
cbna

Alyssa J. Pasquale, Ph.D.
College of DuPage

Microcontrollers Lab Manual

Spring 2024 Edition

this lab manual belongs to

cbna Alyssa J. Pasquale, Ph.D. ii Spring 2024 Edition

Table of Contents
A Note on Content . v

A Note on Flowcharts . v

License and Attribution Information . v

Lab 1: Introduction to the Arduino Uno and AVR ATmega328P . 1

Lab 2: Digital and Analog Input Devices . 13

Lab 3: Displays . 29

Lab 4: Sensors and Sensor Calibration . 43

Lab 5: External Interrupts . 55

Lab 6: Timers/Counters and Timed Interrupts . 67

Lab 7: Pulse-Width Modulation and Motors . 79

Lab 8: Proportional and Integral Control . 91

Lab 9: SPI: Serial Peripheral Interface . 103

Lab 10: Power Consumption and ATmega328P without Arduino . 117

Lab 11: Transmitting and Receiving a Secret Message . 127

Lab 12: Ultrasonic Sensor . 133

Lab 13: Introduction to Assembly . 143

Lab 14: USART: Universal Synchronous / Asynchronous Receiver / Transmitter 149

Lab 15: Pointers and ADC in Assembly . 159

Lab 16: Interrupts and WDT in Assembly . 169

Lab 17: Greater Than 8-Bit Math in Assembly . 179

Appendix A: Register and Fuse Descriptions . 189

Appendix B: Pinout Diagrams . 221

Appendix C: Interrupt Vector Table . 227

Appendix D: Alternate Port Functions . 229

Appendix E: C Datatypes . 233

Appendix F: C Operators . 235

Appendix G: Register Summary . 237

Appendix H: Instruction Set Summary . 239

cbna Alyssa J. Pasquale, Ph.D. iii Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. iv Spring 2024 Edition

A Note on Content
Topics in this lab manual will be discussed with a focus on practical application. It will be assumed that
you have read the relevant textbook sections for a detailed discussion of each individual topic before read-
ing the lab content. The textbook sections related to each lab are listed on the website page for each
lab. The textbook is available online at https://doctor-pasquale.com/wp-content/uploads/2021/02/
The-Yellow-Book.pdf.

A Note on Flowcharts
Flowcharts have been provided in this lab manual to help you to visualize the flow of software code. Please
keep the following notes in mind as you use the flowcharts to help you solve each lab circuit.

• They may not include every step.

• They may not include variable types or attributes.

• They may not include all subroutines or interrupt service requests.

• They may not be the best way to solve the circuit.

License and Attribution Information
This lab manual is licensed under creative commons as CC-BY-SA-NC. This license allows reusers to
distribute, remix, adapt, and build upon the material in any medium or format for noncommercial pur-
poses only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon
the material, you must license the modified material under identical terms. For more information, visit
https://creativecommons.org.

This license (CC-BY-SA-NC) includes the following elements:

b BY – Credit must be given to the creator

n NC – Only noncommercial uses of the work are permitted

a SA – Adaptations must be shared under the same terms

The suggested attribution for this lab manual is “Microcontrollers Lab Manual” by Alyssa J. Pasquale,
Ph.D., College of DuPage, is licensed under CC BY-NC-SA 4.0.

The entirety of this work was created by Alyssa J. Pasquale, Ph.D. All circuit diagrams and figures in this
text were created by the author using LATEX libraries.

cbna Alyssa J. Pasquale, Ph.D. v Spring 2024 Edition

https://doctor-pasquale.com/wp-content/uploads/2021/02/The-Yellow-Book.pdf
https://doctor-pasquale.com/wp-content/uploads/2021/02/The-Yellow-Book.pdf
https://creativecommons.org
https://doctor-pasquale.com
https://doctor-pasquale.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

cbna Alyssa J. Pasquale, Ph.D. vi Spring 2024 Edition

Pre-Lab 1
Carefully read the entirety of Lab 1, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. What are two advantages of using an Arduino Uno rather than just using an ATmega328P directly?

2. What are two advantages of using C code rather than Arduino IDE functions?

3. In what port can each of the following pins be found, and in what bit are they located?

(a) D12

(b) A0

(c) D9

(d) D5

cbna Alyssa J. Pasquale, Ph.D. 1 Spring 2024 Edition

4. Why are bitwise operators used when manipulating I/O pins?

5. Specifically, which registers require the use of bitwise operators?

6. What are the results of the following bitwise operations? (Show all of your work.)

(a) 0b10110101 & 0b00111100

(b) 0b10110101 | 0b00111100

(c) 0b10110101 ˆ 0b00111100

cbna Alyssa J. Pasquale, Ph.D. 2 Spring 2024 Edition

Lab 1: Introduction to the Arduino Uno and AVR ATmega328P

In this introductory lab, the basic operations of the Arduino Uno will be explored by designing several
LED circuits. Each circuit will build off of provided C code to create circuits of increasing complexity.
In the process, C functions, digital output pins on the Arduino, and bitwise operators will be explored.
The importance of writing well-documented code will be emphasized. C Concepts: _delay_us() and
_delay_ms() functions, char datatype, bitwise operators (bitwise AND, bitwise OR, bitwise XOR) AVR
Concepts: I/O port registers (DDRx, PORTx, PINx)

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-1

1.1 Arduino Uno

The Arduino Uno is a microcontroller breakout board with 20 bidirectional input/output pins. At the heart
of the Arduino Uno is the ATmega328P microcontroller. This microcontroller is manufactured by Microchip
(formerly Atmel), and is part of the AVR family of microcontrollers. Devices that are part of the AVR family
share a common machine language and can be configured and programmed in a very similar manner.

The Arduino Uno board can be powered with an external power supply, batteries, or by a computer via
the USB port. When plugged into the computer, software programs can be downloaded onto the Arduino
board using the Arduino IDE (integrated development environment, which is the compiler used in this class
to write and upload code).

To explain the difference between the Arduino and the ATmega328P, figure 1.1 shows a diagram showing
that the Arduino Uno is a package that provides easy access to the microcontroller pins. It includes a
power jack and power regulator to protect the microcontroller and all other components. A reset button
connects directly to the reset pin on the ATmega328P to trigger a system reset when pressed. The USB
interface allows seamless communication between your computer and the device, and the bootloader on the
ATmega328P allows the microcontroller to understand the instructions it receives when code is uploaded to
the board. The debug LED and ICSP headers are other useful features that the Arduino package provides.

ATmega328
(+bootloader)reset button debug LED

pin headers

power jack USB
interface

power
regulator

ICSP
header

ARDUINO UNO

Figure 1.1: Arduino Uno breakout board features.

cbna Alyssa J. Pasquale, Ph.D. 3 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-1

Why bother using an Arduino Uno, which can cost about $30, when an ATmega328P microcontroller can
be purchased for less than $5? There are some benefits to using the Arduino platform, as well as drawbacks.
The benefits of using the Arduino include the power regulator that can help prevent overvoltages applied to
the chip. (The power regulator can only protect up to 20 V, however.) The USB interface allows for seamless
communication between the Arduino IDE software and the microcontroller. Pin headers that are soldered
onto the platform make it straightforward to connect to each of the pins on the microcontroller without
needing to refer to a pinout diagram. Drawbacks of using the Arduino Uno will be explored in greater detail
in lab 10, but notably include a dramatic increase in power consumption.

Because the ATmega328P microcontroller on the Arduino will be programmed using the C language, it is
necessary to understand the architecture of the device in order to properly configure it. There are “simple”
functions provided by the Arduino IDE, but these come with a massive increase in processing time and
memory consumption, they are very inflexible, and they do not facilitate a thorough understanding of the
microcontroller. Use of C programming also allows the code written for the ATmega328P to be more portable,
which is important if the code is ever to be used on a different microcontroller in the future.

1.1.1 Uploading Code to the Arduino Uno

Code can be uploaded to the Arduino Uno using a USB cable and the Arduino IDE software. The follow-
ing steps should be followed. (These steps are also available online at https://github.com/DoctorPCOD/
DoctorPCOD/tree/main/ENGIN-2223.)

1. Write the software code using the Arduino IDE.

2. (Optional) Use CTRL-T to get the Arduino IDE to clean up the code formatting.

3. Connect the Arduino to the computer using the USB cable.

4. Select the correct board type in the Arduino IDE by selecting Tools > Board > Arduino Uno.

5. Select the correct port in the Arduino IDE by selecting Tools > Port and selecting the port that
contains the label Arduino Uno.

6. (Optional) Verify the code is free from errors by using CTRL-R.

7. Before uploading code, ensure that nothing is connected to pins D0 and D1.

8. Upload code to the Arduino Uno by using CTRL-U.

1.2 ATmega328P I/O Ports

In order to control the pins of the Arduino, the I/O ports on the microcontroller must be understood. The
digital pins on the Arduino Uno are numbered from D0–D13. There are in addition digital pins with optional
analog input functionality that are numbered A0–A5. Each of these pins resides in a different port on the
ATmega328P. Each port contains 8 bits, and is therefore associated with at most 8 pins. The three ports
are Port B, Port C and Port D. The pins in each port are described in table 1.1. Bits labeled – are reserved.

bit: 7 6 5 4 3 2 1 0

Port B: – – D13 D12 D11 D10 D9 D8

Port C: – – A5 A4 A3 A2 A1 A0

Port D: D7 D6 D5 D4 D3 D2 D1 D0

Table 1.1: Pins in ports B, C, and D.

cbna Alyssa J. Pasquale, Ph.D. 4 Spring 2024 Edition

https://github.com/DoctorPCOD/DoctorPCOD/tree/main/ENGIN-2223
https://github.com/DoctorPCOD/DoctorPCOD/tree/main/ENGIN-2223

1.2.1 I/O Pin Data Direction

Each pin has the capability to be either an output pin (data is written to the pin from the microcontroller
and sent from the pin to control devices such as LEDs, motors, or other output devices) or an input pin (data
is received by the pin from devices such as pushbuttons or sensors which can be read by the microcontroller
to determine the state of the input device). In order to control this direction, there is a register on each
port known as the Data Direction Register. To change the data direction on port b requires use of the DDRB
register. To change direction on port c requires use of the DDRC register. port d directionality is controlled
by DDRD. Setting (writing a value of 1) a bit causes it to be an output. Clearing (writing a value of 0) a bit
causes it to be an input. By default, all pins are cleared (i.e. are input pins) at the start of any program.

1.2.2 Setting and Clearing Pin Output Values

For each output pin, it is important to be able to selectively set or clear the value of the pin. For example, to
turn on an LED, connected via a current-limiting resistor to ground, the output pin connected to the LED
will be configured to give it a logic HIGH value. To turn off the LED, the output pin will be configured to
give it a logic LOW level. Changing the state of the pins is controlled using the Port Data Register. These
are named PORTB, PORTC and PORTD.

1.2.3 Reading Pin Data Values

To read data from an input pin, the value stored on that pin must be read and stored in a variable. The
registers that store data from pins are known as the Port Data Input Registers, and they are named PINB,
PINC and PIND. These registers will be used in lab 2.

1.3 Program Flow in Arduino IDE

All programs in the Arduino IDE are structured by using two major functions, setup() and loop(). The
first of these functions, setup(), runs once when the program starts. It is used to do tasks that only need
to occur once, such as configuring I/O pins and other peripheral functions.

The second function, loop() will run over and over again until the Arduino is either reset or the power is
turned off. This can be depicted as a flowchart in figure 1.2.

setup()

loop()

Figure 1.2: Flowchart of the two major functions used in the Arduino IDE.

1.4 Datatype: char

There are different datatypes used in C. For the purposes of this lab, 8-bit numbers will be sufficient for all
circuit variables. The datatype for this purpose is known as char. The char datatype represents a signed
8-bit number, which means it is capable of representing values between −128 and 127. If unsigned numbers
are needed, the datatype unsigned char can be used, which represents values between 0 and 255. Refer to
Appendix E for information about datatypes and examples of their usage.

To create a variable that can be used in C code, it can declared using any one of three different number
systems: decimal, binary, and hexadecimal. No prefix is required when assigning a decimal value to a variable
or a register. However, a prefix of 0b is required for assigning a binary value to a variable or register, and a
prefix of 0x is required for hexadecimal values. This is demonstrated below.

cbna Alyssa J. Pasquale, Ph.D. 5 Spring 2024 Edition

1 char a = -62; // a decimal value requires no prefix
2 char a = 0b11000010; // a binary value requires a prefix of 0b
3 char a = 0xC2; // a hexadecimal value requires a prefix of 0x

1.5 Bitwise Operators

Bitwise operators are convenient to use when manipulating binary variables. In fact, they are necessary to
use to manipulate I/O pin data using PORT registers. When multiple pins are in use (either as input or
output pins), it is vital to ensure that changing the state of one pin doesn’t interfere with any other pin in
that register. All bitwise operators are defined in Appendix E.

1.5.1 Bitwise AND: &

The single ampersand symbol & represents the bitwise AND function. In a bitwise function, each bit is
compared individually with the other corresponding bit and the logical AND is taken between them to find
the final value. The bitwise AND function is used when one or more specific bits need to be cleared with
all other bits kept at their previous value. Following are the Boolean algebra identities for operations with
0 and 1 to analyze how the bitwise AND works.

1 X & 0 = 0
2 X & 1 = X

To clear a bit (X), perform the function X & 0, as any number AND 0 is 0. To leave X unchanged, perform
the function X & 1, as any number AND 1 is itself.

1.5.2 Bitwise OR: |

The single pipe symbol | (shift-backslash on a keyboard) represents the bitwise OR function. In a bitwise
function, each bit is compared individually with the other corresponding bit and the logical OR is taken
between them to find the final value. The bitwise OR function is used when one or more specific bits need
to be set, with all other bits kept at their previous value. Following are the Boolean algebra identities for
operations with 0 and 1 to analyze how the bitwise OR works.

1 X | 0 = X
2 X | 1 = 1

To set a bit (X), perform the function X | 1, as any number OR 1 is 1. To leave X unchanged, perform the
function X | 0, as any number OR 0 is itself.

1.5.3 Bitwise XOR: ˆ

The single caret symbol ˆ (shift-6 on a keyboard) represents the bitwise XOR function. In a bitwise function,
each bit is compared individually with the other corresponding bit and the logical XOR is taken between
them to find the final value. The bitwise XOR function is used when one or more specific bits need to be
toggled, with all other bits kept at their previous value. Following are the Boolean algebra identities for
operations with 0 and 1 to analyze how the bitwise XOR works.

1 X ^ 0 = X
2 X ^ 1 = X’

To toggle a bit (X), perform the function X ˆ 1, as any number XOR 1 will cause its value to toggle. To
leave X unchanged, perform the function X ˆ 0, as any number XOR 0 is itself.

cbna Alyssa J. Pasquale, Ph.D. 6 Spring 2024 Edition

1.6 AVR Delay Functions
The AVR family of microcontrollers have two functions for generating delays. They are called _delay_us()
and _delay_ms(). These functions are useful when a certain amount of time needs to be spent waiting
between actions. The function _delay_us() creates a delay in microseconds equal to the number passed
through the argument of the function. The longest delay possible using this command is 4,294,967.295 µs
(4.29 s). The function _delay_ms() creates a delay in miliseconds equal to the number passed through
the argument of the function. The longest delay possible using this command is 4,294,967.295 ms (about
72 min).

cbna Alyssa J. Pasquale, Ph.D. 7 Spring 2024 Edition

Circuit I: Blinking an LED

This circuit will blink an LED on and off at regular intervals.

Download the file lab1_circuit1.ino. Connect an LED and current-limiting resistor as shown in figure 1.3.

D7
220 Ω

Figure 1.3: Schematic diagram for circuit I.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure pin D7
as output

turn on LED
(set pin D7)

delay 1 s

turn off LED
(clear pin D7)

delay 1 s

se
tu

p(
)

lo
op

()

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 8 Spring 2024 Edition

Circuit II: Toggling an LED

This circuit will blink an LED on and off at regular intervals.

Change the code from circuit I to blink the LED by toggling pin D7 using the bitwise XOR function instead
of using bitwise AND and OR to clear and set the pin.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure pin D7
as output

change LED state
(toggle pin D7)

delay 1 s

se
tu

p(
)

lo
op

()

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 9 Spring 2024 Edition

Circuit III: Traffic Light Circuit

This circuit will emulate a traffic light at an intersection between a main street and a side street.
The green light on each street will be on for 5 seconds, and the yellow light will be on for 2 seconds.
When one traffic light is either green or yellow, the other traffic light must be red.

To demonstrate the efficiency of software over hardware, we will revisit the traffic light finite state machine
circuit from Digital Systems lab 13. Amend the software from the previous circuit(s) to light LEDs in
accordance with a traffic intersection.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure pins
as output

turn on main green
turn on side red

turn off all others

delay 5 s

turn on main yellow
turn on side red

turn off all others

delay 2 s

turn on main red
turn on side green
turn off all others

delay 5 s

turn on main red
turn on side yellow
turn off all others

delay 2 s

se
tu

p(
)

lo
op

()

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 10 Spring 2024 Edition

Lab 1 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Functionally, what was the difference between circuit I and circuit II? Would you be able to tell the
difference between them just by looking at the finished circuit?

• What are the advantage(s) of using pin toggling in circuit II over the method used in circuit I?

• Explain the benefits of using a microcontroller over using a purely hardware approach (as you did in
Digital Systems) to system design.

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?

cbna Alyssa J. Pasquale, Ph.D. 11 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 12 Spring 2024 Edition

Pre-Lab 2
Carefully read the entirety of Lab 2, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. What precaution must be taken with pins D0 and D1, and why is this so?

2. To read the state of a digital input pin you use the following code to isolate bit 6. Find and explain
the error.

1 PIND = PIND & 0b01000000;
2 PIND >> 6;

3. When, if ever, do pins A0–A5 require setup using the DDRC register? Justify your answer.

4. What is the most efficient ADLAR value to use if full precision is desired on the ADC?

5. What register is used to read the full precision ADC value, given the correct value of ADLAR?

6. What kind of datatype should be used to store the ADC result when full precision is used? Justify
your answer.

cbna Alyssa J. Pasquale, Ph.D. 13 Spring 2024 Edition

7. What is the most efficient ADLAR value to use if 8-bit precision is desired on the ADC?

8. What register is used to read the 8-bit precision ADC value, given the correct value of ADLAR?

9. What kind of datatype should be used to store the ADC result when 8-bit precision is used? Justify
your answer.

10. What is a volatile variable? When should they be used in software code?

11. What is a global variable? When should they be used in software code?

12. What is the difference between a pull-up resistor and a pull-down resistor? When are these types of
resistors used?

cbna Alyssa J. Pasquale, Ph.D. 14 Spring 2024 Edition

13. Explain the difference between the following two pieces of code: if (x=5) { // do something },
and if (x==5) { // do something }

14. Explain the difference between the following two pieces of code: unsigned char f = a & b, and
unsigned char f = a && b

15. Find the final value of x after each loop has been executed.

1 int x = 0;
2 for (unsigned char j = 0; j > 6; j++) {
3 x += 50;
4 }

1 int j = 0;
2 for (int x = 0; x < 10; x++) {
3 j--;
4 }

cbna Alyssa J. Pasquale, Ph.D. 15 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 16 Spring 2024 Edition

Lab 2: Digital and Analog Input Devices
Input devices (both digital and analog), and their ability to control the operations of a system, will be
explored. Many values (for example, from sensors) tend to take on analog values, which can be accommodated
with the analog to digital converter (ADC) on a microcontroller. In this lab, input devices in general will
be used, and the principles of operation of the ADC will also be explored. C Concepts: bitshift operators
(bitshift left, bitshift right), comparison operators, Boolean operators, if/else statement, for loop, int
datatype, variable scope, volatile variables AVR Concepts: I/O register PINx, ADC registers ADCSRA,
ADCSRB, ADMUX, ADC, ADCH, ADCL

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-2

2.1 Input Devices
In this lab, input devices will be used. Input devices allow the microcontroller designer to control the
operation of an embedded system. Input devices can be lumped into two categories: digital input devices
and analog input devices. Table 2.1 contains some examples of each type of input device.

Digital Analog

Pushbutton Potentiometer

Toggle Switch Microphone

Keypad Thermistor

Table 2.1: Various types of digital and analog input devices.

Some sensors or input devices communicate digitally using serial communication protocols. In fact, Arduinos
themselves can be connected together and communicate serially, one as an input, one as an output. Serial
devices will be utilized in future labs.

2.2 Pins D0 and D1
Before discussing more about digital inputs, there is a precaution that must be taken any time pins D0 or D1
are utilized on the Arduino. The Arduino uses these pins for serial communication via the USB connection
to the computer. Therefore, any time code is uploaded from the Arduino IDE to your board, these pins will
need to be completely empty, with nothing plugged in to them. If there are wires or other devices connected
to pins D0 or D1 when an upload occurs, there will be problems with the file transfer.

2.3 Digital Inputs
The value of a digital input can be found by reading the respective pin values from the PINx register. This
raises the question of how a single bit from a register can be isolated in order to read it individually. The
steps for reading bits from a register follow.

• Mask the bit by bitwise ANDing with a constant that has all bits set to 0 except for the bit of interest.

• Save this result as a new variable and don’t overwrite the PINx register!

• Bitshift right n times, where n is the bit number in the register.

cbna Alyssa J. Pasquale, Ph.D. 17 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-2

The first step is known as masking. It is vitally important to mask data coming in from PINx registers
because of the following two reasons.

1. It is possible that several pins are in use, but only one is of interest.

2. Unused input pins are subject to noise, and will occasionally read HIGH values.

Once data has been masked, it must be shifted using the bitshift right (>>) operator. Unless the pin of
interest is in the least significant bit in the PINx register, the value of any variable assigned to that PINx
register will be a power of two, but not necessarily one, when the pin is HIGH.

For example, to read only pin D11, while ignoring all of the other pins in Port B, the following code should
be executed.

1 unsigned char a = PINB & 0b00001000; // mask all other pins
2 a = a >> 3; // shift the bit of interest to the LSB

2.4 External Pull-up and Pull-down Resistors

When closing a pushbutton switch (for example), a direct connection between power and ground is created.
Without the presence of any resistance, this will lead to a short circuit and could damage components. It is
important to use pull-up or pull-down resistors in series with any push buttons or switches that are used as
input devices. Throughout this course, 10 kΩ resistors will be used as pull-up or pull-downs.

By using a pull-up resistor, a switch is set as active LOW (i.e. the switch is 1 when not pressed, and 0
when pressed), and by using a pull-down resistor, a switch is set as active HIGH (i.e. the switch is 0 when
not pressed, and 1 when pressed). This is shown schematically in figure 2.1, in addition to a toggle switch
schematic which also requires a pull-down resistor.

Pushbutton
External pull-up resistor

10 kΩ
Vcc

Vout

Pushbutton
External pull-down resistor

Vcc
10 kΩ

Vout

Toggle switch

Vcc
Vout

10 kΩ

Figure 2.1: Schematic diagram of a pushbutton with external pull-down resistor (left), pushbutton with an
external pull-up resistor (center), and toggle switch with external pull-down resistor (right).

2.5 Internal Pull-up Resistors

The ATmega328P has an internal pull-up resistor that can be individually activated on each of the I/O pins.
When a pin has been configured as an input pin, writing a 1 to the corresponding bit in the correct PORTx
register will enable the internal pull-up.

The circuit diagrams shown in figure 2.2 depict a pushbutton (left) and toggle switch (right) connected to an
input pin on the ATmega328P in order to make use of the internal pull-up. The solid lines on the schematic
indicate the hardware that is external to the microcontroller, and the dashed lines depict the microcontroller
internals.

