0.25v(t) = 0 (11.1)

Use the differentiation property of the Laplace transform, then solve for V (s). All units are V, Ω, A, F,
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and H.

0 = sV (s)− v(0) + 0.25V (s)

= sV (s)− 3 + 0.25V (s)

V (s) =
3

s+ 0.25

5. Derive the Laplace transform of i(t). The differential equation describing i(t) is given in

equation 11.2. Note that i(0) = 10 A and i′(0) = −5 A/s.

d2i(t)

dt2
+ 6

di(t)

dt
+ 109i(t) = 0 (11.2)

Use the differentiation property of the Laplace transform, then solve for I(s). All units are V, Ω, A, F,

and H.

0 = s2I(s)− si(0)− i′(0) + 6 (sI(s)− i(0)) + 109I(s)

= s2I(s)− 10s+ 5 + 6sI(s)− 60 + 109I(s)

10s+ 55 = s2I(s) + 6sI(s) + 109I(s)

I(s) =
10s+ 55

s2 + 6s+ 109

11.2 Inverse Laplace Transforms

6. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.3. Identify

the terms that contribute to the transient response, then identify the terms that contribute

to the steady-state response.

F (s) =
10

s+ 10
(11.3)

Use the Laplace transform describing the exponential function as well as the multiplication property.

Because the term is a decaying exponential, it contributes to the transient response. There are no steady-

state terms.

f(t) = 10 e−10t u(t)
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7. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.4. Identify

the terms that contribute to the transient response, then identify the terms that contribute

to the steady-state response.

F (s) =
10s2 + 10

s(s2 + 10s+ 25)
(11.4)

Perform partial fraction expansion on F (s), solve for the coefficients, and then use the Laplace transforms

describing constants, exponential functions, and exponential times time.

F (s) =
K1

s
+

K2

(s+ 5)2
+

K3

(s+ 5)

=
0.4

s
+

−52

(s+ 5)2
+

9.6

(s+ 5)

f(t) =
[
0.4− 52 t e−5t + 9.6 e−5t

]
u(t)

The steady-state solution is described by terms without decaying exponentials:

fss = 0.4 u(t)

The transient solution is described by terms with decaying exponentials:

ftr =
[
−52 t e−5t + 9.6 e−5t

]
u(t)

8. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.5. Identify

the terms that contribute to the transient response, then identify the terms that contribute

to the steady-state response.

F (s) =
s2 + 4

(s2 + 16)(s2 + 5s+ 4)
(11.5)

Perform partial fraction expansion on F (s), solve for the coefficients, and then use the Laplace transforms

describing exponential functions and decaying sinusoidal functions.

F (s) =
K1

(s+ j4)
+

K2

(s− j4)
+

K3

(s+ 1)
+

K4

(s+ 4)

=
0.055 + j0.033

(s+ j4)
+

0.055− j0.033

(s− j4)
+

0.098

(s+ 1)
+

−0.208

(s+ 4)

f(t) =
[
0.11 cos(4t) + 0.066 sin(4t) + 0.098 e−t − 0.208 e−4t

]
u(t)
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The steady-state solution is described by terms without decaying exponentials:

fss = [0.11 cos(4t) + 0.066 sin(4t)] u(t)

The transient solution is described by terms with decaying exponentials:

ftr =
[
0.098 e−t − 0.208 e−4t

]
u(t)

9. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.6. Identify

the terms that contribute to the transient response, then identify the terms that contribute

to the steady-state response.

F (s) =
5s2 + 10s+ 3

(s+ 2)2(s2 + 5s+ 64)
(11.6)

Perform partial fraction expansion on F (s), solve for the coefficients, and then use the Laplace transforms

describing exponential functions and decaying sinusoidal functions.

F (s) =
K1

(s+ 2)2
+

K2

(s+ 1)
+

K3

(s+ 2.5− j7.6)
+

K4

(s+ 2.5 + j7.6)

=
0.052

(s+ 2)2
+

−0.173

(s+ 1)
+

0.087− j0.331

(s+ 2.5− j7.6)
+

0.087 + j0.331

(s+ 2.5 + j7.6)

f(t) =
[
0.052 t e−2t − 0.173 e−2t + e−2.5t (0.173 cos(7.6t) + 0.663 sin(7.6t))

]
u(t)

There are no steady-state terms in the output response, as all terms are multiplied by a decaying expo-

nential.

10. Derive f(t) by calculating the Laplace transform of F (s), given in equation 11.7. Identify

the terms that contribute to the transient response, then identify the terms that contribute

to the steady-state response.

F (s) =
−4s2 + 10

s(s2 + 25)(s2 + 20s+ 100)
(11.7)

Perform partial fraction expansion on F (s), solve for the coefficients, and then use the Laplace transforms
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describing constant terms, sinusoidal functions, and exponential functions.