It is interesting to note that the ATmega328P does not have actual, physical resistors internally, so it is not
possible to give an exact value of the resistance of the pull-ups. Instead of a resistor being included in the
hardware, the resistance of the internal wiring on a transistor is exploited and used to save space. Therefore,

cbna Alyssa J. Pasquale, Ph.D. 18 Spring 2024 Edition

Pushbutton
Internal pull-up resistor

Data Bus

Vcc

input
pin

Toggle switch
Internal pull-up resistor

input
pin

Data Bus

Vcc

Figure 2.2: Schematic diagram of a pushbutton (left) and toggle switch (right) used with the internal pull-up
resistor.

the exact value of the internal pull-up will depend on external parameters such as voltage and temperature,
but is nominally between 30 kΩ and 40 kΩ.

Using the internal pull-ups can save a lot of hardware, especially if multiple input devices are used. However,
it is important to note that the pull-up architecture leads to active LOW signals on a pushbutton. This will
need to be compensated for in software. Because 3-pin toggle switches always have two passive positions,
there is no differentiation between active HIGH and active LOW, and it does not matter if a pull-up or
pull-down resistor is used. However, on a DIP switch, which only has two pins, using an internal pull-up
will create active LOW logic.

2.6 Analog Inputs

In the digital world, 0 V corresponds to 0, and 5 V corresponds to 1. In the analog world, a continuum
of values from 0–5 V are possible. These values do not directly correspond to digital (binary) values.
They therefore need to be converted to a binary number using an analog to digital converter (ADC). The
ATmega328P has six 10-bit ADCs, all of which are found on Port C, which correspond to the Arduino pins
A0–A5. Some packages of the ATmega328P microcontroller (TQFP and QFN/MLF) contain eight 10-bit
ADCs. However, because the DIP-28 version does not have all eight ADCs, the Arduino hardware, which is
based on the DIP-28 package, only supports the six ADCs.

2.6.1 Analog Devices and Potentiometers

Most sensors are able to return a range of values corresponding to the physical quantity that it is measuring.
For example, a photoresistor will change its resistance in response to the ambient light levels. This resistance
can be converted to a voltage that can take on any value between 0 and Vcc.

In this lab, a potentiometer will be used as an analog input device. A potentiometer, or “pot” for short, is a
voltage divider with three pins, as shown in figure 2.3. The sum of R1 and R2 is equal to the total resistance
of the potentiometer. As the dial on the pot is turned from one extreme to the other, the values of R1 and
R2 change in turn so that the voltage drop V1 increases from 0 V to 5 V, while the voltage drop V2 decreases
from 5 V to 0 V. The relationship V1 + V2 = 5 V will always be satisfied.

5 V
R1

+ −
V1

R2

+ −
V2

Figure 2.3: Schematic diagram of a potentiometer viewed as a voltage divider.

cbna Alyssa J. Pasquale, Ph.D. 19 Spring 2024 Edition

2.7 Datatypes: int

Because the ADC has 10 bits of resolution, a char datatype is no longer sufficient to store this data. int is
a 16-bit signed number capable of taking on values between −32,768 and 32,767. If only unsigned numbers
will be used, the related datatype unsigned int can be used. It is capable of representing values between
0 and 65,536. Refer to Appendix E for examples.

2.8 ATmega328P Analog to Digital Conversion

Because analog inputs require the use of the ADC, they are more complicated to work with than digital
inputs. Several registers need to be initialized and properly set up before the conversion can take place, with
many options available depending on how the ADC is to be used. Information about each of these registers
can be accessed in Appendix A.

• ADCSRA – ADC Control and Status Register A: This register stores information about how the
ADC is to be used. It is used in conjunction with ADCSRB.

• ADCSRB – ADC Control and Status Register B: A single register is not large enough to contain
all information about how to run the ADC, therefore this register stores additional information about
how the ADC is to be used.

• ADMUX – ADC Multiplexer Selection Register: This register contains information about the
reference voltage to be used by the ADC, which pin is to be used for data input, and includes ADLAR,
the data alignment configuration bit.

2.8.1 ADC Data Alignment and Data Registers

Because the analog to digital converter on the ATmega328P has 10 bits of precision, and most all registers
are 8 bits wide, the data is therefore saved between two registers. Because the ADC precision is not a power
of two (10 = 23.322...), the data can be stored in different ways in the two ADC data registers, which are
called ADCH (ADC high byte data register) and ADCL (ADC low byte data register). The way that the data
is stored within these two registers depends on the alignment, which is configured using the ADLAR bit in the
ADMUX register. How to configure ADLAR depends on the desired precision level of the ADC. For full details
of how the data is stored between these two registers, refer to Appendix A.

In full-precision mode, all 10 bits of the ADC result will be stored. This occurs when ADLAR has a value
of zero. This is accomplished using the following code.

1 unsigned int adcResult = ADC; // int required for 10 bits of precision

Sometimes, 10 bits of precision are not needed. 8-bit precision mode can be used instead. In this case,
only the most significant byte of data is stored, ignoring the least significant two bits. When ADLAR has a
value of one, the most significant byte of data is saved in ADCH (the high data byte register). Therefore,
when 8-bit precision mode is used, the result can be read directly from ADCH. This is accomplished using the
following code.

1 unsigned char adcResult = ADCH; // char used for 8 bits of precision

2.9 Comparison and Boolean Operators

Comparison operators are used to compare two variables or values. This is useful when decisions need to be
made based on how one variable compares to another. Comparison operators are listed in Appendix F.

Boolean operators are used to compare the results of two or more comparison operations. The Boolean
operations consist of AND, OR, and NOT. Boolean operators are listed in Appendix F. It is important to
note that Boolean operators use TWO symbols (with the exception of NOT), whereas bitwise operators only
use one. Do not confuse the two types of operators, as they are radically different!

cbna Alyssa J. Pasquale, Ph.D. 20 Spring 2024 Edition

2.10 Control Flow: Conditional
A microcontroller is capable of executing specific segments of code if a certain condition is met. This is known
as conditional flow. The conditional flow functions used in C are if statements and if/else statements.

In a flowchart, conditional statements are depicted with a diamond-shaped block. This is depicted in
figure 2.4.

condition

do something do something
else

TRUE FALSE

Figure 2.4: Conditional statements in a flowchart are depicted by a triangle.

2.11 Control Flow: Iterative
A microcontroller is capable of executing specific segments of code a certain number of times (or infinitely).
This is known as iterative flow. The conditional flow functions used in C are for loops, while loops, and
do/while loops.

2.11.1 for Loop

A for loop is a type of iterative control flow. It is used when a piece of code will be repeated a well-defined
number of times. This is slightly different from while and do/while loops, the purpose of which is to
wait for a certain condition to be satisfied. In a for loop, a variable is initialized and checked against a
condition. When that condition is satisfied, the code inside the loop executes. At the end of that execution,
an afterthought is executed. Then the condition is re-checked. This process continues until the condition is
not satisfied, at which point the code leaves the for loop.

1 for (initilization;condition;afterthought) {
2 // this code will execute if the condition is satisfied
3 // after the code is complete , the afterthought will execute
4 // then , the condition will be checked again
5 }

To write a for loop that executes continuously (an infinite for loop), the following code can be used.

1 // infinite for loop
2 for (; ;) {
3 // this will be repeated infinitely
4 }

2.12 Variable Scope
The scope of a variable refers to what functions can access that variable. A variable defined within a function
can only be accessed by that function.

A variable that is defined outside of all functions can be accessed by every function in the code, and is called
a global variable. Global variables will be necessary in this and other labs in order to access the result of
the A/D converter in more than one function. Global variables should only be used in situations where it is
necessary. Otherwise, it is recommended that the scope of all variables be limited by keeping them within
the function in which they are used.

cbna Alyssa J. Pasquale, Ph.D. 21 Spring 2024 Edition

2.13 volatile Variables
When a compiler takes C code and translates it into assembly language, it attempts to optimize that code.
At times, it may appear that a global variable is unused by functions, especially in the case of an interrupt
service routine (ISR). While interrupts will be the focus of a future lab, they will still be used in this lab
to access data from the ADC. An ISR is never formally invoked (or called) by any function, and it may
appear to the compiler as if any variables that are used within the ISR are unused (in which case it does
not save them in memory) or unchanging (in which case it saves it in program memory as a constant value).
By creating a volatile variable, the compiler will not discard the variable or treat it as a constant. All
datatypes can be saved as volatile variables. The code that will be used in circuit 3 follows, which shows
an example of a volatile unsigned int.

1 volatile unsigned int result = 0;
2 void loop() {
3 // code goes here
4 }
5
6 ISR(ADC_vect) {
7 result = ADC;
8 }

cbna Alyssa J. Pasquale, Ph.D. 22 Spring 2024 Edition

Circuit Ia: Pushbutton Input with External Pull-Down Resistor

When a pushbutton is pressed, an LED will light up. Otherwise, the LED will remain off.

Download the file lab2_circuit1.ino. Connect a pushbutton with a pull-down resistor to pin D8 and hook
up an LED and current limiting resistor to pin D13, as shown in figure 2.5.

Vcc
10 kΩ

D8

D13
220 Ω

Figure 2.5: Schematic diagram for circuit 1a.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure pin D13
as output

read value
of pin D8

pin D8

turn off LED
(clear pin D13)

turn on LED
(set pin D13)

se
tu

p(
)

lo
op

()

0

1

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 23 Spring 2024 Edition

Circuit Ib: Pushbutton Input with Internal Pull-Up Resistor

When a pushbutton is pressed, an LED will light up. Otherwise, the LED will remain off.

Accomplish the same functionality as in circuit 1a, but instead of using an external pull-down resistor,
activate the internal pull-up resistor. (This means that there will be no external 10 kΩ resistor connected
to the pushbutton.)

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 24 Spring 2024 Edition

Circuit II: Programmable Logic Gate

This circuit will be a programmable logic gate. A toggle switch will select the logic function. Two
pushbuttons will act as the inputs of the logic function. The output of the logic function will be
shown using an LED. When the output is LOW, the LED will remain off. When the output is HIGH,
the LED will light up.

Create a programmable logic gate. First decide which two logic functions (AND, OR, NAND, NOR, XOR,
XNOR) that will be used and record them below.

Use a toggle switch to switch between the two functions. Two push buttons will be used as the two-bit input.
Use an LED to display the output of the logic function. When a button is pushed, its input is a logic HIGH.
When a button is not pushed, its input is a logic LOW. All input switches and buttons require the use of
either a pull-down or a pull-up resistor! It is up to you to decide if you wish to use an external pull-up/down
resistor or the internal pull-up resistor.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure LED pin
as output

read toggle
input pin

read value of
pushbuttons

toggle
value

logic
fxn 2

logic
fxn 1

turn off LED turn on LED

se
tu

p(
)

lo
op

()

TRUE

FALSE

FALSE

TRUE

FALSE

TRUE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 25 Spring 2024 Edition

Circuit III: Potentiometer (Analog) Input

This circuit will blink an LED on and off at regular intervals. The length of the time intervals will
be dictated by the value of the microcontroller ADC. As the potentiometer rotates from one extreme
to the other, the time interval will go from 0 ms ON / 0 ms OFF to 1023 ms ON / 1023 ms OFF.

Hook up a potentiometer to an ADC pin and an LED to the a digital pin. Use software to create a delay
between LED blinks that is equal to the 10-bit (full-precision) value of the ADC conversion. Use iterative
control flow to accomplish this, as _delay_us() must have a constant argument. The for loop you will use
to change the length of the LED blink delay is shown with a shaded background in the flowchart. Be sure
to include the ADC ISR that will update a global variable with the most recent value from the ADC. This
function should exist outside of any other code.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

for loop

configure
ADCSRA, ADCSRB

configure
ADMUX

configure LED
pin as output

toggle
digital pin

i = 0

i <
result

_delay_us(1000)

i = i + 1

result =
ADC

se
tu

p(
)

lo
op

()

IS
R(

AD
C_

ve
ct

)

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 26 Spring 2024 Edition

Lab 2 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• In circuit Ib, the use of an internal pull-up resistor generated active LOW logic (as compared to the
active HIGH logic in circuit Ia that used an external pull-down resistor).

– How did you change your code to deal with the active LOW logic?

– What are two other ways you could have changed your code to deal with the active LOW logic?

• In circuit II, what were the two logic functions that you chose?

• In circuit II, what were the equations used in the conditional statements to execute each of these
logic functions? Copy/paste the relevant C code into this report (i.e. don’t just say “we did an AND
operation”).

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion

Wrap up all of the key concepts from your lab report in a paragraph.

cbna Alyssa J. Pasquale, Ph.D. 27 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 28 Spring 2024 Edition

Pre-Lab 3
Carefully read the entirety of Lab 3, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. In Circuit 2, you will need to use a character string to represent an integer base ten value coming from
the A/D converter. How many entries will you need in this character string? (I.E. how many entities
need to be in the char array?) Justify your answer.

2. Find the final value of each variable after the compound operation has been executed.

1 unsigned char a = 102;
2 a /= 6;

1 unsigned char n = 15;
2 n++;

1 unsigned char j = 50;
2 j %= 7;

1 unsigned char x = 255;
2 x ^= 0x0F;

1 unsigned char num = 22;
2 num &= 3;

cbna Alyssa J. Pasquale, Ph.D. 29 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 30 Spring 2024 Edition

Lab 3: Displays
This lab introduces different types of displays, which are crucial in embedded systems when data needs to
be visualized. This lab will build off of the knowledge of LEDs and 7-segment displays from digital systems
to the use of more complicated display systems such as LCD screens. C Concepts: arrays, compound
operators, #include directive, ASCII code, int to char conversion, writing functions

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-3

3.1 Segmented Displays
Segmented displays are chips with several LEDs (or LCDs) configured in such a way so as to be able
to display alphanumeric characters. The most common is the 7-segment display. 7-segment displays are
capable of displaying numerals from 0–9, as well as A–F to display hexadecimal characters (A, b, C, d, E,
F). The 7-segment display is not capable of representing all of the characters in the English alphabet. For this
reason, 14- and 16-segment displays were created. These displays are capable of representing all alphanumeric
characters, with the 16-segment display having the advantage of being the most legible. Figure 3.1 shows a
diagram of each of these displays.

Figure 3.1: Three segmented displays showing the numeral seven: 7-segment (left), 14-segment (center), and
16-segment (right).

Using segmented displays with the ATmega328P microcontroller can be very convenient, given a sufficient
number of available I/O pins. There is almost always a tradeoff between ease of use and number of pins
that a device uses. To reduce the number of pins used by the display, a display decoder (such as the 7447
BCD to 7-segment decoder) can be used, or information can be sent serially. Serial control of the 7-segment
display will be used in lab 9.

In this lab 7-segment displays will be used without the decimal point. All seven segments can be changed in
parallel by using seven I/O pins to send the control signals. Port D (pins D0 – D7) is the most convenient to
use, as a single byte of information sent to the PORTD register will simultaneously set or clear each segment
of a display as desired.

Although bitwise operations were previously used to set, clear, and toggle individual pins, in this lab, the
assignment operation with PORTD will be used because the only pins in Port D that will be used are the pins
connected to the display. It is important to note bitwise operations must be used when some pin values need
to be changed while leaving others alone.

3.1.1 Wiring a Segmented Display

A common mistake that students make is in improperly connecting current-limiting resistors to each of the
segments in a segmented display. Because 5 V are used on the Arduino, it is important to include current-
limiting resistors to ensure that the amount of current running through each of the segments does not burn

cbna Alyssa J. Pasquale, Ph.D. 31 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-3

out the LED in that segment. For the most part, 220 Ω resistors will be sufficient current-limiting resistors
in this class. However, when working on a personal project with different displays or a different supply
voltage, it is possible to determine the value of the current-limiting resistors that should be included, using
the relationship defined by equation 3.1, where Vsupply is the value of the maximum voltage supplied to each
segment, VF is the forward voltage drop of the LED (which can be determined by reading the datasheet for
the display), and IF is the maximum continuous forward current allowed by each segment (also determined
by reading the datasheet for the display).

R =
Vsupply − VF

IF
(3.1)

For example: the NTE3078 and NTE3079 displays have a VF value of 1.85 V, and IF value of 40 mA
(0.04 A). When using a supply voltage of 5 V, it can be calculated that the minimum sized current-limiting
resistor to use would be 79 Ω. Any resistor size larger than this will protect the segments. Too large of a
resistor value will cause each of the segments to become dim.

Because LEDs are non-linear devices, it is important to be careful in how each current-limiting resistor is
connected to each segment. It is not appropriate to just connect a current-limiting resistor to each common
cathode or common anode pin, because depending on how many segments are on at once the amount of
current drawn through the resistor will be different. This can cause problems such as unequal brightness
for each numeral that is displayed, and possibly overloading the current when many segments are lit at
once. Therefore, each individual segment needs to have a resistor connected between it and
the I/O pin on the ATmega328P. Note that the resistors are not directly connected to either ground
or power (which is a common mistake made by students). The circuit diagram in figure 3.2 shows the
correct way to wire each of the resistors. Note that the unlabeled open circles are connections to I/O
pins on the microcontroller. A video with more details about using current-limiting resistors is available at
https://youtu.be/EN3FPsV-pFg

a

b

c

d

e

f

g

dp

a

b

c

d

e

f

g

dp

common
cathode

common
anode

Vcc

Figure 3.2: Correct connection of current-limiting resistors in a common cathode (left) and common anode
(right) 7-segment display.

3.1.2 Common-Cathode 4-Digit Multiplexed 7-Segment Display

In this lab, in addition to using a single 7-segment display, the ATA8401 display will be used. This display
has four multiplexed common-cathode 7-segment displays. Setting one of the cathodes LOW allows that
digit on the display to be written by sending HIGH signals to the corresponding segment pins. All of the
displays have been mounted onto a PCB with current-limiting resistors connected through each segment and
convenient pin headers. The pinout diagram of this PCB is provided in Appendix B.

To write the same digit to all four displays, all four cathodes can be written LOW simultaneously, with the
correct segment values sent to each segment pin. To write different numbers to each of the displays, start

cbna Alyssa J. Pasquale, Ph.D. 32 Spring 2024 Edition

https://youtu.be/EN3FPsV-pFg

by writing one of the displays by writing all cathodes HIGH except for the one you wish to write to, which
is written LOW. Then write the numeral with a short timed delay afterward. A delay of between 1–10 ms
may be required depending on the program. Try a few values until the screen doesn’t flicker. A flowchart of
this process flow is shown in figure 3.3.

cathode 4 = 0
cathodes 1, 2, 3 = 1

write ones
place digit

delay

cathode 3 = 0
cathodes 1, 2, 4 = 1

write tens
place digit

delay

cathode 2 = 0
cathodes 1, 3, 4 = 1

write hundreds
place digit

delay

cathode 1 = 0
cathodes 2, 3, 4 = 1

write thousands
place digit

delay

Figure 3.3: Process flowchart for writing data to the four digit multiplexed display.

It is important to note, when using this display, that any code delay for any reason (not just from using
a _delay_ms or _delay_us function) will lead to lag in the multiplexed display, which could manifest as
different amounts of brightness on each digit, flickering, or the inability to read some of the digits. Because
the ability to automate timed functions in interrupts will not be covered until lab 6, for now it is important
to be cognizant of this fact when using multiplexed displays.

3.2 Liquid Crystal Display (LCD) Screen

In addition to segmented displays, a liquid crystal display (LCD) screen will be used in this lab. LCDs have
the ability to display ASCII characters at a relatively low cost. They require additional programming to
make them work. Most LCDs make use of the Hitachi HD44780 LCD driver. The one that will be used in
this class has 2 lines, 16 columns (16×2 display) with each character represented by 5×8 individual dots.
The driver has ROM containing encoding information for ASCII characters. The driver also has built-in
RAM, enabling the storage of (volatile) data on the device. RAM will not be used in this or future labs.

To simplify the coding of the LCD screen, the hd44780 library will be used. It does not come included with
the Arduino IDE, therefore the files will need to be downloaded and put into the same folder as the Arduino
.ino file that references it. The library is included in the file by using the #include directive in the Arduino
file before the void setup() function, as follows.

1 #include "hd44780.h" // note the double quotes
2 void setup() {
3 // setup functions go here
4 }
5 void loop() {
6 // loop functions go here
7 }

The library contains a file called hd44780_settings.h that is where information about how the LCD will
be used will be typed in. This will include the mode of operation (4-bit or 8-bit), the clock frequency of the
microcontroller, and the location of the pins (port and bit number) used for each control signal.

The LCD screen will be used in 4-bit mode, as this requires four fewer I/O pins than 8-bit operation and
allows for the same functionality (at the cost of each command taking twice as long to execute). Because
4-bit mode in write-only operation will be used, 6 I/O pins are required for connections with the LCD screen.
Pin 4 on the LCD is the RS (Register Select) pin, pin 6 is the E (Enable) pin, and pins 11-14 are DB4–DB7
(Data Bit 4 – 7).

cbna Alyssa J. Pasquale, Ph.D. 33 Spring 2024 Edition

The commands used on the LCD screen follow.

• lcd_init() – Initializes the LCD screen, this must occur before any other LCD commands are sent

• lcd_clrscr() – Clears the LCD screen (it is useful to do this at the beginning of void loop())

• lcd_putc(char displayChar) – Writes the character displayChar on the LCD screen

• lcd_puts(char displayString) – Writes the character string displayString on the LCD screen

• lcd_goto(unsigned char goSpot) – Moves to a new location. See memory locations, below.

A pinout diagram of the LCD screen is included in Appendix B.

3.3 ASCII Code

ASCII is a 7-bit character code where every number from 0–127 represents different control characters,
numbers, uppercase letters, lowercase letters, or symbols. It is used primarily in two distinct situations. The
first situation is when non-numeric information needs to be stored or displayed. The second is when numeric
variables need to be displayed on a device that only understands ASCII.

Individual ASCII characters can be saved as variables using the char datatype. This can be accomplished
using the direct ASCII encoding or by wrapping the desired character in single quotation marks. The
following two examples will save the character q into the variable asciiVar.

1 unsigned char asciiVar = ’q’; // note the use of single quotes
2 unsigned char asciiVar = 113;

It is important to note that the char datatype is not limited solely to dealing with ASCII characters. In
fact, this datatype has already been used many times to store 8-bit integer numbers. However, the ability
to store ASCII characters is an additional benefit to this datatype. Do not confuse “character” and char.
“Character” refers to an ASCII encoding of an alphanumeric symbol. char is a datatype used to store 8 bits
of binary data.

As described above, when using the LCD screen, it is possible to display individual characters using the
lcd_putc() function. Characters must be enclosed by single quotes.

Arrays of characters, known as strings, can also be stored (information about this is included in Appendix
E). When using the LCD screen, it is possible to display strings using the lcd_puts() function. Strings
must be enclosed by double quotes.

When a numeric integer-type (integer as opposed to floating-point, not to be confused with int) variable
needs to be saved as a string to be displayed onto a screen, that variable needs to be converted using the
itoa() function, described below.

3.4 Datatype Conversion: Numeric Integer to ASCII

To convert an integer value to a character string, use the following code. The variable charBuffer must
have a sufficient number of elements to store the largest possible value of the integer number in the desired
number system, plus a sign (for negative numbers), plus a terminating null character. For example, if the
number −10,568 needs to be converted, the number of elements in the array must be at least 7 (5 for the
numerals, 1 for the negative sign, and 1 for the null character).

1 // create an array that will store each ASCII character
2 char charBuffer[n];
3
4 // convert value , in the given base , into the variable charBuffer []
5 itoa(int value , char charBuffer , int base);

cbna Alyssa J. Pasquale, Ph.D. 34 Spring 2024 Edition

3.5 Data Arrays
In the previous two labs, every value that has been used in code has been assigned as its own variable.
However, this isn’t always the most practical way to store data. For example, if data coming from the
analog to digital converter needs to be stored, it is important to average out data to minimize noise (which
is a strategy that will be used in the next lab). It would be nearly impossible to write code that contains
individual variables for each data point to average (especially if many data points need to be stored and
averaged). Instead, each data point from the ADC can be stored into a single array variable. Each individual
value can be accessed by specifying an index. Index numbers always go from 0–(n-1), where n is the number
of values in the array. (Special care must be exercised when using a variable to define the number of values
that will be stored in an array. This topic will be covered in the next lab.)

3.6 Compound Operators
Compound operators are frequently used to increment or decrement variables. None of them are necessary
to use, but are more efficient for the compiler and make code more readable. All of the compound operators
are listed in Appendix F.

3.7 External Functions
It is useful to write custom functions (subroutines) to accomplish tasks. Instead of repeating blocks of code:
jump to a function, execute code, then jump back. The anatomy of a function is shown below.

1 return_type function_name (parameter_list) {
2 body of the function
3 }

The return type defines the type of variable (if any) that will be returned by the function. If a function
returns no variable, the return type will be void, just as with the setup() and loop() functions in the body
of Arduino IDE code.

The function name is the actual name of the function and is how the function will be invoked in code.
(For example, setup and loop are function names.)

The parameter list contains any variables (and their datatype) that are needed by the function. Function
parameters are optional.

The function body contains the code that will run every time the function is invoked. The following code
builds on the previous example of the circular buffer to show how to calculate a rolling average. Note that
the data and average in this example are signed values.

1 void loop() {
2 const unsigned char n = 50;
3 static int arrayValues[n] = {};
4 static unsigned long x = 0;
5
6 arrayValues[x % n] = sensorValue;
7 int avg = average(arrayValues , n);
8 x++;
9 }

10
11 int average(int *avgArr , unsigned char arrSize) {
12 long sum = 0;
13 for (unsigned char j = 0; j < arrSize; j++) {
14 sum += avgArr[j];
15 }
16 return (int) sum / arrSize;
17 }

cbna Alyssa J. Pasquale, Ph.D. 35 Spring 2024 Edition

Note that the last line of code in the averaging array contains (int), which turns the variable sum from a
long into an int. This changing of one data type to another is called type casting.

cbna Alyssa J. Pasquale, Ph.D. 36 Spring 2024 Edition

Circuit I: Single 7-Segment Display

This circuit will display hexadecimal characters 0–F on a 7-segment display. Every 500 ms, the value
on the display will increment. After displaying F, the display will cycle back to 0 again.

Download the file lab3_circuit1.ino. Use either a common-cathode or a common-anode 7-segment display.
Indicate which was used below.

Connect pins a–g via current-limiting resistors to the Arduino pins chosen in the related activity. Include
the numeral array you derived in the same activity in the software code.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure segment
pins as output

define
numeralArray[]

j < 16

display numeral

delay 500 ms

se
tu

p(
)

lo
op

()

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 37 Spring 2024 Edition

Circuit II: LCD Screen

This circuit will display the value from the ADC (coming from a potentiometer) onto an LCD screen.
As the potentiometer is rotated from one extreme to the next, the value on the LCD screen will vary
from 0–1023.

Download hd44780.h, hd44780.cpp, and hd44780_settings.h and save them in the same folder as the .ino
file. Wire up the LCD screen using the pinout diagram in Appendix B. Configure hd44780_settings.h with
the correct port and pin locations of the R/S, E, DB4, DB5, DB6, and DB7 pins.

Use a potentiometer hooked up to one of the ADC pins in full-precision mode. Display the text Pot.
Value: on line one of the LCD screen, and on line two of the LCD screen display the potentiometer value.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

#include
hd44780.h

lcd_init()

configure ADC

lcd_clrscr()

write string
''Pot. Value:''

convert ADC result
to a string

go to
line 2

display
result string

delay ≈50 ms

se
tu

p(
)

lo
op

()

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 38 Spring 2024 Edition

Circuit III: Multiplexed (MUX) 7-Segment Display

This circuit will display the value from the ADC (coming from a potentiometer) onto a MUX 7-
segment display. As the potentiometer is rotated from one extreme to the next, the value on the
display will vary from 0–1023.

Use a potentiometer hooked up to one of the analog pins on the Arduino to obtain an input value between
0–1023. Hook up the MUX display PCB to the Arduino. Display the output of the potentiometer on the
multiplexed display, with the thousand’s place appearing on display 1, the hundred’s place appearing on
display 2, the ten’s place appearing on display 3, and the one’s place appearing on display 4. Use an external
function to write each digit on the respective display. (It is strongly recommended that you use a for loop
to iterate through writing each digit, but this is not necessary for a stamp.)

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure segment
and cathode

pins as output

configure ADC

define
numeral array

define 1’s, 10’s
100’s, 1000’s digits

call external
function

selective reset
cathode and
segment pins

selective clear
cathode pin

selective set
segment pins

delay
(to avoid flicker)

se
tu

p(
)

lo
op

()

ex
te

rn
al

fu
nc

tio
n

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 39 Spring 2024 Edition

Lab 3 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Include a table, like the one below, in your report, filled out with the relevant information.

Display Ease of Use # of I/O Pins Ability to Display Characters Memory Usage

7-Segment

MUX Display

LCD

• In what types of designs might you use each of these types of displays?

• Specifically, how might you integrate one or more of these displays into your Smart Car project?

• In circuit 3, how did you isolate each numeral in the potentiometer ADC value? Include the equations
you used.

• In circuit 3, how did you isolate each cathode to write to only a single display at a time? Include the
relevant software code.

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring

cbna Alyssa J. Pasquale, Ph.D. 40 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 41 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 42 Spring 2024 Edition

Pre-Lab 4
Carefully read the entirety of Lab 4, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. You will calculate temperature from a sensor in Circuit 1 and display it on an LCD screen using tenth’s
place precision. What is the actual precision of the TMP36 sensor using the ADC in 10-bit mode?
(Note: this is important to know, so that you know if your circuit is displaying reasonable values or
not.)

2. How many bytes of data do the following datatypes use?

(a) char

(b) int

(c) long

(d) float

3. What are two reasons not to use floating-point arithmetic?

(a)

(b)

cbna Alyssa J. Pasquale, Ph.D. 43 Spring 2024 Edition

4. Explain the use of the L in the equation y = 90L * x / 8 + 37

5. In what situations (if any) must a variable be defined as a const?

6. When obtaining a rolling average of an array, what might happen if n is...

(a) ...too small?

(b) ...too large?

cbna Alyssa J. Pasquale, Ph.D. 44 Spring 2024 Edition

Lab 4: Sensors and Sensor Calibration

In this lab, several sensors will be used. Sensors provide information about how an embedded systems
are working, and in what kind of environment. In the process, sensor calibration techniques will be used to
calibrate each one to obtain accurate and meaningful results. C Concepts: long datatype, float datatype,
const variables, static variables

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-4

4.1 Sensors

Sensors are devices that take a piece of meaningful information corresponding to a physical quantity (for
example speed, sound intensity, distance, or light level) and convert it to an electrical signal. On the most
basic level, switches such as toggles and pushbuttons are sensors, outputting digital values corresponding to
HIGH or LOW voltage levels based on their configuration.

4.1.1 TMP36 Temperature Sensor

The first sensor that will be utilize in this lab is the TMP36 temperature sensor. It is a 3-pin device that
sends an analog voltage level corresponding to the ambient temperature. This is accomplished due to the
fact that the voltage level across a diode scales as a function of temperature. That voltage level can be used
to provide information about the temperature of the surroundings. The TMP36 sensor outputs a voltage
of 0 V (which would be converted by the A/D converter to a value of 0) when the ambient temperature is
−50◦C. The output is 5 V (A/D value of 1023) when the ambient temperature is 450◦C. In between, the
device scales linearly. A pinout diagram of the TMP36 is included in Appendix B.

4.1.2 Photoresistor

A photoresistor can be used to provide information about ambient light levels. The photoresistor that will be
used in this lab is made of CdS, a semiconducting material that naturally has a very high resistance. When
photons (ambient light) are incident on the surface, energy imparted by the photons is absorbed by electrons
which then have enough energy to better conduct electricity. Any frequency of light which meets or exceeds
the requirement for this energy will be sufficient to reduce the resistance of the device. This photoresistor
is sensitive to light at any frequency within the visible spectrum. In contrast to photoresistors, devices such
as photodiodes and phototransistors may be more appropriate when only a single frequency of light needs
to be detected.

By using the photoresistor in series with another resistor of fixed value, a voltage divider is created. As
the resistance of the photoresistor goes down (corresponding to high light levels), the voltage drop over the
device will decrease. If no light is incident on the photoresistor, the voltage drop over the device will be
maximized.

4.1.3 Soft Potentiometer

The soft potentiometer (soft pot) is a pot in which your finger, a stylus, or other object touching the strip
acts as the wiper. The pinout diagram of the soft pot is included in Appendix B.

cbna Alyssa J. Pasquale, Ph.D. 45 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-4

4.2 Sensor Calibration
All of the sensors used in this lab will be configured to provide an analog voltage between 0–5 V. These values
then need to be converted into meaningful values corresponding to a physical quantity (room temperature,
light level, and position for the above three sensors). The first conversion that takes place is at the A/D
converter inside the ATmega328P microcontroller. This leads to a value between 0–1023 that can be written
to a display device.

If the output response of the device is known (and is trustworthy), then that information can be used directly
to determine a conversion between the A/D value and the physical quantity. The TMP36 temperature sensor
has a known response: an A/D value of 0 corresponds to a temperature of −50◦C, and an A/D value of 1023
corresponds to a temperature of 450◦C. The data in between scales linearly, as shown in figure 4.1.

−200 0 200 400 600 800 1,000 1,200
−100

0

100

200

300

400

500

(0,−50)

(1023, 450)

A/D Value

T
(◦

C
)

Figure 4.1: Ambient temperature plotted as a function of ADC value for the TMP36. Data is based on the
device datasheet.

Using this linear data and the equation y = mx + b, a relationship between the physical quantity (y) and
the A/D converter value (x) can be derived. This relationship can be used to calculate the temperature of
the room. The equation for the TMP36 temperature sensor is y = 500 ∗ x/1023 − 50. In code, this can be
expressed as follows.

1 int T = 500L * ADC / 1023 - 50;

4.2.1 One-Point Calibration

It is possible that a sensor does not provide the exact output that is expected based on a trustworthy
calibration measurement. (For example, the TMP36 sensor may not output the temperature that is expected
based on a thermometer that is known to be accurate.) In these situations, it is necessary to calibrate the
data.

One-point calibration is necessary when the slope of the data is correct, but there is an offset between the
measured and actual data. If the measured data is greater than the ideal response, then the offset must be
subtracted from the calibration equation. Otherwise, the offset must be added to the calibration equation.

4.2.2 Multiple-Point Calibration

If the output response of the device is not known, then the first step in sensor calibration will be to find
it. Using as many known reference points as possible, determine the A/D value that results based on the
corresponding physical quantity. Use plotting software such as Excel to find a best-fit line through all of the
points and to obtain a calibration equation.

4.3 Datatypes: long and float

Two new datatypes will be introduced in this lab: long and float. The long datatype is 32 bits, and
it becomes useful when working with very large integer numbers. However, every variable using a long

cbna Alyssa J. Pasquale, Ph.D. 46 Spring 2024 Edition

datatype will take up 4-bytes of data memory. Do not use this datatype unless it is necessary to do so!
Examples of how to use the long datatype are included in Appendix E.

Numbers that are not integers and numbers that are too large to fit into the long datatype must be repre-
sented as floating-point values. In the Arduino IDE, the float datatype is used to represent floating-point
numbers. Floating-point is a method of encoding non-integer numbers into binary.

There many downsides to working with floating-point numbers (apart from requiring 4 bytes of memory for
each variable). First, floating-point arithmetic is very slow and requires massive amounts of program memory
to execute. In addition, floats only have 6–7 decimal digits of precision. That means the total number of
digits, not the number to the right of the decimal point. Finally, floating-point numbers are not exact, and
may yield strange results when compared. For example 6.0 / 3.0 may not equal 2.0. More information about
the float datatype is included in Appendix E.

4.4 Integer vs. Floating-Point Operations
Because of the fact that floating-point operations take a lot of time and memory to execute, it will be
imperative to avoid them as much as possible. Not only should the float datatype be avoided, but any
arithmetic including non-integer numbers should be avoided as well. For example, y = 2*x/3 + 10 avoids
all use of floating-point operations. An otherwise identical statement, y = 0.67*x + 10, will consume much
more memory and take much longer to execute.

For this reason, all calibration equations that you derive should use integer values.

Depending on the datatype used for the final value of the calibration equations, it is possible that an overflow
can occur while performing arithmetic. The intermediate results of all arithmetic is stored as an int (16
bits). Given the equation unsigned int y = 500 * x / 15 + 6, values of x larger than 131 will lead to
an invalid value. For this reason, the temporary results of the arithmetic should be stored in more than two
bytes. Using unsigned int y = 500L * x / 15 + 6 will solve this problem.

4.5 Sensor Value Precision
The precision of the final value calculated by the microcontroller is dependent on what datatype is used to
represent the information. For integer datatypes (char, int, long) this precision is limited by integer math;
only whole numbers can be represented. For example, given an A/D value of 146, if int temp = (500 *
num)/1023 - 50, the following will occur.

int(500 ∗ 146/1023)− 50 =

int(71.36)− 50 =

71− 50 = 21

To obtain tenth’s place precision, multiply the entire equation by 10. For hundredth’s place precision,
multiply by 100, etc. When displaying this number, place a decimal point on the display in the correct
location. If further calculations need to be made with this number, the final result will be affected! The
previous example, with tenth’s place precision, would lead to int temp = (5000 * num)/1023 - 500, and
thus the following will occur.

int(5000 ∗ 146/1023)− 500 =

int(713.59)− 500 =

713− 500 = 213 (21.3)

4.6 const Variables
There are times when a variable that can never change its value must be used. In this case, the const
keyword can be used to indicate that a variable is unchanging. The const keyword can be used with all
datatypes. If the size of an array is to be defined by a variable (rather than just a number), then that

cbna Alyssa J. Pasquale, Ph.D. 47 Spring 2024 Edition

variable must be a const variable. A compiler error will result in the Arduino IDE if a value is assigned to
a variable that has already been defined as a const.

4.7 static Variables
The keyword static in front of a variable refers to how long the variable is active in memory. Variables
without this keyword are known as automatic, meaning that they come into existence when they are declared,
and then expire whenever the function or loop in which they reside has finished running. A static variable
exists in memory for as long as the program is running. This means that, even if they are declared with a
certain value inside of a function or a loop, they can be changed for as long as the program runs. This allows
for the creation of non-global variables that can change within a function or a loop.

4.8 Dealing with Fluctuating Data and Sensor Noise
When sensor values can fluctuate due to noise, it is important to perform some type of rolling average to
obtain a steady, reliable readout. To create a rolling average, the most recent n values of a sensor will be
averaged. These values must be stored in an array.

Careful consideration has to go into choosing a proper value for n. Values that are small use less memory and
take less time to average than values that are large. However, larger values give much more stable readings.
If n is too large, a sensor becomes much less sensitive to short-term changes.

4.8.1 Circular Buffer

One way to take a rolling average is to use a circular buffer. A circular buffer is an array of n values where
the sensor data is stored. The first data point is saved in array index 0, the second in array index 1, and so on
until the nth data point is saved in array index n−1. Then the cycle continues again, with the next datapoint
saved in index 0 overwriting what is by this point the oldest datapoint. The following code demonstrates a
circular buffer where n = 50. Note that n is defined as a const because it is unchanging, and note also that
the unsigned long datatype is used for x, as it is incremented continuously without getting reset to 0. In
addition, note the use of static keywords for x and arrayValues, which enables them to be local only to
the loop() function, but also to have values that can change.

1 void loop() {
2 const unsigned char n = 50;
3 static int arrayValues[n] = {};
4 static unsigned long x = 0;
5 arrayValues[x % n] = sensorValue;
6 x++;
7 }

cbna Alyssa J. Pasquale, Ph.D. 48 Spring 2024 Edition

Circuit I: Calibrated and Averaged Temperature Measurement

This circuit will display the ambient temperature on a display.

Consult the flowchart on page 52. Decide if you wish to use an LCD screen or a MUX 7-segment display.
Use code from activities and labs as needed to set up the ADC to receive data from the TMP36 temperature
sensor and display on the output device with tenth’s place precision. To display units, you can try using
ASCII character number 223 for the degree (◦) symbol. Any delays in your code should be as brief as possible
and must be justified in your lab report. (Large delays that you cannot justify with a good reason for using
them will result in only partial credit on this circuit.)

Wire the temperature sensor with a bypass capacitor and 47 kΩ pull-up resistor as shown in figure 4.2. This
capacitor should be as physically close to the sensor as possible.

TMP
36

Vcc

Vout

47 kΩ

100 nF

Figure 4.2: TMP36 wired with a bypass capacitor to filter out noise.

Change the value of n from approximately 10 to approximately 100. Decide on the value of n that you think
is best, keeping in mind how quickly the sensor takes to setup, how much memory the program requires,
and how stable the output is. You will have to justify this value in your lab report using reasoning based on
your tinkering with the value. Don’t just pick one value and say that “it worked fine and we didn’t feel like
trying anything else.” Record the value of n below.

Use a digital thermometer to measure the actual temperature in the vicinity of your temperature sensor. If
there is a difference in temperature of over 1◦C, include a variable unsigned char offset in the code to
reduce the difference to less than 1◦C. Record the offset value (if used) below.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 49 Spring 2024 Edition

Circuit II: Photoresistor Calibration and Light Level Measurements

This circuit will display the ambient light level on a display.

Consult the flowchart on page 52. Use the display of your choice to display the light level (with one’s place
precision) using the photoresistor. You will need to calibrate the device and find the best-fit equation. Find
the A/D converter value corresponding to 0% light level by completely covering up the photoresistor with
your hand. Find the value corresponding to 100% light level by aiming your cellphone flashlight directly at
the photoresistor. Record these values in table 4.1.

Light Level ADC Value

0%

100%

Table 4.1: Calibration data for the photoresistor.

Plot these two data points in plotting software such as Excel, and find the best fit line. (Assume that the
A/D value scales linearly with the light level.) You (and your lab partner) will need to include this graph
with your lab report, so save or print a copy. Use integer math for your equation; floating-point math will
not be accepted for the final version of this circuit. Record this equation below.

(Do try a floating-point equation and compile to see how much memory is used. Make note of this to compare
with the integer version in your lab report.)

The photoresistor will be wired as shown in figure 4.3

Vcc

ADC Pin

1 kΩ

Figure 4.3: Schematic diagram for the photoresistor.

Change the value of n from approximately 10 to approximately 100. Determine the value of n that works
best for this circuit. Record this value below. You will have to justify this value in your lab report, so take
notes the effect of different values in this circuit. It very likely will not be the same value you used in the
last circuit!

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 50 Spring 2024 Edition

Circuit III: Soft Potentiometer Calibration and Distance Measurements

This circuit will display the distance of a stylus on a soft pot on a display.

Consult the flowchart on page 52. Use the display of your choice to display the distance (in mm) from the
edge of the soft pot closest to the leads (with one’s place precision). Calibrate the device and find the best-fit
equation. Use a ruler to find the A/D converter value corresponding to distances between 10–50 mm, and
record the ADC value in table 4.2.

Distance ADC Value

10 mm

20 mm

30 mm

40 mm

50 mm

Table 4.2: Calibration data for the soft potentiometer.

Plot these two data points in plotting software and find the best fit line. You (and your lab partner) will
need to include this graph with your lab report, so save or print a copy. Use integer math for your equation;
floating-point math will not be accepted for the final version of this circuit. Record this equation below.

The soft pot will be wired as shown in figure 4.4.

Vcc

Soft
P
ot

ADC Pin

Figure 4.4: Schematic diagram for the soft pot.

Change the value of n from approximately 10 to approximately 100. Determine the value of n that works
best for this circuit. You will have to justify this value in the lab report. Do not just use the same value as
you used in the previous circuit. Record the n value you use below.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Schematics note: If there is no soft potentiometer in your schematics software, use a regular potentiometer
and label it instead.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 51 Spring 2024 Edition

declare
global variables

configure display

configure ADC

calculate average
(use function)

calculate
physical quantity

display avg. value
(LCD: with units)

delay
(only if needed)

sum = 0
j = 0

j < k

sum+=arr[j]
j++

sum/=k

return sum

x = 0

save to array at
index x

x++

x > n

x = 0

se
tu

p(
)

lo
op

()

av
e(

)

IS
R(

AD
C_

ve
ct

)

TRUE

TRUE

FALSE

Figure 4.5: Flowchart to be used for all of the circuits in this lab.

cbna Alyssa J. Pasquale, Ph.D. 52 Spring 2024 Edition

Lab 4 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• What, if any, delays did you use in your code for each circuit? Why?

• What value of n was chosen for each sensor in each circuit? Justify each choice.

• For each circuit where you were asked to create a graph, include the graph (with properly labeled
axes).

• For each circuit (including the temperature sensor), include your calibration equation (include and
explain any offset values).

• In circuits 2 and 3, what datatype was chosen to represent the final value of the sensor? Explain your
choice.

• In circuit 2, how much program and data memory was used with floating-point math? How much was
used with integer math?

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

cbna Alyssa J. Pasquale, Ph.D. 53 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 54 Spring 2024 Edition

Pre-Lab 5
Carefully read the entirety of Lab 5, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Find four errors in the following code and explain why they are problematic.

1 unsigned char a = 0;
2
3 void setup() {
4 EICRA = 0x0F;
5 EIMSK = 0x03;
6 }
7
8 void loop() {
9 unsigned char b = ISR(INT1_vect);

10 //code that writes a and b to a display
11 }
12
13 ISR(INT0_vect) {
14 a = addNumbers ();
15 }
16
17 ISR(INT1_vect) {
18 b++;
19 return b;
20 }
21
22 unsigned char addNumbers () {
23 a += b;
24 return a;
25 }

(a)

(b)

(c)

(d)

cbna Alyssa J. Pasquale, Ph.D. 55 Spring 2024 Edition

2. In your own words, explain the difference between hardware interrupts and software interrupts. Give
an example of each.

3. Explain how (if at all possible) to configure external interrupt registers to trigger an ISR upon a
rising-edge signal only.

4. Explain how (if at all possible) to configure pin change interrupt registers to trigger an ISR upon a
rising-edge signal only.

5. Why does the WDT use a separate clock from the rest of the AVR microcontroller? (This question is
not answered in the lab, I want you to think about it!)

cbna Alyssa J. Pasquale, Ph.D. 56 Spring 2024 Edition

Lab 5: External Interrupts

In this lab, external interrupts on the Arduino will be used to instantly address data coming in from digital
triggers. In addition, the Watchdog Timer (WDT) will be used to explore how to automatically reset
devices that have stopped working properly. C Concepts: cli() and sei() functions, switch case AVR
Concepts: SREG, External Interrupt registers EICRA, EIMSK, Pin Change Interrupt registers PCICR, PCMSK2,
PCMSK1, PCMSK0, Watchdog Timer (WDT), WDT register WDTCSR

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-5

5.1 Interrupts

Interrupts are used in embedded systems to respond to either asynchronous or timed events. To determine if
a pushbutton is pressed, code can be written to continuously check the status of the pushbutton pin. This is
called polling and can unnecessarily consume microcontroller resources. In complicated embedded systems
with a lot of input devices to monitor, performance can suffer if the software code is continuously checking
the status of each peripheral. If too many peripherals are being polled, the microcontroller may never have a
chance to perform core operations. Advanced features such as sleep modes or power-down modes may never
be activated if continuous polling is taking place.