F (s) =
K1

s
+

K2

(s+ j5)
+

K3

(s− j5)
+

K4

(s+ 10)2
+

K5

(s+ 10)

=
0.004

s
+

−0.011− j0.014

(s+ j5)
+

−0.011 + j0.014

(s− j5)
+

0.312

(s+ 10)2
+

0.017

(s+ 10)

f(t) =
[
0.004− 0.021 cos(5t) + 0.028 sin(5t) + 0.312 t e−10t + 0.017 e−10t

]
u(t)

The steady-state solution is described by terms without decaying exponentials:

fss = [0.004− 0.021 cos(5t) + 0.028 sin(5t)] u(t)

The transient solution is described by terms with decaying exponentials:

ftr =
[
0.312 t e−10t + 0.017 e−10t

]
u(t)

11.3 s-Domain Analysis

11. Use s-domain analysis to calculate V (s) and v(t) of the circuit shown in figure 11.1. The

switch moves from position a to b at a time of zero seconds. The component values are:

VS1 = 3 V, VS2 = 2 V, R1 = 50 Ω, R2 = 100 Ω, C = 250 µF.

−

+

R1

C

R2

v(t)

a

−
+VS1

b

−
+VS2

Figure 11.1: Circuit diagram for s-domain analysis question 11.

Calculate the initial conditions of the circuit. At t > 0 the switch is in position a and the capacitor can
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be treated as an open.

v(0) = −VS1

(
R2

R1

)
= −3 V

(
100 Ω

50 Ω

)
= −6 V

Transform the circuit into the s-domain.

−

+

R1

1/(sC)

−+

v(0)/s

R2

V (s)

−
+VS2/s

Use KCL at the inverting node of the op-amp to derive an equation in terms of V (s), then solve for V (s)

and normalize.

VS2

sR1
=

−V (s)

R2
+

−V (s) + v(0)
s

1
sC

=
−V (s)

R2
− sCV (s) + Cv(0)

− VS2

sR1
+ Cv(0) =

V (s)

R2
+ sCV (s)

− VS2

sCR1
+ v(0) =

V (s)

CR2
+ sV (s)

V (s) =
sv(0)− VS2

CR1

s(s+ 1
CR2

)

Plug in component values, then perform a partial fraction expansion. Inverse Laplace transform to obtain
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an equation for v(t).

V (s) =
−6s− 160

s(s+ 40)

=
K1

s
+

K2

(s+ 40)

=
−4

s
+

−2

(s+ 40)

v(t) =
[
−4 V− 2 V e−40t

]
u(t)

12. Use s-domain analysis to calculate V (s) of the circuit shown in figure 11.2. The switch

closes at a time of zero seconds.

−
+VDC

R1

L

C

R2

+

−

v(t)

Figure 11.2: Circuit diagram for s-domain analysis question 12.

The initial current flow through the inductor and initial voltage drop over the capacitor are both zero,

as no source is connected before the switch closes. Transform the circuit into the s-domain.

−
+VDC/s

R1

sL

1/(sC)

R2

+

−

V (s)

Perform KCL and KVL to obtain an equation in terms of V (s), then solve for V (s) and normalize. (Note:
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VX is the voltage drop over the inductor.)

VDC

s − VX

R1
=

VX

sL
+

V (s)

R2

VDC

R1s
= VX

[
1

R1
+

1

sL

]
+

V (s)

R2

VX =
V (s)

sCR2
+ V (s)

VDC

R1s
=

[
1

R1
+

1

sL

] [
V (s)

sCR2
+ V (s)

]
+

V (s)

R2

=
V (s)

sCR1R2
+

V (s)

R1
+

V (s)

s2LCR2
+

V (s)

sL
+

V (s)

R2

sVDC

R1
=

[
1

R1
+

1

R2

]
s2V (s) +

[
1

CR1R2
+

1

L

]
sV (s) +

[
1

LCR2

]
V (s)

sR2VDC

R1 +R2
= s2V (s) +

[
L+ CR1R2

R1 +R2

]
sV (s) +

[
R1

LC(R1 +R2)

]
V (s)

V (s) =

[
VDCR2

R1+R2

]
s

s2 +
[

L+CR1R2

LC(R1+R2)

]
s+

[
R1

LC(R1+R2)

]
No component values have been provided, therefore, this is as far as the solution can go.

13. Use s-domain analysis to calculate V (s) and v(t) of the circuit shown in figure 11.3. The

switch moves from position a to b at a time of zero seconds. The component values are:

VS1 = 6 V, VS2 = 20 V, R1 = 4 Ω, R2 = 2 Ω, C = 50 µF, L = 1 mH.