Interrupts allow software code to respond to events as they occur. In addition to eliminating the above-
mentioned performance drawbacks of using continuous polling, using interrupts decreases the lag time be-
tween the event (for example: pushing a button) and the desired action (subroutine) which is called in that
situation. A subroutine that is called when an interrupt is invoked is known as an interrupt service routine
(ISR). There are several types of interrupts that can be utilized with the AVR microcontroller, but they can
mostly be organized in two categories, hardware and software interrupts. Several interrupts are listed below
in table 5.1.

Hardware Software

External Timed

Pin Change Watchdog Timer (WDT)

Reset Serial I/O

ADC

Memory

Table 5.1: Sources of hardware and software interrupts on the ATmega328P.

5.1.1 Hardware Interrupts

Hardware interrupts are asynchronous and respond to external events. External interrupts refer to inter-
rupts that take place on pins D2 and D3 on the Arduino. Each of these pins has the ability to be set up to
trigger an interrupt upon a logic LOW signal, a toggle, a falling edge, or a rising edge.

Pin change interrupts expand on this concept by allowing all of the pins on the Arduino to trigger
interrupts. The main drawback of a pin change interrupt is that it requires additional software code to

cbna Alyssa J. Pasquale, Ph.D. 57 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-5

determine exactly what pin triggered the interrupt. Pin change interrupts are also triggered upon all changes
in pin status and cannot be configured in hardware to select only rising- or falling-edge events.

The reset interrupt is a very special interrupt on the Arduino. There is a reset pin included on the Arduino
Uno board that, if pressed, causes the device to reset. It is a special interrupt in that it supersedes any other
interrupt on the Arduino. If the reset button is pressed, regardless of what happens in regard to any other
external interrupt, the Arduino will reset.

5.1.2 Software Interrupts

There are several types of software interrupts. Some of them are synchronous and pertain to the timer/-
counter functionality of the Arduino. These will be used in lab 6. However, the Watchdog Timer (WDT) is
a straightforward enough timed interrupt to be included with this lab.

Other interrupts occur when the microcontroller finishes processing information. For example, when an
ADC conversion is complete, an interrupt is invoked. This interrupt has been utilized in all previous labs in
which the ADC has been used. The related ISR allows data to be saved from the ADC immediately after
the ADC finishes the conversion. In addition to the ADC interrupt, there are interrupts related to serial
communication, as well as memory events. Appendix C has the entire ATmega328P interrupt vector table.

5.2 Interrupt Service Routines (ISRs)

Interrupt service routines (ISRs) are different from most functions in that they are never formally invoked.
Therefore, there are no parameters that can be passed to the function, and the function cannot return any
values. The only way for an ISR to communicate with the rest of the program is to use global variables.
Because ISRs are never called by any functions, any global variables that are modified by an ISR must be
declared as a volatile datatype.

ISRs generally should not contain extensive processing steps, so as not to take away from the core functioning
of the microcontroller. For example, function calls should not be made from within an ISR. Usually an ISR
modifies or sets global variables in a way to indicate that an external event has occurred.

5.2.1 Enabling / Disabling Interrupts

Interrupts can be enabled or disabled at different points in the software code. This can be very useful
especially when processing important information; disabling interrupts ensures that the important data is
processed and stored in memory without being affected by any interrupting subroutine(s). There is a status
register (SREG) in the AVR that contains information regarding the result of the most recently executed
arithmetic instruction. Big 7 in SREG is the global interrupt enable bit. This bit must be set in order for
interrupts to be enabled. If the bit is cleared, then interrupts will be disabled throughout the system. The
global interrupt enable bit is set by calling the function sei(), and is cleared by calling the function cli().

The reset interrupt, being the most important interrupt on the microcontroller, cannot be disabled, even
when bit 7 in SREG is 0. Individual interrupts can be enabled or disabled by using the corresponding mask
register for the interrupt. Each of these mask registers are discussed in detail in Appendix A.

Henceforth, it is strongly recommended (and usually required) for all setup code to temporarily disable
interrupts so as not to affect important configuration tasks. Sample code follows.

1 void setup() {
2 cli();
3 // setup code goes here
4 sei();
5 }

cbna Alyssa J. Pasquale, Ph.D. 58 Spring 2024 Edition

5.3 Configuring External Interrupts

There are two registers involved with configuring external interrupts: EICRA and EIMSK. If EIMSK is configured
with enabled interrupts, and the corresponding pin changes as defined by EICRA, the interrupt vectors INT0
(for pin D2) or INT1 (for pin D3) will be invoked. Because INT0 has a lower memory address than INT1, it
will take priority if both interrupts are invoked simultaneously. These registers are explained in more detail
in Appendix A.

• EICRA – External Interrupt Control Register A: This register stores information about how
external interrupts should be triggered on pins D2 and D3. This register enables the use of either or
both pins (D2 and D3) to trigger interrupts under different conditions.

• EIMSK – External Interrupt Mask Register: This register contains two bits to enable interrupts
on pins D2 and D3.

5.4 Configuring Pin Change Interrupts

There are four registers involved with configuring pin change interrupts: PCICR, PCMSK2, PCMSK1 and PCMSK0.
Pin change interrupts are triggered at any change in pin status (i.e. both falling and rising edge conditions
will trigger an interrupt) and any information about the trigger condition must be determined in software.
More details about these registers is available in Appendix A.

• PCICR – Pin Change Interrupt Control Register: This register contains three bits which dictate
whether or not interrupts are enabled on each of the three I/O ports.

• PCMSK0 – Pin Change Mask Register 0: This register allows pin-change interrupts to be enabled
on individual pins in PORTB when their respective bit locations are set.

• PCMSK1 – Pin Change Mask Register 1: This register allows pin-change interrupts to be enabled
on individual pins in PORTC when their respective bit locations are set.

• PCMSK2 – Pin Change Mask Register 2: This register allows pin-change interrupts to be enabled
on individual pins in PORTD when their respective bit locations are set.

5.5 Watchdog Timer (WDT)

The so-called “Blue Screen of Death” occurs on Windows computers when they are no longer running properly.
It is a visual notification that a system reboot is required. Microcontrollers do not necessarily provide any
indication when they are not functioning as they should. When an ATmega328P is to be used for extended
periods of time, when it is to be used for critical functions, or placed in difficult-to-access locations, it may
be necessary to automatically reboot the system if it hangs up and no longer functions correctly.

The Watchdog Timer (WDT) on the microcontroller can be used to force a system restart. The WDT can
be set to expire in a given timeframe (between 16 ms and 8 s), and if the WDT isn’t refreshed within that
time period, the device will reset. Consider the WDT to be like a dog. If the dog gets petted periodically
(before the timeframe is up), the dog will be content. However, if the dog does not get petted (refresh the
WDT), then the dog will jump up and notify you that you have done something wrong!

To utilize the WDT, first globally disable all interrupts (so as not to accidentally trigger the WDT during
setup), then properly configure the WDT register WDTCSR which is a two-step process.

1. Bitwise OR the WDTCSR register to set bits WDCE and WDE.

2. In the immediately following command, assign WDTCSR to the appropriate value (WDE set, prescaler bits
as desired). Do not use a bitwise OR, use an assignment operator!

After the WDT register has been configured, globally enable all interrupts. Periodically within loop(),
make a call to the AVR instruction wdr (Watchdog Reset) by invoking the assembly command asm volatile
("wdr"). If the code runs for longer than the time set with the WDT prescaler without the wdr instruction,
then the system will reboot. The watchdog timer control register is explained in more detail in Appendix A.

cbna Alyssa J. Pasquale, Ph.D. 59 Spring 2024 Edition

• WDTCSR – Watchdog Timer Control Register: This register contains information for enabling and
configuring the watchdog timer (WDT).

5.6 Switch Case
Sometimes code needs to take a different action based on the value of a variable. In these situations,
conditional control flow is executed using a switch case statement.

cbna Alyssa J. Pasquale, Ph.D. 60 Spring 2024 Edition

Circuit I: Keypad Adder

This circuit will display the sum of two values input from a keypad onto an LCD screen. It will also
display the two numbers that are being added together.

Download the file lab5_circuit1.ino (as well as the LCD library files). Connect an LCD screen, being
sure to properly configure the corresponding library files.

Connect the keypad encoder PCB to the Arduino. Output D from the encoder is the MSB of the result,
and will connect to pin D7. Output C from the encoder connects to pin D6, output B connects to pin D5.
Output A is the LSB and will connect to pin D4. The DATA signal will connect to pin D2. A full schematic
of the keypad PCB is included in Appendix B.

The code will display the values of a and b and their sum on an LCD screen. Pressing a button on a keypad
stores that number in the keypad memory and will cycle between updating variable a and variable b. Any
update of these variables will also update variable c, which is the sum.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code. DO NOT TAKE APART THIS CIRCUIT WHEN YOU ARE
FINISHED!

Schematics note: Fritzing does not have a keypad or keypad encoder. Instead, treat the values DCBA from
the keypad encoder as if they were coming from a 4-input DIP switch.

a = 0
b = 0

configure display

configure external
interrupts

c = a + b

convert a, b, c
to ASCII chars

display a + b = c
on LCD

static char
x = 0

x

a =
PIND >> 4

b =
PIND >> 4

x ˆ= 1

se
tu

p(
)

lo
op

()

IS
R(

IN
T0

_v
ec

t)

0 1

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 61 Spring 2024 Edition

Circuit II: Keypad Calculator

This circuit will be capable of adding, subtracting, multiplying, and dividing two numbers. Both
values being operated on will be displayed on an LCD screen along with the result of the operation.

Add four debounced pushbuttons to your circuit. Connect them to any available pins. Pressing any of these
pushbuttons will trigger a pin-change interrupt to change the operation of the calculation being performed.
The pushbuttons will select between: c = a + b, c = a - b, c = a * b, and c = a / b (taking care to
avoid b = 0 in division operations). Keypad presses will continue to trigger an external interrupt on pin D2
as with circuit 1 (this is not shown on the flowchart).

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

a = 0
b = 0

configure display

configure all
interrupts

button?

convert a, b, c
to ASCII chars

display a symbol
b = c on LCD

c = a + b
symbol = '+'

c = a - b
symbol = '-'

c = a * b
symbol = '*'

c = a b
symbol = '/'

determine which
button pressed

se
tu

p(
)

lo
op

()

IS
R(

PC
IN

Tx
_v

ec
t)

1

2

3

4

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 62 Spring 2024 Edition

Circuit III: Watchdog Timer Reset

This circuit will flash an LED in the setup function. The loop function will flash a different LED for
increasing intervals of time until the WDT is triggered and a reboot occurs.

Set up two different colored LEDs to different pins on the Arduino. Write code that sets up the WDT to
expire after a few seconds. In the setup() function, flash one of the LEDs for at least 250 ms. In the loop()
function, use a for loop that delays at increasing time intervals. At the beginning of the for loop, call the
function asm volatile ("wdr") and have the other LED light for the duration of the delay, and then turn
off for the same amount of time. After several iterations of the for loop, the code should not be able to
complete both delays before the WDT triggers a reset. (A reset occurs if the setup LED lights).

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure I/O pins
flash LED

flash setup LED

WDTCSR |= 0x18
configure prescaler

define n, j = 0

j < n

asm
volatile ("wdr")

toggle
loop LED

msdelay(j)

increment j

i = 0

i < x

_delay_us
(1000)

i++

se
tu

p(
)

lo
op

()

ms
de

la
y(

x)

FALSE

TRUE TRUE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 63 Spring 2024 Edition

Lab 5 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• For circuits 1 and 2, describe exactly how/if you could have programmed the circuits without using
hardware interrupts. (Do not just say “yes we could have but it would have been hard.” Be specific
about how it could be done.)

• Explain the benefits of using hardware interrupts over continuous polling.

• For circuit 2, explain how you were able to determine which pushbutton was pressed using pin change
interrupts. Copy/paste the relevant C code into this report.

• For circuit 2, explain how you dealt with division by zero. Copy/paste the relevant C code into this
report.

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion

Wrap up all of the key concepts from your lab report in a paragraph.

cbna Alyssa J. Pasquale, Ph.D. 64 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 65 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 66 Spring 2024 Edition

Pre-Lab 6
Carefully read the entirety of Lab 6, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Fill out the table 6.1 for timer/counter 0 (an 8-bit timer) and timer/counter 1 (a 16-bit timer) operating
in normal mode. For each given prescaler (N), how much time will it take for the timer/counter to
overflow (i.e. reach the value of 2n)? This will serve as a useful guide to help you determine the longest
delay that is possible for each timer/counter and with each prescaler. Be sure to include units in your
answers!

N TCNT0 TCNT1

1

8

64

256

1024

Table 6.1: Longest possible delays using TCNT0 and TCNT1 in normal mode.

2. Fill out the table 6.2 for timer/counter 2 (an 8-bit timer) operating in normal mode. For each given
prescaler (N), how much time will it take for the timer/counter to overflow (i.e. reach the value of 2n)?
This will serve as a useful guide to help you determine the longest delay that is possible for TCNT2
and with each prescaler. Be sure to include units in your answers!

N TCNT2

1

8

32

64

128

256

1024

Table 6.2: Longest possible delays using TCNT2 in normal mode.

cbna Alyssa J. Pasquale, Ph.D. 67 Spring 2024 Edition

3. Fill out the table 6.3 for all timer/counters. For each given prescaler (N), what is the clock period?
This will serve as a useful guide to help you determine the shortest delay that is possible for each
timer/counter and with each prescaler. Be sure to include units in your answers!

N TCLK,I/O

1

8

32

64

128

256

1024

Table 6.3: Shortest possible delays using each timer/counter.

4. In Circuit 1, is it necessary to use the ADC interrupt? Justify your answer.

5. Based on your answer to the previous question, what value should be stored in ADCSRA?

6. Explain the difference between normal mode and CTC mode for the timer/counter units.

7. In Circuit 2, what is the largest value that x can be? Given that largest value, what datatype makes
the most sense to use?

cbna Alyssa J. Pasquale, Ph.D. 68 Spring 2024 Edition

Lab 6: Timers/Counters and Timed Interrupts
In this lab, the ATmega328P timer/counters will be used to generate timed interrupts. C Concepts: long
to char conversion AVR Concepts: I/O clock, prescalers, 8-bit timer/counter 0 and registers TCCR0A,
TCCR0B, TCNT0, OCR0A, OCR0B, and TIMSK0; 16-bit timer/counter 1 and registers TCCR1A, TCCR1B, TCNT1,
OCR1A, OCR1B, and TIMSK1; 8-bit timer/counter 2 and registers TCCR2A, TCCR2B, TCNT2, OCR2A, OCR2B, and
TIMSK2

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-6

6.1 ATmega328P Timers/Counters

There are three timers/counters on the ATmega328P microcontroller: 8-bit timer/counter 0 (TCNT0), 16-
bit timer/counter 1 (TCNT1), and 8-bit timer/counter 2 (TCNT2). A counter is a device that has an
incrementing value. A timer refers to a counter that is synchronous (i.e. values increment at some interval
of the microcontroller clock frequency).

The number of bits in the counter refers to how high it can count, and for timers relates to how much time
can elapse between timed events. An n bit counter can count from 0 to a maximum value of 2n − 1. In
synchronous operation, the value in the timer register increments every time the I/O clock ticks. The counter
is able to count from zero to its top value in T seconds, described by equation 6.1, where N is the value of
the prescaler (which divides the frequency), TOP is the highest value that the timer can count to (see below),
and fCLK,I/O is the frequency of the I/O clock.

T =
N × (TOP+ 1)

fCLK,I/O
(6.1)

The I/O clock frequency of the Arduino Uno is 16 MHz. If using the ATmega328P without the Arduino
platform, the internal clock is specified by the fuse bits (configuration bits that will be discussed in lab 10).

6.1.1 Timer/Counter Definitions

The following terms are frequently used in describing timer/counter operation and are important to know.

• BOTTOM – the counter reaches BOTTOM when it becomes 0x0000

• MAX – the counter reaches MAX when it becomes 0xFF (in an 8-bit counter) or 0xFFFF (in a 16-bit
counter)

• TOP – the counter reaches TOP when it becomes equal to the highest value in the count sequence, which
can be either MAX, a set value, or a value stored in a register

Timer/counters can operate under different modes of operation, and can be used to create waveforms by
changing the value of an output pin, trigger interrupts, or do both simultaneously.

6.1.2 Creating Waveforms

A waveform can be created on a timer/counter output pin by configuring the timer/counter registers to
set, clear, or toggle the pin upon reaching the TOP value of the register. This configuration was used in
the activity in which you determined the frequency of the Arduino Uno microcontroller. This configuration
will also be used in lab 7 with pulse-width modulation. This will not be used in this lab. Therefore, the

cbna Alyssa J. Pasquale, Ph.D. 69 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-6

timer/counter output pins will not be used for that function and will be disconnected for each circuit in this
lab.

6.1.3 Triggering Interrupts

An interrupt can be triggered by a timer/counter based on different criteria. It is very useful to have
scheduled interrupts that occur at fixed intervals; these can be accomplished with timer/counter interrupts.
Appendix C details all of the different criteria in which a timer/counter interrupt can be invoked. These
criteria are defined below.

• Compare match A – this interrupt is invoked when the contents of the timer/counter register are
equal to the contents of OCRnA

• Compare match B – this interrupt is invoked when the contents of the timer/counter register are
equal to the contents of OCRnB

• Overflow – this interrupt is invoked when the contents of the timer/counter register are equal to MAX

• Capture event (timer/counter 1 only) – this interrupt is invoked when the input capture unit senses
either a rising-edge or falling-edge, as configured (this functionality will be used in lab 13)

6.2 Modes of Operation

Regardless of the desired functionality of the timer/counter (to create a waveform, trigger interrupts, or
both), timer/counters have several different modes of operation that dictate how they count. In this lab,
both normal and clear timer on compare match (CTC) modes will be used. All of the other modalities
concern pulse-width modulation (PWM), which will be discussed in lab 7.

All non-PWM modes of operation feature constant time intervals between timer/counter increments, as
shown in figure 6.1.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Timer/counter update interval

T
im

er
/c

ou
nt

er
va

lu
e

Figure 6.1: The value in the timer/counter increases every time the update time interval occurs.

The time interval between increments (t) is specified by the frequency of the microcontroller I/O clock
fCLK,I/O and the prescaler of the timer/counter as defined by equation 6.2.

t =
N

fCLK,I/O
(6.2)

Once the counter reaches TOP the value will jump to BOTTOM again and increment, repeating the process over
and over.

cbna Alyssa J. Pasquale, Ph.D. 70 Spring 2024 Edition

6.2.1 Normal Mode

The timer/counter counts up (incrementally) from BOTTOM to MAX and then restarts again from BOTTOM. The
amount of time that elapses between BOTTOM and MAX is described by equation 6.3.

T =
N × (MAX+ 1)

fCLK,I/O
(6.3)

This operation is depicted in figure 6.2. The overflow flag (TOVn) is set every time the value in the timer/-
counter reaches MAX. If either OCRnA or OCRnB are set at a value between BOTTOM and MAX, then the compare
match interrupts can be utilized in normal mode as well (this is not shown on figure 6.2). The values of the
output compare registers can be modified as the code executes if interrupts need to occur at differing time
intervals.

0 T 2T 3T
BOTTOM

MAX

TOVn set
↓

TOVn set
↓

TOVn set
↓

Figure 6.2: In normal mode, the timer/counter value increments from BOTTOM to MAX periodically.

It is possible to change the period as the code executes by modifying the prescaler. It is important to
note that this might alter the exact timing of overflow interrupts at the time periods when the prescaler is
changed.

Because MAX is a fixed number in a timer/counter (either 0xFF or 0xFFFF), the amount of time elapsed
between events in normal mode can only be modified by changing the prescaler. For more specific timing
intervals, normal mode is not desired; CTC mode should be used instead.

Normal mode is useful for counting the amount of time that elapses between events (by counting how many
increments of a counter occur between events), or for creating a waveform or triggering an interrupt at fixed
time intervals.

6.2.2 CTC (Clear Timer on Compare Match) Mode

The timer/counter counts up (incrementally) from BOTTOM to TOP, where TOP is the value defined in the
OCRnA register. The amount of time that elapses between BOTTOM and TOP is described by equation 6.4.

T =
N × (OCRnA+ 1)

fCLK,I/O
(6.4)

This operation is depicted in figure 6.3. The compare match A flag (OCFnA) is set every time the value in the
timer/counter reaches OCRnA (TOP). If OCRnB is set at a value between BOTTOM and OCRnA, then the compare
match B interrupts can be utilized as well. The values of OCRnB can be modified as the code executes if
compare match B interrupts need to occur at differing time intervals. Because the value of MAX is never
achieved in CTC mode, overflow interrupts cannot be used in CTC mode.

It is possible to change the period as the code executes by modifying either the prescaler or the value of
OCRnA. It is important to note that this might alter the exact timing of compare match interrupts at the
time periods when these values are changed.

cbna Alyssa J. Pasquale, Ph.D. 71 Spring 2024 Edition

0 T 2T 3T 4T
BOTTOM

OCRnB

OCRnA

MAX

OCFnB set
↓

OCFnB set
↓

OCFnB set
↓

OCFnB set
↓

OCFnB set
↓

OCFnA set
↓

OCFnA set
↓

OCFnA set
↓

OCFnA set
↓

Figure 6.3: In CTC mode, the timer/counter value increments from BOTTOM to OCRnA (TOP) periodically.

CTC mode provides maximum flexibility over the possible value of T . This is because both N (the prescaler)
and OCRnA (the compare match register) can be configured.

6.3 8-bit Timer/Counter 0 (TCNT0)

Timer/counter 0 (TCNT0) has 8 bits of resolution with two independent output compare units. There are
several registers that control its operation. For more detailed information about the timer/counter registers,
refer to Appendix A.

• TCCR0A – Timer/Counter 0 Control Register A: This register configures the mode of operation
of TCNT0, and additionally sets two of the three waveform generation mode bits.

• TCCR0B – Timer/Counter 0 Control Register B: This register sets one of the three waveform
generation mode bits for TCNT0, and additionally selects the clock source and prescaler.

• TCNT0 – Timer/Counter 0 Register: This register contains the current value of timer/counter 0.

• OCR0A – Timer/Counter 0 Output Compare Register A: This register contains an 8-bit value
that is continuously compared with the value in TCNT0. A match can be used to generate an output
compare interrupt, or to generate a waveform output on the OC0A pin.

• OCR0B – Timer/Counter 0 Output Compare Register B: This register contains an 8-bit value
that is continuously compared with the value in TCNT0. A match can be used to generate an output
compare interrupt, or to generate a waveform output on the OC0B pin.

• TIMSK0 – Timer/Counter 0 Interrupt Mask Register: This register configures TCNT0 interrupts.

6.4 16-bit Timer/Counter 1 (TCNT1)

Timer/counter 1 (TCNT1) has 16 bits of resolution with two independent output compare units. There are
several registers that control its operation. For more detailed information about the timer/counter registers,
refer to Appendix A.

• TCCR1A – Timer/Counter 1 Control Register A: This register configures the modality of TCNT1,
and additionally sets two of the three waveform generation mode bits.

• TCCR1B – Timer/Counter 1 Control Register B: This register sets two of the four waveform
generation mode bits for TCNT1, and additionally selects the clock source and prescaler.