−
+VS1

a

b

−
+VS2

R1 L

R2
C

+

−
v(t)

Figure 11.3: Circuit diagram for s-domain analysis question 13.

Calculate the initial conditions of the circuit.
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−
+VS1

R1 i(0)

R2

+

−

v(0)

i(0) =
VS1

R1 +R2

= 1 A

v(0) = VS1

(
R2

R1 +R2

)
= 2 V

Transform the circuit into the s-domain.

−
+VS2/s

R1 sL

i(0)/s

R2

1/(sC)

−
+v(0)/s

+

−

V (s)
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Perform KCL to find an equation in terms of V (s). Then, solve for V (s) and normalize.

VS2

s + LVS1

R1+R2
− V (s)

R1 + sL
=

V (s)

R2
+

V (s)− VS1R2

s(R1+R2)

1
sC

VS2

s
+

LVS1

R1 +R2
= V (s) + (R1 + sL)

[
V (s)

R2
+ sCV (s)− CVS1R2

R1 +R2

]
= V (s) +

R1

R2
V (s) +

sL

R2
V (s) + sCR1V (s) + s2LCV (s)

− CVS1R1R2

R1 +R2
− sLCVS1R2

R1 +R2

VS2

s
+

LVS1

R1 +R2
+

CVS1R1R2

R1 +R2
+

sLCVS1R2

R1 +R2
= (LC)s2V (s) +

[
L

R2
+ CR1

]
sV (s) +

[
R1 +R2

R2

]
V (s)[

VS1R2

R1 +R2

]
s+

[
LVS1 + CVS1R1R2

LC(R1 +R2)

]
+

[
VS2

LC

]
1

s
= s2V (s) +

[
1

CR2
+

R1

L

]
sV (s) +

[
R1 +R2

LCR2

]
V (s)[

VS1R2

R1 +R2

]
s2 +

[
LVS1 + CVS1R1R2

LC(R1 +R2)

]
s+

[
VS2

LC

]
= s

(
s2V (s) +

[
1

CR2
+

R1

L

]
sV (s) +

[
R1 +R2

LCR2

]
V (s)

)

V (s) =

[
VS1R2

R1+R2

]
s2 +

[
LVS1+CVS1R1R2

LC(R1+R2)

]
s+

[
VS2

LC

]
s
(
s2 +

[
1

R2C
+ R1

L

]
s+

[
R1+R2

LCR2

])
Plug in component values, then perform a partial fraction expansion. Inverse Laplace transform to obtain

an equation for v(t).

V (s) =
2s2 + 28000s+ 4E8

s (s2 + 14000s+ 6E7)

=
K1

s
+

K2

(s+ 7000− j3166.6)
+

K3

(s+ 7000 + j3166.6)

=
6.67

s
+

−2.333 + j4.925

(s+ 7000− j3166.6)
+

−2.333− j4.925

(s+ 7000 + j3166.6)

v(t) =
[
6.67 V + e−7000t (−4.67 V cos(3316.63t) + 9.85 V sin(3316.63t))

]
u(t)

14. Use s-domain analysis to calculate I(s) and i(t) of the circuit shown in figure 11.4. The

switch moves from position b to a at a time of zero seconds. The component values are:

VS1 = 40 V, α = 4 rad/s, VS2 = 10 V, R = 50 Ω, C = 10 µF, L = 400 mH.

te−tVS1 t e−αt

a

b

−
+VS2

R L

C

+

−
v(t)

Figure 11.4: Circuit diagram for s-domain analysis question 14.

Calculate the initial conditions of the circuit. The inductor acts like a short and the capacitor acts like
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an open. For this reason, i(0) is zero, and v(0) is equal to VS2. Transform the circuit into the s-domain.

−
+VS1/(s+ α)2

R sL

1/(sC)

I(s)

−
+VS2/s

Perform KVL around the loop to obtain an equation in terms of I(s). Then, solve for I(s) and normalize.

VS1

(s+ α)2
− VS2

s
= RI(s) + sLI(s) +

I(s)

sC

sCVS1

(s+ α)2
− CVS2 = sCRI(s) + s2LCI(s) + I(s)

sVS1

L(s+ α)2
− VS2

L
= s2I(s) +

R

L
sI(s) +

1

LC
I(s)

sVS1 − VS2(s+ α)2

L(s+ α)2
= s2I(s) +

R

L
sI(s) +

1

LC
I(s)

sVS1 − VS2s
2 − s2αVS2 − VS2α

2

L(s+ α)2
= s2I(s) +

R

L
sI(s) +

1

LC
I(s)

I(s) =

[−VS2

L

]
s2 +

[
VS1−2αVS2

L

]
s+

[
−VS2α

2

L

]
(s+ α)2

(
s2 +

[
R
L

]
s+

[
1

LC

])
Plug in component values, then perform a partial fraction expansion. Inverse Laplace transform to obtain

an equation for i(t). (Note: the equation for I(s) is in terms of A, V, etc., but the coefficients are mA once

the partial fraction expansion is derived.)