• TCNT1H & TCNT1L – Timer/Counter 1 Register: These registers contain the current value of
timer/counter 1. Two registers are required to store the value because timer/counter 1 is a 16-bit
counter.

cbna Alyssa J. Pasquale, Ph.D. 72 Spring 2024 Edition

• OCR1AH & OCR1AL – Timer/Counter 1 Output Compare Register A: These two registers contain
a 16-bit value that is continuously compared with the value in TCNT1H and TCNT1L. A match can be
used to generate an output compare interrupt, or to generate a waveform output on the OC1A pin.

• OCR1BH & OCR1BL – Timer/Counter 1 Output Compare Register B: These two registers contain
a 16-bit value that is continuously compared with the value in TCNT1H and TCNT1L. A match can be
used to generate an output compare interrupt, or to generate a waveform output on the OC1B pin.

• TIMSK1 – Timer/Counter 1 Interrupt Mask Register: This register configures TCNT1 interrupts.

6.5 Reading and Writing 16-bit Timer/Counter Registers
With the exception of the ADC data registers (due to the different storage possibilities depending on the
value of ADLAR), all 16-bit registers can be directly addressed in C using the register name. For example, a
value of 50,000 can be written to timer/counter 1 output compare register A using the code OCR1A = 50000;.

If it is necessary to read or write 16-bit registers a single byte at a time, the high byte must be written before
the low byte. To read a 16-bit register one byte at a time, the low byte must be read before the high byte.

6.6 8-bit Timer/Counter 2 (TCNT2)
Timer/counter 2 (TCNT2) has 8 bits of resolution with two independent output compare units. It has the
capability of being operated asynchronously, but that option will not be used in this lab. There are several
registers that control its operation. For more detailed information about the timer/counter registers, refer
to Appendix A.

• TCCR2A – Timer/Counter 2 Control Register A: This register configures the modality of TCNT2,
and additionally sets two of the three waveform generation mode bits.

• TCCR2B – Timer/Counter 2 Control Register B: This register sets one of the three waveform
generation mode bits for TCNT2, and additionally selects the clock source and prescaler.

• TCNT2 – Timer/Counter 2 Register: This register contains the current value of timer/counter 2.

• OCR2A – Timer/Counter 2 Output Compare Register A: This register contains an 8-bit value
that is continuously compared with the value in TCNT2. A match can be used to generate an output
compare interrupt, or to generate a waveform output on the OC2A pin.

• OCR2B – Timer/Counter 2 Output Compare Register B: This register contains an 8-bit value
that is continuously compared with the value in TCNT2. A match can be used to generate an output
compare interrupt, or to generate a waveform output on the OC2B pin.

• TIMSK2 – Timer/Counter 2 Interrupt Mask Register: This register configures TCNT2 interrupts.

6.7 Datatype Conversion: Long Integer to ASCII
Similar to the function itoa that was used in lab 3 to convert an integer value to an ASCII string, a long
or unsigned long can be converted to ASCII using the ltoa function. Note that the variable charBuffer
must have a sufficient number of elements to store the largest possible value of the integer number in the
desired number system, plus a sign (for negative numbers), plus a terminating null character.

1 // create an array that will store each ASCII character
2 char charBuffer[n];
3
4 // convert value , in the given base , into the variable charBuffer []
5 ltoa(long value , char charBuffer , int base);

cbna Alyssa J. Pasquale, Ph.D. 73 Spring 2024 Edition

Circuit I: Temperature Sensor with Timed Interrupt

This circuit will display the temperature on a display, updating the value using timed interrupts.

With the display of your choice, display the average temperature value of a TMP36 temperature sensor (with
bypass capacitor and 47 kΩ pull-up resistor) with tenth’s place precision. DO NOT USE FLOATING-
POINT NUMBERS OR ARITHMETIC! Use a timed interrupt with TCNT1 and OCR1A to update the
temperature array at given intervals. In order to configure your timed interrupts, you first need to decide
how long you would like to wait between sensor updates. (Try values greater than 250 ms.) Record this
value below.

Use equation 6.4 to determine the smallest possible prescaler (N) value that can be used, as well as the
corresponding value for the OCR1A register. Record these values below, then verify your timing with an
oscilloscope.

You will need to determine a value for n. Use a value smaller than what you used in lab 4, and record it
below. You will need to justify this value in your lab report, so try multiple values and take notes on the
responsiveness and memory usage of your code.

Code delay can be used to minimize LCD flicker, or to write each digit in a MUX display, but each of those
delays should be as short as possible. Delays will not be accepted for any other reason.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

define result,
n, ADCvals[n]

configure
display & ADC

configure TCCR1A,
TCCR1B, TIMSK1

write OCR1A

calculate avg. of
ADCvals[n]

use equation to
calculate temp

display temp
with units

define
static x = 0

ADCvals[x]
= ADC

x++

x > n

x = 0

se
tu

p(
)

lo
op

()

IS
R(

TI
ME

R1
_C

OM
PA

_v
ec

t)

TRUE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 74 Spring 2024 Edition

Circuit II: Calculating Time Between Events

This circuit will display the amount of time (in ms) that has elapsed between button presses.

The flowchart for this circuit is given on page 76. Use the LCD screen. Ensure that you have downloaded
and properly configured the LCD library files. Use a debounced pushbutton on either pin D2 or D3 to trigger
external interrupts. Configure TCNT2 to have pins OC2A and OC2B disconnected, normal mode, prescaler of
256, and enable interrupts on timer overflow.

The variable ticks stores the number of ticks that have elapsed since the start of the code execution. An
overflow interrupt will be used to add 256 to this value; every time TCNT2 overflows it indicates that TCNT2
has increased from 0–255. A circular buffer consisting of two entries (tks[2]) will contain the number of
counter ticks that have elapsed between the start of the code execution and pressing the pushbutton. The
initial values will both be 0. Every time the pushbutton is pressed, one of the array entries will update
(ticks + TCNT2) using an external interrupt. Use unsigned long datatypes for all of these values. Do not
use any floating-point math in this circuit! Your circuit will display the number of milliseconds that have
elapsed between button presses.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 75 Spring 2024 Edition

define tks[2],
ticks = 0

configure
display

configure external
interrupts

configure TCNT2

cli();

tks[1] >
tks[0]

tksElapsed =
tks[1] - tks[0]

tksElapsed =
tks[0] - tks[1]

sei();

calculate ms
that have elapsed

display on LCD

ticks += 256

x = 0

tks[x] =
ticks + TCNT2

xˆ=1

se
tu

p(
)

lo
op

()

IS
R(

IN
Tx

_v
ec

t)
IS

R(
TI

ME
R2

_O
VF

_v
ec

t)

TRUE

FALSE

Figure 6.4: Flowchart for circuit II.

cbna Alyssa J. Pasquale, Ph.D. 76 Spring 2024 Edition

Lab 6 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Why did you need to use CTC mode in circuit 1?

• Record and explain the derivation of the prescaler and OCR1A values used in circuit 1.

• In circuit 1, you experimented with different values of n for your rolling temperature average. What
value did you use in this lab? Why?

• Why did you need to use normal mode in circuit 2?

• In circuit 2, what is the maximum amount of time between button presses that can be calculated by
your design? Explain how you determined this value. What are two different things you could change
to extend this span of time?

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion

Wrap up all of the key concepts from your lab report in a paragraph.

cbna Alyssa J. Pasquale, Ph.D. 77 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 78 Spring 2024 Edition

Pre-Lab 7
Carefully read the entirety of Lab 7, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Record the pins that are controlled by each output compare register.

(a) OC0A

(b) OC0B

(c) OC1A

(d) OC1B

(e) OC2A

(f) OC2B

2. Why is a separate power supply used in circuit 3?

3. What special precaution needs to be taken to ensure that the Arduino and external power supply will
work together in circuit 3?

4. Why is a flyback diode used in circuit 3?

cbna Alyssa J. Pasquale, Ph.D. 79 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 80 Spring 2024 Edition

Lab 7: Pulse-Width Modulation and Motors

In this lab, two different types of motors will be controlled using pulse-width modulation (PWM). PWM is
a digital way to create signals that can have varied average voltage levels. The two motors to be used in this
lab are servomotors and DC motors. AVR Concepts: Fast PWM, phase-correct PWM

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-7

7.1 Pulse-Width Modulation

Pulse-width modulation (PWM) is a technique to encode analog data into a digital signal. Instead of sending
a continuous voltage signal of 0 V or 5 V, or any value in between, voltage is instead turned ON and OFF
in timed pulses. PWM may be used for controlling the brightness of an LED, controlling the angle of a
servomotor, controlling the speed of a DC motor, or any other application that requires some type of digital
control signal. Three key properties of PWM signals are the duty cycle, average voltage, and signal
frequency.

An example PWM waveform is shown in figure 7.1. Shown in the graph are the high period of the wave
(THIGH), the low period of the wave (TLOW), the total period of the wave (T), and the average voltage of
the wave (V).

0 T 2T 3T
0 V

V

5 V

THIGHTLOW

Figure 7.1: An example PWM waveform, showing the high period, low period, total period, and average volt-
age.

To implement PWM, a timer/counter must be used. There are three different types of PWM modes. Two
of those types (fast PWM and phase-correct PWM) will be utilized in this lab.

7.1.1 Duty Cycle

The amount of time in which the signal is high (Thigh) divided by the total period (T) of the signal is known
as the duty cycle, defined in equation 7.1.

D =
Thigh

T
(7.1)

By varying the duty cycle, the effective intensity of a signal can be varied from OFF (0% duty cycle) to ON
(100% duty cycle) as the average voltage changes between 0–5 V.

cbna Alyssa J. Pasquale, Ph.D. 81 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-7

7.1.2 Average Voltage

The average voltage is defined by equation 7.2, where D is the duty cycle, Vmax is the maximum voltage
(usually 5 V in digital circuits), and Vmin is the minimum voltage (usually 0 V).

V = DVmax + (1−D)Vmin (7.2)

When Vmin = 0, equation 7.2 reduces to V = DVmax.

7.1.3 PWM Frequency

The frequency of a PWM signal is equal to the number of complete cycles that occur per period of time.
Frequency is measured in units of Hz (cycles per second), and is the inverse of period, as defined by equa-
tion 7.3.

f =
1

T
(7.3)

PWM frequency must be chosen with careful consideration to the device with which it will be used. Every
piece of hardware has its own characteristics that must be taken into account. The three devices that will
be used in this lab are an LED, a servomotor, and a DC motor.

For an LED, the PWM frequency must be fast enough that it is not seen as a visible flicker to the human
eye. This puts a lower range on the PWM frequency somewhere around 300 Hz for applications where the
viewer and LED are stationary. For moving LEDs (or in cases where people will move past a stationary
LED), a frequency of 1 kHz should be considered instead. The upper limit on PWM frequency is given by
the architecture of the diode itself. At frequencies that are too high, the LED never fully turns on between
PWM cycles. Therefore, it is recommended to use a frequency of 1 kHz when using LEDs.

Most servomotors operate at a frequency of 50 Hz. While this is a fairly typical value, it may vary, so the
datasheet should be consulted before deciding on an operating frequency.

DC motors require a PWM frequency that is high enough not to cause the motor to jerk between pulses,
and it should be low enough to avoid causing the motor to be unable to fully turn on and off in between
pulses. In addition, DC motors should use a PWM frequency outside of the range of human hearing (which is
20–20,000 Hz) so that they don’t cause audible noise while running. Therefore, a frequency of approximately
25 kHz is recommended.

7.2 Controlling PWM Frequency with Timer/Counters
As discussed in lab 6, there are generally two things that can be done timer/counters: generate timed
interrupts or generate periodic waveforms (or both). Lab 6 focused on generating interrupts. Interrupts can
be used with PWM. To do this, the corresponding interrupt mask register will need to be enabled.

In this lab, instead of generating interrupts, periodic waveforms will be generated. Each timer/counter is
capable of generating two independent waveforms on their output compare match pins. Appendix D has a
list of all of the alternate pin functions, including the output compare match pins.

7.2.1 Fast PWM Frequency

In fast PWM mode, the timer/counter counts from BOTTOM to TOP and then jumps directly back to BOTTOM.
Then this cycle repeats. This is depicted in figure 7.2.

TOP can be set to the following values.

• MAX – The counter can count to the resolution of the counter.

• 8-bit, 9-bit, 10-bit mode – Timer/counter 1 can be used in 8-bit, 9-bit, or 10-bit mode.

• OCRnA – The counter can count to a value stored in the output compare register.

cbna Alyssa J. Pasquale, Ph.D. 82 Spring 2024 Edition

0 T 2T 3T
BOTTOM

TOP

Figure 7.2: The value of a timer/counter used in fast PWM increments from BOTTOM to TOP and then jumps
back to BOTTOM again.

• ICR1 – The counter can count to the value stored by the input capture unit (which will be discussed
in lab 12).

The first two possibilities for the value of TOP are similar to normal mode in that the flexibility of the
frequency is limited by the resolution of the counter and can only be altered by varying the prescaler. The
last mode is similar to CTC mode in that the frequency can be tuned using both the prescaler and the output
compare register value. In any case, the frequency of the PWM signal will be defined by equation 7.4, where
fCLK,I/O is the frequency of the I/O clock, N is the value of the prescaler, and TOP is the largest value that
the timer/counter will count to before resetting to zero.

f =
fCLK,I/O

N × (TOP+ 1)
(7.4)

7.2.2 Phase-Correct PWM Frequency

Using phase-correct PWM, the timer/counter counts from BOTTOM to TOP and then decrements (rather than
jumps) to BOTTOM again. This is depicted in figure 7.3.

0 T 2T 3T
BOTTOM

TOP

Figure 7.3: The value of a timer/counter used in phase-correct PWM increments from BOTTOM to TOP and
then decrements back to BOTTOM.

The value of TOP is determined in the same manner as with fast PWM. The frequency obtainable (defined
by equation 7.5) is now nominally half that of fast PWM mode (hence it is “not fast!”), giving twice the
resolution of fast PWM.

f =
fCLK,I/O

2×N × TOP
(7.5)

7.3 Controlling PWM Duty Cycle with Timer/Counters
The duty cycle of a PWM signal is controlled by using an output compare register. This lab will focus on
non-inverting PWM modes. As the value of the timer/counter increases from BOTTOM, at some point it will
reach the value that is saved in the output compare register. At that point, the signal in the corresponding
output compare pin will become LOW.

In fast PWM mode, the signal will become HIGH again when the timer/counter overflows from TOP to
BOTTOM. Figure 7.4 depicts a fast PWM waveform in non-inverting mode.

cbna Alyssa J. Pasquale, Ph.D. 83 Spring 2024 Edition

BOTTOM

OCRnx

TOP

0 T 2T 3T
0 V

5 V

Figure 7.4: Fast PWM. The value stored in the timer/counter (top) will cause a PWM waveform on the out-
put compare pin (bottom).

In phase-correct PWM mode, the signal will become HIGH again when the timer/counter decrements through
the value in the output compare register again. Figure 7.5 depicts a phase-correct PWM waveform in non-
inverting mode.

BOTTOM

OCRnx

TOP

0 T 2T 3T
0 V

5 V

Figure 7.5: Phase-correct PWM. The value stored in the timer/counter (top) will cause a PWM waveform on
the output compare pin (bottom).

7.3.1 Calculating Duty Cycle

How can the duty cycle be calculated? And which output compare registers should be used to obtain the
PWM signal?

If using MAX or a controllable power of two (with timer/counter 1) as value of TOP, then it is possible to
create two PWM signals (that have the same frequency) with duty cycles controlled by either OCRnA (in
which case the output waveform will be available on OCnA) or OCRnB (in which case the output waveform will
be available on OCnB). The equation for duty cycle in this case is defined by equation 7.6.

D =
OCRnx
TOP

(7.6)

When using OCRnA as TOP, it would make no sense to use the output compare A register to set the duty
cycle (as it would always be 100%!). In this case, the duty cycle is controlled with OCRnB, and the output
waveform is available on the OCnB pin. The equation for duty cycle in this case is defined by equation 7.7.

D =
OCRnB
OCRnA

(7.7)

cbna Alyssa J. Pasquale, Ph.D. 84 Spring 2024 Edition

7.4 Timer/Counter Registers for PWM Operation
All of the registers used in the previous lab will be used in this lab, expect that they will be used in PWM
modes rather than in non-PWM modes. Refer to Appendix A for the full functionality of all registers.

7.5 Motors
There are several types of motors, but the two that will be used in this lab are servomotors and DC motors.

7.5.1 Servomotors

Servomotors (sometimes referred to simply as “servos”) are DC motors coupled with a position feedback
control sensor. This allows them to be positioned more accurately than DC motors. There are three wires
in servo motors: power, ground, and control. PWM on the control wire controls not the speed at which the
motor turns, but the angle to which the motor will rotate.

The servomotors in this lab are restricted to ≈160◦ rotation. The servomotor period T is 20,000 µs. The
pulse-width (Thigh) required for rotation to 10◦ is 600 µs, and the pulse-width required for rotation to 170◦
is 2,400 µs. A rotation to 90◦ will be the average of these two values.

To control a single servomotor, the current provided by the Arduino board is sufficient. If many servos are
to be used, external power may be required.

7.5.2 DC Motors

DC motors use electric currents and magnetic fields to create a deflecting force which turns a rotor. They
have two wires: one for power and one for ground. Once power is supplied to the motor, it will rotate
continuously until power is removed. The speed at which the motor turns is controlled using PWM. You
can find DC motors in your computer controlling the fan, as well as in many toys.

DC motors can require a significant amount of current, more than the Arduino board can provide. For this
reason, an external power supply must be used to provide the motor with a sufficient amount of current. In
addition, due to the fact that DC motors provide an inductance to the circuit, a flyback diode must be used
to prevent current spikes from damaging lab equipment.

cbna Alyssa J. Pasquale, Ph.D. 85 Spring 2024 Edition

Circuit I: Variable Intensity LED

This circuit will have a potentiometer control the brightness of an LED using PWM. As the poten-
tiometer is rotated from one extreme to the next, the LED will go from being completely off to having
full brightness.

Using information that you determined in the PWM activity, write code that uses fast PWM in non-inverting
mode to change the duty cycle of a 1 kHz signal using TCNT0. Record the values of your prescaler and
output compare registers in table 7.1.

Parameter Value

Prescaler

OCR0A

OCR0B

Table 7.1: Timer/counter settings used to control an LED.

Do not using any floating-point arithmetic in this lab. Use a potentiometer connected to one of the ADC
pins to control the LED brightness. As you rotate the potentiometer from one extreme to the other, the
LED will either become brighter or dimmer.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

set OC0B
as output

configure TCCR0A,
TCCR0B, & OCR0A

configure ADC

configure OCR0B
to scale with pot

se
tu

p(
)

IS
R(

AD
C_

ve
ct

)

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 86 Spring 2024 Edition

Circuit II: Servomotor Control

This circuit will have a potentiometer control the position of a servomotor using PWM. As the
potentiometer is rotated from one extreme to the next, the servomotor will move from one of its
extremes to the other.

Amend your code from circuit 1 to use phase-correct PWM in non-inverting mode with a PWM frequency
of 50 Hz using timer/counter 1. You should have determined in an activity what the values of the prescaler
and OCR1A must be accomplish this. In addition, you should have derived an equation to scale the value from
the ADC (which varies from 0–1023) to obtain the value of OCR1B, which must have a period of 0.6 ms when
the ADC value is 0, and a period of 2.4 ms when the ADC value is 1023. Record these values in table 7.2

Parameter Value

Prescaler

OCR1A

OCR1B

Table 7.2: Timer/counter settings used to control a servomotor.

Hook up a potentiometer with the wiper connected to one of the analog pins to control the duty cycle.
Connect the servomotor so that the signal pin connects to pin D10. As you rotate the potentiometer from
one extreme to the other, the servomotor position will update.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

set OC1B
as output

configure TCCR1A,
TCCR1B, & OCR1A

configure ADC

configure OCR1B
to scale with pot

se
tu

p(
)

IS
R(

AD
C_

ve
ct

)

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 87 Spring 2024 Edition

Circuit III: DC Motor Control

This circuit will have a potentiometer control the speed of a DC motor using PWM. As the poten-
tiometer is rotated from one extreme to the next, the DC motor will go from off (or very slow) to
rotating at full speed.

You will use TCNT1 to control the DC motor using phase-correct PWM with a frequency of 25 kHz. You
should have determined in an activity what the values of the prescaler and OCR1A must be accomplish this.
In addition, you should have derived an equation for OCR1B, which must have a duty cycle of 30% when the
ADC value is 0, and a duty cycle of 100% when the ADC value is 1023. Record these values in table 7.3.

Parameter Value

Prescaler

OCR1A

OCR1B

Table 7.3: Timer/counter settings used to control a DC motor.

Wire up a DC motor as shown in Appendix B. Vcc and ground supplied to the motor must come from an
external power supply. Connect a wire between a ground pin on the Arduino with the ground
from the power supply. This ensures that the Arduino and all externally powered components share a
common ground.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

set OC1B
as output

configure TCCR1A,
TCCR1B, & OCR1A

configure ADC

configure OCR1B
to scale with pot

se
tu

p(
)

IS
R(

AD
C_

ve
ct

)

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 88 Spring 2024 Edition

Lab 7 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Include equations for OCRnB for all three circuits.

• Explain each of the terms in the equations given for OCRnB. How were these equations derived?

• What is the difference between fast PWM and phase-correct PWM?

• Why do you use phase-correct (and not fast) PWM with motors?

• What is the fastest possible frequency that you can get with fast PWM? (Consider all possible prescaler
values.) What is the slowest? Show your work or justify your answer.

• What is the fastest possible frequency that you can get with phase-correct PWM? (Consider all possible
prescaler values.) What is the slowest? Show your work or justify your answer.

• In what subsystems of your Smart Car do you think you’ll need to use PWM, and why?

• What are the benefits of using a servomotor rather than a DC motor?

• What are the benefits of using a DC motor rather than a servomotor?

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

cbna Alyssa J. Pasquale, Ph.D. 89 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 90 Spring 2024 Edition

Pre-Lab 8
Carefully read the entirety of Lab 8, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Explain why it is necessary to implement feedback control in embedded system applications.

2. What may happen if either KP or KI are set to values that are too large?

3. What integer-type of datatype must be used for e(t)? Why? Should it be signed or unsigned? Why?

4. Qualitatively sketch the response from an overdamped and underdamped system, using the graphs
below. The thick line indicates the ideal step response.

ov
er

da
m

pe
d

un
de

rd
am

pe
d

cbna Alyssa J. Pasquale, Ph.D. 91 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 92 Spring 2024 Edition

Lab 8: Proportional and Integral Control

Feedback is essential to provide proper device output values. In this lab, the concepts of proportional control
and proportional-integral (PI) control will be explored. The intent of this exercise is to provide a means to
create feedback mechanisms for the Smart Car steering and propulsion systems.

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-8

8.1 Closed-Loop Feedback

Closed-loop feedback is essential to provide proper output values on devices. Consider a refrigerator. There
must be a temperature sensor located in the fridge to provide the current value of the temperature. Based
on this information, if the temperature is too hot, a compressor will run to cool the interior of the fridge.
If the temperature is too cold, the compressor will not run. If there is no feedback control, or if there is
improper feedback control, the compressor may run too often or not enough or may even oscillate between
these two extremes without providing a proper fridge temperature.

8.2 Proportional Control

The most straightforward mechanism for providing feedback is called proportional control. This takes into
account the present value of the error and attempts to fix it. An error term (e(t)) is calculated by taking the
difference between a setpoint value (Vsetpoint) and the current value (Vcurrent), as defined in equation 8.1.

e(t) = Vsetpoint − Vcurrent (8.1)

This error term is then fed back into the control of the device to provide a correction, as defined in equa-
tion 8.2, where KP is known as the proportionality constant.

Vnew = Vcurrent +KP e(t) (8.2)

The proportionality constant KP is chosen based on the circuit properties and requirements. Values that
are too low lead to sluggish, unresponsive feedback (this is known as an overdamped system). Values that
are too high become unstable and can oscillate rapidly between values (this is known as an underdamped
system). In the worst case, an underdamped system won’t ever settle down to a proper value.

8.3 Proportional-Integral (PI) Control

Including integral control in a feedback system allows the circuit to compensate for past error in the system
in addition to compensating for any present error. The error term continues to be defined by equation 8.1.
However, the correction for the device control changes. It is now defined by equation 8.3, where KI is known
as the integral constant.

Vnew = Vcurrent +KP e(t) +KI

∫ t

0

e(τ) dτ (8.3)

In a system that takes samples at discrete time intervals (rather than continuously) a sum, rather than an
integral, will describe the correction term. This is defined by equation 8.4, where τ defines the length of

cbna Alyssa J. Pasquale, Ph.D. 93 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-8

time over which the past error will be sampled.

Vnew = Vcurrent +KP e(t) +KI

0∑
t=−τ

e(t) (8.4)

The value of τ must be chosen with care. If τ is small, processing time and memory requirements will
be reduced, but long-term errors will not be corrected. If τ is large, more memory and processing time
will be required to make the calculations, but long-term error will be corrected. In this lab, τ will be
determined empirically (i.e., many values will be chosen until a good compromise between error-correcting
and memory/processing time is made).

Adding an integral constant KI (which must be less than KP) helps the feedback system achieve a steady-
state value much quicker, based on the fact that it helps compensate for errors that have not yet been cleaned
up by the proportionality constant. However, KI still must be carefully chosen, as a poorly chosen value
can still lead to an overdamped or output response.

8.4 Proportional-Integral-Derivative (PID) Control
A full proportional-integral-derivative (PID) feedback system also takes into account anticipated future
values of the error based on taking a derivative of the current error. The PID control equation is defined by
equation 8.5, where KD is known as the derivative constant.

Vnew = Vcurrent +KP e(t) +KI

∫ t

0

e(τ) dτ +KD
d

dt
e(t) (8.5)

Including a derivative constant makes the feedback mechanism much more sensitive to noise, and is only
recommended in cases where noise will be minimum. For that reason, it will not be utilized in this lab.

8.5 Serial Plotter
In previous labs, the serial monitor may have been used to obtain diagnostic information about code without
having to connect the microcontroller to a separate display. The serial plotter takes data and plots it in a
graphical format. A graph is an excellent way to determine if a critically damped feedback system has been
achieved. To use the serial plotter, each printed variable should be displayed using the Serial.println
command. Example code follows.

1 Serial.print(pV);
2 Serial.print(’\t’);
3 Serial.println(sP);

cbna Alyssa J. Pasquale, Ph.D. 94 Spring 2024 Edition

Circuit I: System Information
Hook up a photoresistor and LED as shown in the circuit diagram (Start with RL = 10 kΩ). Tilt the
photoresistor and LED so that they physically face each other. (The light from the LED must reach the
surface of the photoresistor in order for the feedback control to have any effect in this circuit.)

Vcc

ADC pin

RL
digital pin

220 Ω

Figure 8.1: Schematics for the photoresistor (left) and LED (right).

Use the ADC in 8-bit mode. You will be collecting data about your system so that in circuit 2 you
can set up a feedback system where the LED is dimmed or brightened to obtain a desired light level on the
photoresistor. To start, you will need to determine which color LED provides the greatest contrast with the
photocell you are working with. You will do this by turning the LED on and recording the ADC value of the
photocell. Then turn the LED off and record the ADC value. Subtracting these values gives the contrast.
Record all of these measurements and calculations in table 8.1.

Color On ADC value Off ADC value Contrast

Red

Yellow

Green

Blue

White

Table 8.1: Color contrast data.

Chose the LED with the greatest contrast and record the color below.

Now you will use the ADC values (corresponding to the LED color that you chose) to calculate the value of
the resistance of the photocell when the light is ON (RON), and when the light is OFF (ROFF). This will
help you chose the best resistor to use in the place of RL, using equation 8.6.

RCELL = RL

(
256

ADC value
− 1

)
(8.6)

Download lab8_workbook.xlsx to determine the value of RL. Record all of this information in table 8.2.

Parameter Value

Ron

Roff

RL

Table 8.2: Resistor data.

cbna Alyssa J. Pasquale, Ph.D. 95 Spring 2024 Edition

With the circuit rebuilt with the best color LED and best load resistor (RL) in place, once again turn the
LED on and record the photocell ADC value. Multiply that value by 85% which gives you the setpoint
value, and record the setpoint below. You are now ready to move to circuit 2.

NOTE: Any change to your system configuration after this point (LED and photoresistor) will
require you to repeat the setpoint measurement!

8.6 A Note on System Noise
As you start to display data on the serial monitor, it is important to note that there will likely be some
noise (oscillations around an average) present in the process variable (pV). As the feedback system attempts
to compensate for the current level of error, there may be some small fluctuations in the output. This is
okay as long as the fluctuations are relatively small. Figure 8.2 shows the setpoint (black line) and process
variable (gray oscillations) as viewed on the serial plotter. This level of noise is normal and should not be a
cause of concern. It is not necessarily indicative of an underdamped system.

Figure 8.2: A normal amount of noise on the process variable output as seen on the serial monitor.

The output response of the LED may be subtle. Visible light-level oscillations on the LED means that you
have an underdamped system and should reduce KP , KI , or τ values as needed.

Figure 8.3 shows a proportional control only (no integral control) output that is somewhere between critically
damped and overdamped in the output response. The general trend of the process variable is to return to
the setpoint when the light levels are changed by introducing and removing a flashlight from the system.

flashlight turned on

flashlight turned off

flashlight turned on

flashlight turned off

Figure 8.3: The process variable is somewhere between critically damped and overdamped.

cbna Alyssa J. Pasquale, Ph.D. 96 Spring 2024 Edition

Circuit II: Proportional Control of Light Levels

This circuit will vary the brightness of an LED to keep the light intensity hitting a photoresistor at
a constant value. If extra ambient light hits the photoresistor (from a flashlight, for example), the
LED will be dimmed in response. As the extra light goes away, the LED will brighten to maintain a
constant level on the photoresistor.

The flowchart for this circuit is given on page 99. Use proportional control to alter the brightness of the
LED using 8-bit fast PWM on timer/counter 0. The brightness of the LED can be lowered by decreasing the
duty cycle (which is modified with OCR0A), and the brightness of the LED can be raised by increasing the
duty cycle. Ideally, the photocell will always measure a brightness value equal to the setpoint (sP), which
was determined in the previous circuit. If the value read from the photocell from the ADC is too high, then
the duty cycle of the PWM signal will need to be decreased, and vice versa. The ADC value is therefore
the process variable (pV). Because we are using 8-bit PWM, it makes sense to use the ADC in 8-bit mode
to have compatible signals.

The value of the proportionality constant (KP) can be set to 0 to start to see the effect of no feedback control.
Experiment with different values of KP to see what leads to the most desirable outcome in the circuit. Try
at least 5 different values between approximately 0 and 250 (KP , after being divided by 10, will actually go
between 0 and 25), and make notes on the system responsiveness. You will be asked to justify your choice of
KP in the lab report. You will ideally want a value of KP that leads to a critically damped response, which
means you need to know which values lead to underdamped results, and which lead to overdamped results.
Record your KP value below.

Run the code, and use the Serial Plotter to track the value of pV, the process variable, and sP, the setpoint
value. These two values should ideally be equal. Shine a flashlight on the photoresistor and track how well
the feedback system works in response to the new light level. (Note: holding the flashlight too close to the
photoresistor may lead to unstable feedback control!) Tune KP so that it leads to a desirable response time
when the flashlight is turned on and off.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 97 Spring 2024 Edition

Circuit III: Proportional-Integral Control of Light Levels

This circuit will vary the brightness of an LED to keep the light intensity hitting a photoresistor at
a constant value. If extra ambient light hits the photoresistor (from a flashlight, for example), the
LED will be dimmed in response. As the extra light goes away, the LED will brighten to maintain a
constant level on the photoresistor.

The flowchart for this circuit is given on page 99. Using the value of KP that you determined in the last
circuit, amend your code from circuit 2 to use proportional-integral control. Now vary the value of KI

between 0 and 250 (KI , after being divided by 100, will actually go between 0 and 2.5). Use your cellphone
flashlight to track how well the feedback system works. Tune KI so that it leads to a desirable response time
when the flashlight is turned on and off.

Try 5 different values of KI , and make notes on the system responsiveness. You will be asked to justify your
choice of KI in the lab report. Record your chosen value of KI below.

With your chosen value of KI , try 5 different values of τ and make notes on both the system responsiveness
and the memory used by the software. You will be asked to justify your choice of τ in the lab report. Record
your chosen value of τ below.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 98 Spring 2024 Edition

define pV, sP,
err

configure ADC
PWM, serial plotter

configure OC0A
as output

define Kp

OCR0A +=
(Kp*err)/10

display on
serial plotter

pV = ADCH

err = sP - pV

se
tu

p(
)

lo
op

()
IS

R(
AD

C_
ve

ct
)

define pV, sP, err,
tau, errHist[]

configure ADC
PWM, serial plotter

configure OC0A
as output

define Kp, Ki

histSum =
sum(errHist,tau)

OCR0A +=
(Kp*err)/10

OCR0A +=
(Ki*histSum)/100

display on
serial plotter

x = 0

pV = ADCH

err = sP - pV

errHist[x]
= err

x == tau

x = 0

tempVar = 0
j=0

j < tau

tempVar +=
array[j], j++

return tempVar

se
tu

p(
)

lo
op

()

su
m(

)
IS

R(
AD

C_
ve

ct
)

TRUE

FALSE

TRUE

Figure 8.4: Flowcharts for circuit II (left) and circuit III (right).

cbna Alyssa J. Pasquale, Ph.D. 99 Spring 2024 Edition

Lab 8 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Explain and justify your choices of LED color and RL value in circuit 1.

• Why are Kp and Ki stored as 10 and 100 times their actual values, respectively? Why not save these
variables as floats?

• Present your data on different values of Kp, Ki, and tau in tabular form.

• Explain and justify your choice of Kp, Ki, and tau.

• Was there an advantage to using PI control rather than just P control? If so, what was the advantage?

• When might PI control benefit your Smart Car project?

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion

Wrap up all of the key concepts from your lab report in a paragraph.

cbna Alyssa J. Pasquale, Ph.D. 100 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 101 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 102 Spring 2024 Edition

Pre-Lab 9
Carefully read the entirety of Lab 9, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. On a primary device, explain why SS has to be configured as an output pin, and why this must occur
before configuring the SPI control register. (This is not directly addressed in the lab. Think about it!)

2. How will each of the SPI pins need to be configured (using DDRB) in circuit 1?

3. How will each of the SPI pins need to be configured (using DDRB) in circuit 2?

4. How will each of the SPI pins need to be configured (using DDRB) in circuit 3 for the primary device?

cbna Alyssa J. Pasquale, Ph.D. 103 Spring 2024 Edition

5. How will each of the SPI pins need to be configured (using DDRB) in circuit 3 for the secondary device?

6. In circuit 3, you will need to use an external interrupt to generate a random number. How will you
trigger the interrupts (on rising edge only, falling edge only, or on toggle)? Why?

7. In circuit 3, will you use the SPI_STC_vect interrupt for the primary device? How about for the
secondary device?

cbna Alyssa J. Pasquale, Ph.D. 104 Spring 2024 Edition

8. Find the final value of x after each loop has been executed.

1 unsigned int x = 500;
2 while (x < 500) {
3 x--;
4 }

1 unsigned int x = 0;
2 do {
3 x++;
4 } while (x <=20);

1 unsigned char x = 2;
2 while (x < 5) {
3 x *= x;
4 }

cbna Alyssa J. Pasquale, Ph.D. 105 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 106 Spring 2024 Edition

Lab 9: SPI: Serial Peripheral Interface
This lab will introduce the serial peripheral interface (SPI) serial I/O protocol. C Concepts: while loop,
do/while loop AVR Concepts: SPI and registers SPCR, SPSR and SPDR

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-9

9.1 SPI Communication

SPI communication on the ATmega328P is capable of full duplex synchronous communication using only
four wires. The Arduino can be configured as either a primary or a secondary, and can send data either
MSB first or LSB first.

The full SPI protocol on the ATmega328P specifies four logic signals. Each of the signals is associated with
a particular pin on Port B. These signals and their associated pins are defined in table 9.1.

Name Pin Description

SCK D13 Serial clock (output from primary)

MOSI D11 Primary output, secondary input

MISO D12 Primary input, secondary output

SS D10 Secondary select (active low, output from primary)

Table 9.1: Each of the logic signals used in AVR serial peripheral interface communication.

When two circuits are connected together as primary-secondary devices, they will be connected as shown in
figure 9.1.

P
rim

ar
y

Secondary

SCK SCK

MOSI MOSI

MISOMISO

SS SS

Figure 9.1: Connection between one primary device and one secondary device using SPI.

Multiple secondary devices can be supported with SPI, either independently or daisy-chained. Independent
secondary devices all require their own secondary select signal. Therefore using many independent secondary
devices can require a a large number of I/O pins. Daisy-chained secondary devices have the output of one
secondary feeding into the input of the next, sharing a common secondary select signal.

9.2 ATmega328P SPI Primary and Secondary Modes

Interrupts are generally not used on the primary device. Therefore, the software code only requires polling
after sending data to determine if the transmission has been completed. An important consideration is to

cbna Alyssa J. Pasquale, Ph.D. 107 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-9

set the SS pin as an output pin. This has to be done before SPI is enabled in the SPCR register. An example
flowchart of the program on a primary device is shown in figure 9.2.

Primary Program Flow

configure
output pins

configure
SPCR & SPSR

write to
SPDR

wait for
SPIF = 1

Figure 9.2: Example program flow of a primary device using SPI.

To configure SPI communication on a secondary device, all SPI pins except for MISO must be input pins.
To operate as a secondary, the MSTR bit in SPCR must be zero. Any of the clock rate select bits will be
ignored. All of the other settings in SPCR must be the same as those used for the primary device. Because
the secondary never knows when the primary is going to send data, the use of interrupts can be preferred
for secondary devices; interrupts would therefore be enabled for SPI on the secondary device. An example
flowchart of the program on a secondary device is shown in figure 9.3.

Secondary Program Flow

configure
output pins

configure
SPCR

read from
SPDR in ISR

Figure 9.3: Example program flow of a secondary device using SPI.

9.3 SPI Registers on the AVR
There are three registers associated with SPI communication on the AVR. They are described in Appendix A.

• SPCR – SPI Control Register: This register configures and enables the SPI communication protocol.

• SPSR – SPI Status Register: This register contains information about the most recent transfer/re-
ceive process. It is also used in connection with SPCR to set the SPI data transfer speed.

• SPDR – SPI Data Register: This read/write register is used for data transfer and receiving. When
the SPDR register is written to, data transfer is initiated. When data is received, it is written to this
register.

9.4 Data Rx / Tx on AVR
Data transmission from primary to secondary is initiated upon writing to the SPDR register. At the exact
moment of data transmission along the MOSI line, data is simultaneously received by the primary from the
secondary along the MISO line.

Therefore, in order to receive data from a secondary device, the process is initiated by writing to SPDR, which
will then transmit to the secondary, waiting for data transfer to complete, and then reading the contents of
SPDR, which is the data received from the secondary.

9.5 74595 8-bit SIPO Shift Register
The 74595 is an 8-bit serial-in / parallel-out (SIPO) shift register. This means that a 1-bit data stream
(coming from the MOSI pin) consisting of 8-bits of information is capable of driving 8 independent output
devices. The output pins on the 74595 are labeled QA–QH . In order to properly synchronize the Arduino
and the shift register, a clock signal (connected to the SCK pin) will be required to ensure that the devices
operate at the same frequency. Finally, a latch signal (connected to SS pin) on the shift register is also
required to signal to the register when to load data and when to latch data.

The pinout diagram of the 74585 shift register is included in Appendix B. Table 9.2 outlines which pins on
the 74595 register must be connected to each SPI signal. (OE is an active-LOW enable output enable pin,

cbna Alyssa J. Pasquale, Ph.D. 108 Spring 2024 Edition

and SRCLR is an active-LOW enable shift register clear pin. These two pins are not associated with the
SPI protocol.)

74595 Pin SPI Signal

SER MOSI

RCLK SS

SRCLK SCK

Table 9.2: Connections between the 74595 shift register and the SPI protocol.

To use two or more 74595 shift registers to expand the output capability, the devices can be daisy-chained.
Figure 9.4 shows how to connect two daisy-chained 74595 shift registers.

QH’MISO QH’

SERRCLK

SS

RCLKSRCLK

SCK

SRCLK SER

MOSI

Figure 9.4: Schematic of two 74595 shift registers daisy-chained together to expand the output capability.

9.5.1 74595 Modes of Operation

Depending on the values on the SRCLK, RCLK and SER pins, the 74595 can operate as defined in table 9.3.
Because data is sampled on the rising edge, the clock phase must be zero in the SPI control register.

SER SRCLK RCLK Description

LOW ↑ LOW Data shifts and QA = 0

HIGH ↑ LOW Data shifts and QA = 1

× × HIGH Data is stored (latched)

Table 9.3: Modes of operation of the 74595 shift register.

9.6 74165 8-bit PISO Shift Register
The 74165 is an 8-bit parallel-in / serial-out (PISO) shift register. This means that 8 bits of data coming
from an external device can be converted into a serial data stream and be input to the ATmega328P using
only a single pin. In effect, this allows for an expansion of digital input pins, much in the same way that
using the 74595 allows for an expansion of output pins.

The pinout diagram of the 74165 chip is included in Appendix B. Note that H is the MSB of the chip, and A
is the LSB. Table 9.4 outlines which pins on the 74165 register must be connected to each SPI signal. (CLK
INH is an active-HIGH clock inhibit signal. This pin is not associated with the SPI protocol.)

cbna Alyssa J. Pasquale, Ph.D. 109 Spring 2024 Edition

74165 Pin SPI Signal

QH MISO

SH/LD SS*

CLK SCK

Table 9.4: Connections between the 74165 shift register and the SPI protocol. (See note below about the sec-
ondary select signal for this chip.)

It is important to note that the secondary select pin that on the 74165 chip is labeled SH/LD. This means
that data is loaded (parallel load) when the pin is LOW, and will shift through to the output when the pin
is HIGH. This implies that the secondary select is not active LOW! Therefore, the secondary select signal
must be written LOW to inhibit data transfer, and written HIGH to enable it. This is the opposite of how
the 74595 pin works.

To use two or more 74165 shift registers to expand the input capability, the devices can be daisy-chained.
Figure 9.5 shows how to connect two daisy-chained 74165 shift registers.

SH/LD

SS

SH/LDCLK

SCK

CLK

QH

SERSER

QH MISO

Figure 9.5: Schematic of two 74165 shift registers daisy-chained together to expand the input capability.

9.6.1 Modes of Operation

Depending on the values on the SH/LD, CLK and SER pins, the 74165 can operate as defined in table 9.5.
Because data is sampled on the rising edge, the clock phase must be zero in the SPI control register.

SH/LD CLK SER Description

LOW × × Parallel load

HIGH LOW × Data stores (latches) data

HIGH ↑ HIGH Data shifts and QA = 1

HIGH ↑ LOW Data shifts and QA = 0

Table 9.5: Modes of operation of the 74165 shift register.

9.7 Control Flow: Iterative

A microcontroller is capable of executing specific segments of code a certain number of times (or infinitely).
This is known as iterative flow. The conditional flow functions used in C are for loops, while loops, and
do/while loops.

cbna Alyssa J. Pasquale, Ph.D. 110 Spring 2024 Edition

9.7.1 while and do/while Loops

while and do/while loops are a type of iterative control flow. They are used when a piece of code will be
repeated until a certain condition is satisfied. In a while loop, a variable is checked against a condition.
When that condition is satisfied, the code inside the loop executes. Then the condition is re-checked. This
process continues until the condition is not satisfied, at which point the code leaves the loop.

1 while (condition) {
2 // this code will execute if the condition is satisfied
3 // then , the condition will be checked again
4 }

Slightly different from the regular while loop is the do/while loop, which executes the body of the code
once before the condition is checked. The syntax is shown below.

1 do {
2 // this code will execute once
3 // then , the condition will be checked again
4 } while (condition);

In this lab, you will use while or do/while to check the value of the SPIF flag. While the flag is NOT set
(serial communication has not concluded), a loop will cause the code to wait until the message has been
completely transmitted or received. Only after the flag is set will the code continue to execute.

If it is necessary to write an infinitely repeating loop using this type of iterative control flow, examples of
infinite while and do/while loops follow.

1 // infinite while loop
2 while (1) {
3 // this will be repeated infinitely
4 }
5
6 // infinite do/while loop
7 do {
8 // this will be repeated infinitely
9 } while (1);

cbna Alyssa J. Pasquale, Ph.D. 111 Spring 2024 Edition

Circuit I: SPI Control of 7-Segment Display

This circuit will display decimal characters 0–9 on a 7-segment display. Every 500 ms, the value on
the display will increment. After displaying 9, the display will cycle back to 0 again.

Download the file lab9_circuit1.ino. Connect segments a–g via current-limiting resistors to pins QA–QG

on the 74595 chip (alternatively, you may use the SPI 7-segment display PCB). Run the software code. Once
running, you should see similar results as from lab 3 circuit 1 (this lab counts from 0–9 and does not include
additional hexadecimal characters).

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure
output pins

de-assert SS

enable
& configure SPI

define x = 0,
numArray[10]

send numArray[x]
to writeSPI

x++

x > 9

delay 500 ms x = 0

assert SS

SPDR = data

bit 7 in
SPSR

de-assert SS

se
tu

p(
)

lo
op

()

wr
it

eS
PI

(d
at

a)

FALSE

TRUE

1

0

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 112 Spring 2024 Edition

Circuit II: 8-Bit Serial Input from DIP Switch

This circuit will display the decimal value entered into an 8-bit DIP switch on the serial monitor.
Data will only update on the serial monitor when there has been new data entered into the DIP
switch.

Use a 74165 PISO register along with a DIP switch with eight 10 kΩ pull-down resistors. Each of the DIP
switch outputs should connect to register inputs A–H. When the code is working properly, changing the
value on the DIP switch will trigger the serial monitor to display the DIP switch value.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

begin
serial monitor

configure
output pins

de-assert SS

enable
& configure SPI

dipData = 0
oldDipData = 0

dipData =
SPIRx(0)

dipData!=
oldDipData

print dipData
on serial monitor

oldDipData =
dipData

assert SS

SPDR = data

SPIF

return SPDR

de-assert SS

se
tu

p(
)

SP
IR

x(
da

ta
)

lo
op

()

1

0

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 113 Spring 2024 Edition

Circuit III: Arduino-Arduino SPI Communication

This circuit will use two Arduinos to play a dice-rolling game. When a button is pressed on either
Arduino, a random dice-roll will be generated and displayed on a 7-segment display connected to that
Arduino. The two Arduinos will compare values and determine the winner, or if a tie occurred. The
winning Arduino will light a green LED. The losing Arduino will light a red LED. If a tie occurs,
both Arduinos will light a blue LED.

This circuit’s flowchart is provided on page 115. This circuit will require two Arduino Uno boards. Both of
them will have the same hardware: pushbutton, RGB LED, and BCD to 7-segment decoder PCB. Connect
each pushbutton to one of the external interrupt pins. Use 1 kΩ resistors as current-limiting resistors for the
RGB LEDs.