I(s) =
−25s2 − 100s− 400

(s+ 4)2 (s2 + 125s+ 2.5E5)

=
K1

(s+ 4)2
+

K2

(s+ 4)
+

K3

(s+ 62.5 + j496.08)
+

K4

(s+ 62.5− j496.08)

=
−1.603

(s+ 4)2
+

0.4

(s+ 4)
+

−0.201− j25.220

(s+ 62.5 + j496.08)
+

−0.201 + j25.220

(s+ 62.5− j496.08)

i(t) = [−1.6 mA/s t e−4t + 0.4 mA e−4t

+ e−62.5t (−0.4 mA cos(496.08t) + 50.44 mA sin(496.08t))] u(t)
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Im cos(ωt) R1

L

R2

i(t)

C

R3

Figure 11.5: Circuit diagram for s-domain analysis question 15.

15. Use s-domain analysis to calculate I(s) and i(t) of the circuit shown in figure 11.5. The

switch closes at a time of zero seconds. The component values are: Im = 500 mA, ω = 60 rad/s,

R1 = 200 Ω, R2 = 2 Ω, R3 = 1 Ω, C = 20 µF, L = 50 mH.

The initial current flow through the inductor and initial voltage drop over the capacitor are both zero, as no

source is connected before the switch closes. Transform the circuit into the s-domain.

Ims/(s2 + ω2) R1

sL

R2

I(s)

1/(sC)

R3

Perform KCL and KVL to obtain an equation in terms of I(s). Then, solve for I(s) and normalize.
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(Note: V (s) is defined as the voltage drop over resistor R1.)

Ims

s2 + ω2
=

V (s)

R1
+ I(s) +

V (s)

R3 +
1
sC

V (s) = sLI(s) +R2I(s)

Ims

s2 + ω2
=

sLI(s)

R1
+

R2I(s)

R1
+ I(s) +

sLI(s) +R2I(s)

R3 +
1
sC(

Ims

s2 + ω2

)(
R3 +

1

sC

)
=

sLI(s)

R1

(
R3 +

1

sC

)
+

R2I(s)

R1

(
R3 +

1

sC

)
+ I(s)

(
R3 +

1

sC

)
+ sLI(s) +R2I(s)

ImR3s

s2 + ω2
+

Im
C(s2 + ω2)

=
sLR3I(s)

R1
+

L

R1C
I(s) +

R2R3I(s)

R1
+

R2

sCR1
I(s)

+R3I(s) +
1

sC
I(s) + sLI(s) +R2I(s)

CImR3s
2 + Ims

C(s2 + ω2)
=

[
LR3

R1
+ L

]
s2I(s) +

[
L

R1C
+

R2R3

R1
+R3 +R2

]
sI(s) +

[
R2

CR1
+

1

C

]
I(s)

CImR1R3s
2 +R1Ims

LC(R1 +R3)(s2 + ω2)
= s2I(s) +

[
1

C(R1 +R3)
+

R2R3 +R1R3 +R1R2

L(R1 +R3)

]
sI(s) +

[
R1 +R2

LC(R1 +R3)

]
I(s)

I(s) =

[
CR1R3Im

LC(R1+R3)

]
s2 +

[
R1Im

LC(R1+R3)

]
s

(s2 + ω2)
(
s2 +

[
1

C(R1+R3)
+ R2R3+R1R3+R1R2

L(R1+R3)

]
s+

[
R1+R2

LC(R1+R3)

])
Plug in component values, then perform a partial fraction expansion. Inverse Laplace transform to obtain

an equation for i(t).

I(s) =
9.95s2 + 497512.44s

(s2 + 3600) (s2 + 308.66s+ 1004975.12)

=
K1

(s+ j60)
+

K2

(s− j60)
+

K3

(s+ 154.33 + j990.53)
+

K4

(s+ 154.33− j990.53)

=
0.248 + j0.004

(s+ j60)
+

0.248− j0.004

(s− j60)
+

−0.248− j0.034

(s+ 154.33 + j990.53)
+

−0.248 + j0.034

(s+ 154.33− j990.53)

i(t) = [0.5 A cos(60t)− 0.01 A sin(60t)

+ e−154.33t (−0.5 A cos(990.5t) + 0.07 A sin(990.5t))] u(t)
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