Use cli() at the beginning of your setup functions and sei() at the end of your setup functions to ensure
that interrupts do not cause errors with the configuration of your peripherals. Because the primary Arduino
will only ever be addressing a single secondary Arduino, the SS pin does not need to be connected on the
primary. On the secondary, the pin should be connected directly to ground.

By pressing the pushbutton on each Arduino, a random number will be generated and sent to the other
Arduino. These two random numbers will be compared. The Arduino with the larger number wins. When
an Arduino wins, a green light turns on. When an Arduino loses, a red light turns on. During a tie, a blue
LED turns on.

All data that will be transmitted and received by each Arduino will occur upon use of the spiTxRx() function.
You will not need to use SPI interrupts. This also means that both the primary and the secondary will
need to have this function included in their code.

You will need to ensure that power is always being supplied to both Arduinos via their USB connections. A
common ground signal between both Arduinos is necessary for this circuit to function properly. Be careful
not to accidentally upload code onto the wrong board! You will need two independent .ino files, one for the
transmitting Arduino, and one for the receiving Arduino. You may switch between boards using the Tools
> Port menu in the Arduino IDE or use two computers. Note: this circuit may not work properly if the
secondary is turned on first. Ensure that the primary code is loaded first, and then load the secondary code.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Primary Device

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

Secondary Device

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 114 Spring 2024 Edition

PRIMARY
define pNum
and sNum

randomSeed(5);

configure
output pins

configure SPI &
external interrupt

send and
receive data

compare sNum
and pNum

light correct LED

SECONDARY
define pNum
and sNum

randomSeed(12);

configure
output pins

configure SPI &
external interrupt

send and
receive data

compare sNum
and pNum

light correct LED

External Int.
random number =
random(1,10);

send and
receive data

display on
7-segment

SPDR = data;

wait for Tx
to finish

return SPDR;

se
tu

p(
)

lo
op

()

se
tu

p(
)

lo
op

()

sp
iT

xR
x(

da
ta

)
Figure 9.6: Flowchart for the Arduino in circuit 3.

cbna Alyssa J. Pasquale, Ph.D. 115 Spring 2024 Edition

Lab 9 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Describe at least two benefits of SPI over parallel I/O.

• Describe at least one specific enhancement that you can include in your Smart Car project that uses
SPI.

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 116 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Pre-Lab 10
Carefully read the entirety of Lab 10, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. How does changing the clock frequency affect the power consumed by the microcontroller?

2. Given your answer to the above question, which on-chip clock source should be used on the AT-
mega328P to use the least amount of power? (Note: on-chip means that the clock description must
have the word internal in it!) What would the resulting value of the CKSEL[3:0] bits be in the low
fuse byte?

3. How does changing the operating voltage Vcc affect the power consumed by the microcontroller?

4. What are the minimum and maximum operating voltages of the ATmega328P? (Refer to the datasheet
if needed.)

cbna Alyssa J. Pasquale, Ph.D. 117 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 118 Spring 2024 Edition

Lab 10: Power Consumption and ATmega328P without Arduino

In this lab, the concept of power consumption, and techniques to reduce it, will be explored. The AT-
mega328P chip will be programmed independently of the Arduino to realize even more power reduction, as
well as to have the ability to program independent of the Arduino environment in future projects. AVR
Concepts: System clock speed, prescaler and register CLKPR, power reduction and register PRR, system fuses
(low byte, high byte, extended byte)

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-10

10.1 Clock Speed

The clock speed on the ATmega328P can be varied by either dividing the present clock source by a prescaler
using the CLKPR register or by using a different clock source. There are many possible clock sources that can
be used with the microcontroller; the device must be configured by programming the appropriate fuse bits.

The Arduino Uno uses an external clock with a frequency of 16 MHz. However, it is possible to use various
clock speeds with the microcontroller. An internal 8 MHz RC oscillator and an internal 128 kHz RC oscillator
are both available built-in to the device. The highest possible clock frequency is dictated not only by the
physical properties of the clock, but also by the value of Vcc used on the microcontroller. This relationship
between Vcc and maximum clock frequency is given in figure 10.1, where the safe operating area is shaded
grey.

2 2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

(2.7, 8)

(4.5, 16) (5.5, 16)

Vcc (V)

f
(M

H
z)

Figure 10.1: Relationship between Vcc and the clock frequency. For a given value of Vcc, the clock frequency
must be low enough to reside in the shaded grey area of the graph.

10.1.1 CLKPR – Clock Prescale Register

This register configures the system clock prescaler value. More information about this register is available
in Appendix A. It will affect every synchronous peripheral on the ATmega328P microcontroller. Setting the
prescaler is a two step process. First, the CLKPCE bit must be set. Then, the register must be set equal to
the corresponding value with CLKPCE clear and the CLKPS bits configured as needed. For example, to use
a prescaler value of 4, the following code should be executed (note that interrupts are disabled during this
process).

cbna Alyssa J. Pasquale, Ph.D. 119 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-10

1 cli();
2 CLKPR |= 0x80;
3 CLKPR = 0x02;
4 sei();

10.2 PRR – Power Reduction Register
This register enables and disables peripheral devices on the microcontroller. When peripherals are disabled,
less power is consumed, but functionality is reduced. More information about each bit in this register is
available in Appendix A.

10.3 ATmega328P Fuses
Fuses are bits of nonvolatile memory in the ATmega328P microcontroller that configure the functionality
of the device not pertaining to the actual program code. This data is preserved even when the device
is reprogrammed, but can itself be changed using an external programming device. For example, fuses
contain information about the clock source used on the microcontroller. There are three fuse bytes on the
ATmega328P: the low byte, the high byte, and the extended byte. Information about the three fuses are
available in Appendix A.

Programmed fuses have a value of 0, while unprogrammed fuses have a value of 1.

• Extended Fuse Byte: This fuse configures the brown-out detection unit.

• High Fuse Byte: This fuse configures features that are relevant to programming and debugging the
ATmega328P microcontroller.

• Low Fuse Byte: This fuse configures features that are relevant to the clock source and startup time
of the microcontroller.

cbna Alyssa J. Pasquale, Ph.D. 120 Spring 2024 Edition

Circuit I: Arduino Power Consumption: Baseline

This circuit will turn an LED either ON or OFF for the purposes of collecting power consumption
data.

Using an external power supply, connect a multimeter as shown in figure 10.2.

−
+

A Vin pin on Arduino

Figure 10.2: Circuit diagram for connecting an external power supply and ammeter to the Arduino.

The Arduino should NOT be connected to the USB port when you take measurements! There-
fore, disconnect the Arduino from the USB after you have uploaded your code to the microcontroller. Write
code that turns on an LED connected to pin D7. Measure the average current in this situation and record it
in table 10.1. Then, change your code so that the LED turns off. Record the average current in table 10.1.

Parameter LED ON LED OFF

Vcc (V) 5.0 5.0

I (mA)

P (mW)

Table 10.1: Voltage, current, and power data for circuit I.

Calculate the power consumption using equation 10.1, and record for both the ON and OFF conditions in
table 10.1.

P = IV (10.1)

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 121 Spring 2024 Edition

Circuit II: CLKPR and PRR Registers

This circuit will turn an LED either ON or OFF for the purposes of collecting power consumption
data.

First, use the CLKPR register to see how much power you can save. Record the final value of CLKPR that you
use, as well as the power savings you obtain from this in table 10.2. (Do not make any other changes to
the circuit, such as changing Vcc or using PRR, yet!)

CLKPR Power Saved

Table 10.2: CLKPR and power savings from the prescaler in circuit II.

Keeping CLKPR at the best value you obtained above, now utilize the PRR register to see how much more
power you can save. Record your final register and power savings value in table 10.3. (Do not make any
other changes to the circuit, such as changing Vcc, yet!)

PRR Power Saved

Table 10.3: PRR and power savings from the prescaler in circuit II.

Now, play around with any other registers, hardware, or software until you are satisfied that you have
achieved the lowest possible power consumption where the LED is able to remain visibly ON when D7 is set.
The value of Vcc must be the same for the LED ON and LED OFF trials. Run this new code and collect
the current data when the LED is on, and the average current when the LED is off. In addition, record the
value of Vcc (do not dial the voltage less than 2.7 V). Record all data in table 10.4.

Parameter LED ON LED OFF

Vcc (V)

I (mA)

P (mW)

Table 10.4: Voltage, current, and power data for circuit II.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 122 Spring 2024 Edition

Circuit III: ATmega328P

This circuit will turn an LED either ON or OFF for the purposes of collecting power consumption
data. This circuit will use the ATmega328P without the Arduino Uno platform.

Using your optimized code from circuit II, go to Sketch > Export compiled Binary. You will find in your
sketch folder two new files, one of them a .ino.standard.hex, and the other with a bootloader included. Take
the standard hex file and save it on a USB stick.

Decide what values you want to use for each of the three fuse bytes on the ATmega328P. See Dr. Pasquale
to have it programmed onto an ATmega328P chip. (You will have to do this twice: once with the LED ON
program, and once with the LED OFF program.)

Connect the ATmega328P chip as given in the pinout diagram provided in Appendix B. Connect pin 1 (the
RESET pin) directly to Vcc. Play around with values until you are satisfied that you have achieved the
lowest possible power consumption where the LED is able to remain visibly ON when D7 is set. The value
of Vcc must be the same for the LED ON and LED OFF trials. Vcc should not be less than 2.7 V. Record
all voltage, current, and power data in table 10.5.

Parameter LED ON LED OFF

Vcc (V)

I (mA)

P (mW)

Table 10.5: Voltage, current, and power data for circuit III.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 123 Spring 2024 Edition

Lab 10 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Each of the three circuits should have their own schematic, clearly including the power supply and
voltage used, ammeter, LED color, current-limiting resistor value, and all other hardware and I/O
connections.

• Because you did not submit any code for this lab, instead of discussing changes you would make to
your code, list any changes that you would make (if any) to further reduce your power consumption.
If you would not make any further changes, justify that choice.

• Explain all of the methods you used to reduce power consumption by the microcontroller. (Include this
in a separate section and include all of the methods in a bullet-point list, table, or other easy-to-read
format.)

• Of all the methods you used, what was the single most effective means you used to reduce the power
consumption of your circuit?

• Give at least two advantages of using an Arduino Uno over using the barebones ATmega328P.

• Give at least two advantages of using an ATmega328P over using the Arduino Uno.

• Search online for the cost of a (genuine) Arduino Uno, give the cost in your report and cite your source.
Then, search online for the cost of an ATmega328P DIP chip, give the cost in your report and cite
your source. Explain the monetary advantage of using an ATmega328P over using an Arduino system.

• What HEX values for each of the fuse bytes did you use when programming the ATmega328P?

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

cbna Alyssa J. Pasquale, Ph.D. 124 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 125 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 126 Spring 2024 Edition

Pre-Lab 11
Carefully read the entirety of Lab 11, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. What command is used to display ASCII characters on the serial monitor? (Note: if you completed the
USART lab, then you will be using the USART to write this command, but you are still responsible
for answering this question.)

2. What ASCII character corresponds to a line feed?

3. How will you connect the secondary select pin on the receiving Arduino?

4. Why is the secret message transferred starting with the numeral 8?

5. What information will you need from the other group before you can send and receive messages?

cbna Alyssa J. Pasquale, Ph.D. 127 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 128 Spring 2024 Edition

Lab 11: Transmitting and Receiving a Secret Message
In this lab, the SPI protocol will be used to send a secret message to another group, and in return receive a
message that the other group is transmitting. The message will consist of three ASCII characters.

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-11

Circuit I: Transmit Secret Message

This circuit will repeatedly transmit a secret message using SPI to another Arduino.

The flowchart for this circuit is shown in figure 11.1 (left) on page 131. You will use an Arduino set to
SPI primary mode to accomplish this circuit. Decide with the other group if you’d like to send MSB
or LSB first, and what prescaler you will use. Use a prescaler of at least 32. Interrupts are not required on
the primary device.

Write code that uses the SPI protocol to transmit a three character secret message (provided by your
instructor) to the assigned lab group. You will want to send four characters. The numeral 8 will be sent
first to indicate that it is the beginning of the message. Send the message repeatedly (that is to say,
not just once).

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 129 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-11

Circuit II: Receive Secret Message

This circuit will repeatedly receive a secret message using SPI from another Arduino.

The flowchart for this circuit is shown in figure 11.1 (right) on page 131. You will use a separate Arduino
set to SPI secondary mode to accomplish this circuit. Interrupts will be required on this device.
Connect the secondary select pin directly to ground.

Write code that receives the three-character secret message from your assigned lab group. Display the
received message on the serial monitor. You will need to use the Serial.write() command to print ASCII
characters to the serial monitor. If you completed the USART lab, then you will manually configure and use
the USART in lieu of using the “cheater functions.”

To create a new line on the serial monitor, you may use the command Serial.print(’\n’);. If you are
using the USART, then you will transmit the ASCII code that corresponds to a line feed. Use the website
https://www.ascii-code.com to find the corresponding character.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 130 Spring 2024 Edition

https://www.ascii-code.com

TRANSMITTER

configure SCK, SS,
MOSI as output pins

configure SPI

define
secretMessage[4]

unsigned char
j = 0

j < 4

SPDR =
secretMessage[j]

wait for transfer
to complete

j++

delay 100 ms

se
tu

p(
)

lo
op

()

TRUE

FALSE

RECEIVER

configure SPI

Serial.begin

define
secretMessage[3]

display message
on serial monitor

create
new line

delay 100 ms

static unsigned
char j = 0

define
message = SPDR

message

j = 0

secretMessage[j]
= message

j++

se
tu

p(
)

lo
op

()
IS

R(
SP

I_
ST

C_
ve

ct
)

̸=8

8

Figure 11.1: Flowcharts corresponding to the transmitter circuit (left) and receiver circuit (right).

cbna Alyssa J. Pasquale, Ph.D. 131 Spring 2024 Edition

Lab 11 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• (there are no special additions to make to this lab report)

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 132 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Pre-Lab 12
Carefully read the entirety of Lab 12, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Which pin on the Arduino Uno corresponds to ICP1?

2. In this lab the CPU clock has a frequency of 16 MHz, and a prescaler of 256 will be used.

(a) Calculate the minimum pulse-width that can be measured.

(b) Calculate the corresponding maximum frequency of that minimum pulse-width.

3. If count is an unsigned long, how long will it take for the variable to overflow?

4. Why is timer/counter 1 used in normal mode and not CTC mode when using the input capture unit?

cbna Alyssa J. Pasquale, Ph.D. 133 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 134 Spring 2024 Edition

Lab 12: Ultrasonic Sensor

In this lab, the input capture unit on timer/counter 1 will be used to measure the width of a pulse. After
verifying the measurement of pulse-widths, the HC-SR04 ultrasonic sensor will be used to create a distance-
measuring circuit. AVR Concepts: timer/counter 1 input capture unit

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-12

12.1 Timer/Counter 1 Input Capture Unit

The input capture unit on timer/counter 1 can be used to determine the following timing properties of a
square wave input into ICP1 (D8).

• Period T

• High period THIGH

• Low period TLOW

The timer/counter is used in normal mode with a prescaler. The prescaler of the timer/counter will dictate
the precision of the measurements that can be made. The smaller the prescaler, the larger the precision,
as fewer intervals of time will elapse between timer increments. Precision is not always the most important
consideration, however, as a high precision will lead to very large numbers being used to store timing data,
requiring extra memory.

The input capture unit of timer/counter 1 is capable of triggering upon a falling edge (ICES = 0) or a rising
edge (ICES = 1) depending on the value of the input capture edge select bit (ICES) in TCCR1B. Interrupts
can be enabled to trigger upon an input capture. Therefore, recording two subsequent events will provide
information about the square wave that is input into the device. Table 12.1 indicates what each value of
ICES will need to be to record each of the different timing properties of a square wave. (Note that to measure
the period of a square wave, the value of ICES does not matter, as long as it remains the same.)

Measurement Initial ICES Subsequent ICES

Period 0 0

Period 1 1

High period 1 0

Low period 0 1

Table 12.1: Required values of ICES to measure different square wave timing properties.

In software, calculations can be done to determine the timing of the wave. First, the number of counter
increments can be calculated by using equation 12.1, where K1 is the initial value stored in TCNT1 and K2

is the subsequent value stored in TCNT1.

K = K1 −K2 (12.1)

To convert this into an interval of time, the prescaler of the timer/counter unit (N) and the microcontroller

cbna Alyssa J. Pasquale, Ph.D. 135 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-12

I/O clock frequency (fCLK,I/O) must be known. This calculation is defined by equation 12.2.

T =
KN

fCLK,I/O
(12.2)

12.2 HC-SR04 Ultrasonic Sensor
An ultrasonic detector is able to calculate the distance to the nearest object by emitting an ultrasonic pulse
and calculating how much time t it takes for the pulse to return to the detector. If the speed of sound v
is known, then the distance d = vt. After receiving a HIGH pulse of 10 µs to the Trig pin, the ultrasonic
detector emits a pulse and then outputs a HIGH signal to the Echo pin. The HIGH signal is proportional
to the distance of the nearest object. The pinout diagram for the HC-SR04 is included in Appendix B.

cbna Alyssa J. Pasquale, Ph.D. 136 Spring 2024 Edition

Circuit I: Pulse-Width Measurement

This circuit will calculate the period of a square wave input to ICP1 and display the value with units
of µs to an LCD screen.

Write code that displays the period of a square wave (in units of µs) onto an LCD screen. The square wave
will come from a function generator (use the TTL/CMOS output pin) and will go into the ICP1 pin AND to
an oscilloscope. To ensure that the pulse-width measurements are valid for as long as possible, ensure that
the variable count (as depicted in the flowchart) is of type unsigned long. Do not use any floating-point
math in this circuit! Vary the frequency of the function generator waveform and ensure that your LCD
continues to give the correct period.

You will build off of this hardware and software code to complete the next two circuits, so
do not take it apart yet! When the circuit is functioning properly, demonstrate it to your instructor to
receive a stamp. Submit your software code as directed by your instructor.

configure input
capture unit

declare
capt[2], count

ticksBetween = 0

cli();

capt[1] >
capt[0]

ticksBetween =
capt[1] - capt[0]

ticksBetween =
capt[0] - capt[1]

sei();

calculate time
display on LCD

static unsigned
char x = 0

capt[x] =
count + ICR1

xˆ=1

count += 65536

se
tu

p(
)

lo
op

()

IS
R(

TI
ME

R1
_C

AP
T_

ve
ct

)
IS

R(
TI

ME
R1

_O
VF

_v
ec

t)

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 137 Spring 2024 Edition

Circuit II: Advanced Pulse-Width Measurement

This circuit will calculate the period, high period, and low period of a square wave input to ICP1 and
display the values with units of µs to an LCD screen.

Amend the code from circuit 1 to display the period of the signal in addition to the time that the signal is
HIGH and the time that the signal is LOW. The LCD screen should show all times in µs (display units, if
they fit). Vary the frequency and duty cycle of the waveform and ensure that your LCD continues to give
the correct times.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure input
capture unit

declare
capt[2], count

timeBetween = 0
timeHigh = 0
timeLow =0

cli();

capt[1] >
capt[0]

timeBetween =
capt[1] - capt[0]

timeBetween =
capt[0] - capt[1]

calculate time HIGH calculate time LOW

sei();

period =
timeHigh+timeLow

static unsigned
char x = 0

!x capt[0] =
count + ICR1

TCCR1B &= 0xBFcapt[1] =
count + ICR1

TCCR1B |= 0x40

xˆ=1

count += 65536

se
tu

p(
)

lo
op

()

IS
R(

TI
ME

R1
_C

AP
T_

ve
ct

)
IS

R(
TI

ME
R1

_O
VF

_v
ec

t)

FALSE

TRUE

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 138 Spring 2024 Edition

Circuit III: Distance Measurement

This circuit will use an ultrasonic sensor to calculate the distance to the nearest object and display
the value with units of cm to an LCD screen.

Connect the ultrasonic detector so that the Trig pin is connected to an output pin and the Echo pin is
connected to ICP1 (pin D8) AND an oscilloscope. Calculate the time that the pulse from the Echo pin is
HIGH. Then, use the following code to determine the distance in millimeters.

1 distance = tHIGH * 17182L / 100000; // tHIGH = us , distance = mm

Display the distance to the nearest object in cm on an LCD screen using tenth’s place precision and correct
units. Use a ruler to verify distances. You will be asked in the lab report to comment on the accuracy of
your ultrasonic sensor in a quantitative manner. Compare the measured and calculated distance of an object
from your sensor at various ranges (close-range, long-range, medium-range, etc). Disable interrupts during
conditional logic as in the previous two circuits (not shown on the flowchart).

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure ICU
and pins

declare
local variables

send 10 µs pulse
to trig pin

capt[1] >
capt[0]

tHigh =
capt[1]-capt[0]

calculate time
of Echo pulse

calculate
distance

se
tu

p(
)

lo
op

()

TRUE

FALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 139 Spring 2024 Edition

Lab 12 Report

Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction

Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results

Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• How accurate was the HC-SR04 ultrasonic detector? Be quantitative.

• What is the shortest distance that you can theoretically measure with the ultrasonic sensor as configured
in this lab?

• What is the longest distance that you can theoretically measure with the ultrasonic sensor as configured
in this lab?

• How might you integrate using the ultrasonic detector in your Smart Car?

• Give one advantage of the ultrasonic detector over using wheel encoders or the accelerometer.

Circuit Diagrams

Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges

Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion

Wrap up all of the key concepts from your lab report in a paragraph.

cbna Alyssa J. Pasquale, Ph.D. 140 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 141 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 142 Spring 2024 Edition

Pre-Lab 13
Carefully read the entirety of Lab 13, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. In this lab, will you use polling or interrupts to determine the status of a pushbutton? How do you
know?

2. List all of the AVR assembly instructions that work directly with I/O registers. (These registers
include, but are not limited to, the PINx, PORTx, and DDRx registers. A full listing of I/O registers is
available in Appendix G.)

3. In circuit 2, you will be asked to set or clear LED anodes based on the status of three pushbuttons.
What I/O instructions can be used to conditionally move around in code if a single one of the three
pushbuttons is pressed / not pressed?

cbna Alyssa J. Pasquale, Ph.D. 143 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 144 Spring 2024 Edition

Lab 13: Introduction to Assembly

In this lab, assembly language will be used to accomplish I/O tasks on the Arduino Uno.

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-13

13.1 Assembly Program Flow

Unlike the Arduino IDE, which executes code as described in the flowchart in figure 1.2, to write code in
assembly is to create subsequent instructions that will be stored in memory. In the absence of any jump or
branch instructions, the first instruction will be executed, and then the next, and the next, until the end of
the program has been reached, at which point the program will stop.

To create a program flow that contains setup instructions and then indefinitely loops through a set of
instructions to be repeated, the JMP instruction can be used. The JMP instruction will change locations in
memory without returning to the original location again.

The following assembly code can be used to imitate the program flow of the Arduino IDE.

1 ; list any configuration instructions here
2
3 main:
4 ; list any repeated instructions here
5 JMP main

13.2 Subroutines in Assembly

In assembly, just as with C, any piece of code that needs to be regularly accessed should be stored as its own
subroutine. The process for writing a subroutine in assembly is different than C. Unlike a JMP instruction
that unconditionally moves to another location in memory, a subroutine is accessed using a CALL instruction.
When complete, use the RET instruction to return back to the original memory location again.

The following code shows how a subroutine can be used in assembly.

1 main:
2 ; do a bunch of things
3 CALL subRoutine
4 ; do a bunch of other things
5 JMP main
6
7 subRoutine:
8 ; do a common task
9 RET

13.3 Atmel Studio

Atmel Studio will be used to write assembly code and upload it onto the Arduino. In order to accomplish this,
an external tool must be generated in the Atmel Studio software in order for it to be able to communicate
with the Arduino.

cbna Alyssa J. Pasquale, Ph.D. 145 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-13

First, determine the COM port that the Arduino is connected to. Go to the start menu, then type in Device
Manager. Scroll down to and click on Ports (COM & LPT), and determine the COM number associated
with the Arduino. Second, find the location of a file called avrdude.exe. Search the PC to find the file
location.

Then, navigate back to Atmel Studio. Go to Tools > External Tools. Type in the following under each
option, then click OK.

• name: Send to Arduino Uno

• command: (click the ... button and navigate to the avrdude.exe file)

• arguments: -C "C:\Program Files (x86)\Arduino\hardware\tools\avr\etc\avrdude.conf" -p
atmega328p -c arduino -P COM4 -b 115200 -U flash:w:"$(ProjectDir)Debug\$(TargetName)
.hex":i (ensure that the number after COM4 is equal to the number you determined earlier, and that
the path location is the same as above)

13.4 Determining Program Memory Usage
In Atmel Studio, it is possible to determine how much program memory was used by your program. However,
it is not as simple as it was in the Arduino IDE. On the right-hand side of the screen in Atmel Studio, there
should be a box labeled “Solution Explorer.” If you click on that box, you will find a folder called “Output
Files.” Click on that folder and find a file called circuitname.lss Click on that file and scroll all the way
to the bottom of the page. Find a line that looks like the one shown below.

1 [.cseg] 0x000000 0x000QRS XY 0 XY 32768 z%

The beginning statement [.cseg] indicates that the program memory (code segment) space is being explored.
The first hex number is the address of the first location used in the program memory. The second hex number
is the address of the last location used. The numerals that are noted as XY will be actual numbers; those
show the number of bytes of program memory that the code has used. The number 32768 is the capacity of
the flash memory. The percentage is what percent of program memory that your code is using.

13.5 Determining Data Memory Usage
It is not as simple to calculate the amount of data memory used. Every time data is written to memory
(which will not be done in this lab, but may be done in future assembly labs), one byte of information is
stored in data memory. Therefore, to determine how much data memory has been used, keep track of how
many writes to SRAM are made in the assembly code.

cbna Alyssa J. Pasquale, Ph.D. 146 Spring 2024 Edition

Circuit I: Pushbutton and LED

When a pushbutton is pressed, an LED will light up. Otherwise, the LED will remain off.

Download the file lab13_circuit1.asm. Connect a pushbutton (with 10 kΩ pull-down resistor) and LED
(with current-limiting resistor) to the appropriate pins as dictated in the file comments. Click on Tools >
Send to Arduino Uno. The LED should light when the pushbutton is pressed.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

Circuit II: Pushbuttons and RGB LED

This circuit will turn on each anode of an RGB LED when the corresponding pushbutton is pressed.
When the pushbutton is not pressed, the anode will turn off.

Now, connect three pushbuttons to pins of your choice. Use an RGB LED with 3 current-limiting resistors
connected between each anode and their Arduino pins, and the cathode connected to ground. Write assembly
code where if one pushbutton is pressed, the red LED lights, if another is pressed, the green LED lights,
if the third is pressed, the blue LED lights, and any combination of presses results in secondary colors or
white.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

Circuit III: 7-Segment Display

This circuit will display decimal characters 0–9 on a 7-segment display. Every 500 ms, the value on
the display will increment. After displaying 9, the display will cycle back to 0 again.

Use assembly language to display numerals 0–9 on a 7-segment display (as you have done multiple times
using parallel and serial I/O already using C code). After each number is displayed, include a delay of
approximately 500 ms, using the following website to determine what code to include: http://darcy.rsgc.
on.ca/ACES/TEI4M/AVRdelay.html

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 147 Spring 2024 Edition

http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html
http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html

Lab 13 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• How much program memory is used for each of your circuits?

• Explain one benefit of using assembly over using C code

• Explain one benefit of using C code over using assembly

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 148 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Pre-Lab 14
Carefully read the entirety of Lab 14, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. Is the USART synchronous or asynchronous?

2. How many pins does the USART use? Specifically, which pins on the ATmega328P does it use?

3. UBRR0 is a 12-bit register. What are the largest and smallest possible baud rates? Show all of your
work.

4. Using asynchronous normal mode (as you will use in circuits 1 and 2), what value do you need to store
in UBRR0 to achieve a baud rate of 9600? Show all of your work.

5. What is the ASCII character for ’a’ in binary? Use the website http://www.ascii-code.com

cbna Alyssa J. Pasquale, Ph.D. 149 Spring 2024 Edition

http://www.ascii-code.com

6. What is the order for configuring the USART in SPI mode? (There are three steps.)

7. In circuit 3, you will use a Baud rate of 1 Mbit/s. What should you set as the value of UBRR0?

8. In circuit 3, how should you configure UCSR0B?

9. In circuit 3, how should you configure UCSR0C?

cbna Alyssa J. Pasquale, Ph.D. 150 Spring 2024 Edition

Lab 14: USART: Universal Synchronous / Asynchronous Receiver
/ Transmitter

In this lab, the USART (Universal Synchronous / Asynchronous Receiver / Transmitter) unit on the AT-
mega328P will be introduced. AVR Concepts: USART and registers UBRR0, UCSR0A, UCSR0B, UCSR0C and
UDR0

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-14

14.1 USART on the ATmega328P

In this lab, the USART (which stands for universal synchronous / asynchronous receiver / transmitter)
functionality of the ATmega328P microcontroller will be used. As the name implies, there is flexibility in
the USART that allowed it to be run either synchronously or asynchronously. A third mode of operation of
the USART is in SPI mode.

14.1.1 Features

The USART module on the ATmega328P has several features.

• Parity generation and error detection.

• 5-bit, 6-bit, 7-bit, 8-bit, and 8-bit data mode.

• Custom number (1 or 2) of STOP bits.

• Asynchronous mode, synchronous mode, and SPI modes are available.

In asynchronous mode, START and STOP bits are used to determine when a message begins and completes.

14.1.2 Interrupts

There are three interrupts associated with the USART module.

• USART Rx complete – this interrupt is triggered when the USART has completed receiving incom-
ing data.

• USART data register empty – this interrupt is triggered when the USART has an empty data
register (which can be used to determine when either a receive or a transmit is complete).

• USART Tx complete – this interrupt is triggered when the USART has completed transmitting
outgoing data.

14.1.3 Receiving Data

The USART checks for a received signal at every clock cycle of the microcontroller. In asynchronous commu-
nication (in which the USART acts similarly to a shift register), a baud rate is agreed upon by both devices
beforehand. If the signal is LOW for a long enough time, it is registered as a START bit. (If, however, the
signal was LOW for less than half of the bit rate, it is considered to be a spurious signal and ignored.)

After receiving the START bit, the remaining character is clocked in to the receive shift register and into UDR0
to be sent to the data bus. A busy flag is set during this process to signal that the device is busy receiving

cbna Alyssa J. Pasquale, Ph.D. 151 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-14

data. The USART then signals that it has received new data, and may send an interrupt to the processor
to take further action.

14.1.4 Transmitting Data

A message is deposited into the transmit shift register from the data bus. At this point, the USART generates
a START bit, which is sent, followed by the data to be transmitted. If requested, a parity bit is sent, followed
by a STOP bit. During this process, a busy flag is set, signaling that the device is busy transmitting data. If
enabled, an interrupt is generated once data has shifted out and no new data exists in the transmit buffer.

14.2 Protocol
The USART protocol on the ATmega328P specifies three pins that can be used depending on the mode
of operation. It is possible to use only a single pin (if data is to be received only, or transmitted only, in
asynchronous mode) or all three (if data is to be received and transmitted simultaneously in SPI mode).
Each of the USART pins is defined in table 14.1.

Name Pin Description

XCK D4 Clock (SPI mode)

TXD D1 Data output pin

RXD D0 Data input pin

Table 14.1: Each of the logic signals used in AVR USART communication.

14.3 Modes of Operation
There are three modes of operation for using the USART module.

• Asynchronous

• Synchronous

• SPI mode

Synchronous mode will not be used in this lab or discussed in this lab manual. Before discussing the other
two modes, it is important to understand the distinction between baud rate and bit rate. When using the
USART, the term baud rate is used.

14.3.1 Bit Rate and Baud Rate

In serial communication, bit rate indicates how many bits of data are sent every second. However, in the
USART, there are also STOP bits, START bits, and possibly parity bits. These bits do not contribute to
the actual message being sent but are nonetheless important parts of the signal. These are called non-data
bits. Baud rate refers to how many signal changes occur per second. A signal change could be a change in
voltage, frequency, or phase. Because binary data is used in microcontroller circuits, only voltage can change
in a signal, and the baud rate will be equal to the bit rate.

The baud rate specifies the data transmission / receive rate on the USART when used in asynchronous mode.
The baud rate is a function of the microcontroller clock frequency, the value stored in the baud rate register
UBRR0, and the mode (normal mode, or double speed mode).

14.3.2 Asynchronous Mode

Asynchronous mode allows the USART protocol to send and/or receive messages at a defined baud rate
without using an external clock signal. The USART in this capacity can be operated in full-duplex mode,

cbna Alyssa J. Pasquale, Ph.D. 152 Spring 2024 Edition

although it is possible to operate it simplex mode if desired.

Equation 14.1 defines the baud rate of the USART in asynchronous normal mode, and equation 14.2 defines
the baud rate of the USART in asynchronous double speed mode.

baud =
fOSC

16(UBRR0+ 1)
(14.1)

baud =
fOSC

8(UBRR0+ 1)
(14.2)

To use the USART in asynchronous mode, the following steps are to be taken (in order).

1. Initialize the USART by setting the baud rate first using UBRR0.

2. Then configure the control and status registers.

14.3.3 SPI Mode

SPI mode allows the USART protocol to function in synchronous primary mode, with a clock supplied on
the XCK pin. This is a full-duplex protocol. Note that it is not possible to address independent secondary
devices without using external signals to select between the different secondary devices.

Equation 14.3 defines the baud rate of the USART in SPI mode.

baud =
fOSC

2(UBRR0+ 1)
(14.3)

To use the USART in SPI mode, the following steps are to be taken (in order).

1. First, configure the clock pin as an output pin.

2. Then, configure the control and status registers for the USART.

3. Finally, write the baud rate value to the UBRR0 register.

14.4 USART Registers
There are several registers that control the operation of the USART module. For more detailed information
about each register, refer to Appendix A.

• UBRR0H & UBRR0L – USART Baud Rate Registers: These registers contain the baud rate to be
used in the USART module. Two registers are required to store the value because it is a 12-bit value.

• UCSR0A – USART Control and Status Register A: This register stores information about how
the USART is to be used. It is used in conjunction with UCSR0B and UCSR0C.

• UCSR0B – USART Control and Status Register B: This register stores information about how
the USART is to be used. It is used in conjunction with UCSR0A and UCSR0C.

• UCSR0C – USART Control and Status Register C: This register stores information about how
the USART is to be used. It is used in conjunction with UCSR0A and UCSR0B.

• UDR0 – USART I/O Data Register: This register contains either information that was received
from the USART in receive mode, or contains information to be transmitted out by the USART in
transmit mode.

cbna Alyssa J. Pasquale, Ph.D. 153 Spring 2024 Edition

Circuit I: USART Data Transmission

This circuit will will send the character ‘a’ to the serial monitor. An oscilloscope will be connected
to the TXD pin to view the signal transmission.

Using the USART in asynchronous normal mode with a baud rate of 9600, transmit the 8-bit character ‘a’
to the TXD pin. Use two STOP bits. Display the signal on an oscilloscope. There should be no delay in your
loop function. To confirm that this is working, you should be able to see the character ’a’ printed in the
serial monitor as well.

Before sending data through the transmit pin, you must ensure that the data register is empty. Remember
that there is a flag for this in register UCSR0A!

In a separate file, use Serial.begin(9600) in the setup and Serial.print(’a’) in the loop and record the
program and data memory used in that situation in table 14.2. (This is the memory we would consume by
using the Arduino “cheater functions” instead of writing our own code by configuring the USART manually.)

Memory Bytes

Program

Data

Table 14.2: Program and data memory consumption using Serial commands.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure
USART

UDRE0

transmit
‘a’

se
tu

p(
)

lo
op

()

1

0

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 154 Spring 2024 Edition

Circuit II: Arduino-Arduino Communication

This circuit will use two Arduinos connected using the USART. A keypad connected to the first
Arduino will light a 7-segment display accordingly on the second Arduino. A DIP switch connected
to the second Arduino will light a 7-segment display accordingly on the first Arduino.

You will now connect together two Arduinos, with pin D0 on one connected to D1 on the other, and vice
versa. Arduino 1 will contain a keypad and a 7-segment display. Arduino 2 will contain a DIP switch, a
debounced pushbutton, and a 7-segment display. Pressing a button on the keypad (rising edge on the data
pin) will transmit that number to Arduino 2, which will then show up on its 7-segment display. Pressing the
pushbutton (rising edge) on Arduino 2 will send the value of the DIP switch (which should only be a 4-bit
number) to Arduino 1, which will then show up on its 7-segment display. Ensure that the numeral being
transmitted is less than or equal to 9, so that it can show up on a single display.

Both Arduinos will use asynchronous normal mode with equal baud rates. Use external interrupts to trigger
the transmission of data over the USART. Use the USART_RX_vect interrupt to receive data. Use any method
that you want to display the data on the 7-segment displays. Both Arduinos have identical flowcharts, their
hardware will be different.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure all
peripherals

configure
I/O pins

ensure data
is ≤ 9

wait for
UDRE0 to be 1

Tx data to
other arduino

Rx’d data
= UDR0

display Rx’d data
on 7-seg display

se
tu

p(
)

IS
R(

IN
T0

_v
ec

t)

IS
R(

US
AR

T_
RX

_v
ec

t)

Arduino 1

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

Arduino 2

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 155 Spring 2024 Edition

Circuit III: Using the USART in SPI Mode

This circuit will display decimal characters 0–9 on a 7-segment display. Every 500 ms, the value on
the display will increment. After displaying 9, the display will cycle back to 0 again.

Repeat circuit 1 from lab 9 using the USART in SPI mode, rather than the dedicated SPI module. Because
the USART does not have support for a secondary select pin, you will choose any I/O pin to act as an
active-LOW secondary select signal. Clear the SS pin to enable data transmission before writing to UDR0,
then wait until the transmission is complete (by checking the TXC0 flag in the UCSR0A register) before setting
the SS pin again. Note: the TXC0 flag will not automatically reset itself after data transmission is complete.
In order to clear the flag, write a one to the TXC0 bit.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure I/O pins

configure USART
in SPI mode

define x = 0,
numArray[]

i < n

tx(numArray[i])

delay 500 ms

UDRE0

clear SS pin

UDR0 = data

TXC0

set SS pin

UCSR0A |=
0x40

se
tu

p(
)

lo
op

()

tx
(d

at
a)

FALSE

TRUE

1

0

1

0

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 156 Spring 2024 Edition

Lab 14 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Based on your calculations of memory usage in circuit 1, which is a more efficient means of writing
data to the serial monitor: using the USART registers or by using the Arduino “cheater” functions of
Serial.print?

• Based on the binary value of the ASCII character ’a’, and the oscilloscope trace when ’a’ was sent
through the USART, how is data sent through the USART? MSB first or LSB first? How do you
know?

• Based on the value you stored in UBRR0, what is the actual baud rate of circuits 1 and 2? Using 9600
baud as your accepted value, calculate the percent error.

• How did you choose to display the received data onto the 7-segment display in circuit 2? Consider all
parallel and serial output options, and determine if there could have been a better way to send data
to the display using fewer I/O pins.

• Compare circuit 3 in this lab to circuit 1 in lab 9. What are the benefits of using the dedicated SPI
module? What are the benefits of using the USART in SPI mode?

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

cbna Alyssa J. Pasquale, Ph.D. 157 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 158 Spring 2024 Edition

Pre-Lab 15
Carefully read the entirety of Lab 15, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. At what memory address can data start being written to SRAM?

2. What is the highest allowable memory address at which data can be written to SRAM?

3. Where are the ADC registers located, in the I/O register space, or in the extended I/O register space?

4. Based on the answer to the above question, can instructions such as IN and OUT be used to write to
the ADC status and control registers and read from the ADC result registers?

cbna Alyssa J. Pasquale, Ph.D. 159 Spring 2024 Edition

5. Use the question setup for circuits 2 and 3 to help determine the values of the following registers. Note
that if the value of a register is 0x00, then that register does not have to be configured in code.

(a) What will be the value of ADCSRA?

(b) What will be the value of ADCSRB?

(c) What will be the value of ADMUX?

cbna Alyssa J. Pasquale, Ph.D. 160 Spring 2024 Edition

Lab 15: Pointers and ADC in Assembly

In this lab, the pointer register X will be used to write data to different displays. This will demonstrate
the use of indirect addressing and accessing the data memory. In addition, the ADC will be configured and
used with AVR assembly. This lab is intended to build off of the knowledge introduced in lab 13. AVR
Concepts: pointer registers, data memory

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-15

15.1 Pointer Registers

There are three pointer registers in the general-purpose register space in SRAM on the ATmega328P. These
registers are 16-bit address pointers used for indirect addressing of the data memory space. Because each
register is 16 bits wide, it requires two general purpose registers in data memory. These registers are listed
in table 15.1 for each of the pointer registers.

Pointer Register High Byte Low Byte

X register r27 r26

Y register r29 r28

Z register r31 r30

Table 15.1: Register locations of each of the pointer registers.

The contents of each of the pointer registers can therefore be written directly by using load immediate
instructions. Pointer register X will be used in this lab. The pointer registers can then be used to indirectly
address the data space (which will be explained below).

15.2 SRAM Data Space

The SRAM on the ATmega328P is where temporary data is stored, as SRAM is a type of non-volatile
memory. Although data memory has been used frequently in previous labs using C, in C the read/write
process to data memory is a “behind-the-scenes” process. In assembly, it is necessary to have a larger
understanding of data memory and how it can be written to in order to utilize it in code.

Because assembly requires such a “hands-on” process for writing to data memory, this provides the freedom to
choose the exact addresses where data will be stored in memory. The data memory space of the ATmega328P
is shown in figure 15.1.

The lowest 256 addresses are reserved for general-purpose registers (including the pointer registers), I/O
registers (such as the data direction, port, and pin registers), and extended I/O registers (including registers
used to configure many of the peripheral features). In order to store data to the SRAM, the lowest address
that can be used is 0x0100 to avoid overwriting any of the other registers.

Data memory can be addressed directly, by including the address of the stored data’s memory location in
the assembly instruction, or indirectly, by using a pointer register. Both direct and indirect addressing will
be used in this lab.

cbna Alyssa J. Pasquale, Ph.D. 161 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-15

0x0000
32 GP Registers

0x001F
64 I/O Registers

0x005F
160 Ext. I/O

0x00FF

Internal SRAM

0x08FF

Figure 15.1: Data memory space of the ATmega328P microcontroller.

15.3 Data Direct Addressing

When configuring an I/O register, it is simplest to directly address these registers to write their configuration
values. The two data direct addressing instructions in the AVR instruction set follow.

• LDS – Load direct from data space

• STS – Store direct to data space

15.4 Data Indirect Addressing

To access data outside of the GP and I/O registers, direct addressing can no longer be used. Because
there are so many memory locations, the machine instruction must use several bits to point to the address in
memory that needs to be read from or written to. This is called indirect addressing. Data indirect addressing
occurs when the operand address is the contents of the X, Y or Z pointer register. This mode is used to access
extended I/O registers or the internal SRAM.

Indirect addressing can also be necessary when using a variable to address data (i.e. reading data from an
address that depends on the value of a variable), rather than reading/writing from/to a fixed location in
memory.

The two data indirect addressing instructions that will be used in this lab follow.

• LD – Load indirect

• ST – Store indirect

When many pieces of data are stored in subsequent memory addresses (such as an array would do in C), it
can be very useful to use post-incrementing to avoid having to increment the pointer register after each use.
Pre-decrementing is also a possibility in indirect addressing.

15.5 Binary to BCD Conversion

In previous labs, binary numbers have been converted into BCD values for use on segmented displays and
LCD screens. In this lab, an 8-bit number will be converted into BCD using assembly. The following
assembly code takes an 8-bit value stored in r20 and converts it into a hundred’s place value in r18, a ten’s
place value in r17, and a one’s place value in r22.

1 ; convert to BCD (hundreds place)
2 LDI r18 , -1
3
4 BCD1:

cbna Alyssa J. Pasquale, Ph.D. 162 Spring 2024 Edition

5 INC r18
6 SUBI r20 , 100
7 BRCC BCD1
8 ; (tens place)
9 LDI r21 , 100

10 ADD r20 , r21
11 LDI r17 , -1
12
13 BCD2:
14 INC r17
15 SUBI r20 , 10
16 BRCC BCD2
17 ; (ones place)
18 LDI r21 , 10
19 ADD r20 , r21
20 LDI r22 , -1
21
22 BCD3:
23 INC r22
24 SUBI r20 , 1
25 BRCC BCD3

cbna Alyssa J. Pasquale, Ph.D. 163 Spring 2024 Edition

Circuit I: Writing Numerals to 7-Segment Display

This circuit will display decimal characters 0–9 on a 7-segment display. Every 500 ms, the value on
the display will increment. After displaying 9, the display will cycle back to 0 again.

Use data indirect addressing to write numeral encodings into data memory, and then display numerals 0–9
onto a 7-segment display with a 500 ms delay in between each numeral. At this point, you have created a
similar piece of code in many other labs using both parallel and serial I/O in both C and assembly. This is
another way of accomplishing the same objective. Use the following website for the code to use for a delay:
http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure
output pins

use LDI and STS
to store numerals in

addr. 0x0100-0x0109

use LDI to initialize
register X to 0x0100

use LD X+ to write
from X to GP register

use OUT to write data
to segment pins

delay 500 ms

X == 10
TRUEFALSE

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 164 Spring 2024 Edition

http://darcy.rsgc.on.ca/ACES/TEI4M/AVRdelay.html

Circuit II: Conditional Lighting of LEDs from the ADC

This circuit will light up one LED if the value from the ADC (connected to a potentiometer) is
between 0–31; it will light two LEDs if the value from the ADC is between 32–63; it will light three
LEDs if the value from the ADC is between 64–95; and so on until all eight LEDs will be lit if the
value from the ADC is between 224–255.

Progressively light up a row of 8 LEDs based on the 8-bit value coming off of the ADC. (Carefully consider
how you will configure ADLAR to obtain data only from ADCH.) If the value is between 0–31, only one LED
will light. If the value is between 32–63, then two LEDs will light. If the value is between 64–95, three LEDs
will light. This continues until values between 224–255 will light up all eight LEDs.

The ADC will be used as follows: When you initially configure the ADC, start a conversion so that the data
has time to stabilize in the initial conversion. You will not use auto-triggering, nor will you use the ADC
interrupt. The prescaler will be 128. Use free-running mode. When you read data from the ADC, you will
need to re-write your control and status registers using the same configuration as before. ADMUX needs only
be configured once, in the circuit setup.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure
output pins

use LDI and STS
to store numerals in

addr. 0x0100-0x0107

use LDI to initialize
register X to 0x0100

configure ADC

wait 25 clock cycles
for data to stabilize

use LD X to write data
to the output pins

read data from ADC

wait 14 clock cycles
for data to stabilize

save data from ADCH
to GP register

determine which value
to load into X

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 165 Spring 2024 Edition

Circuit III: Displaying Potentiometer Value on MUX Display

This circuit will display the value from the ADC (coming from a potentiometer) onto a MUX 7-
segment display. As the potentiometer is rotated from one extreme to the next, the value on the
display will vary from 0–255.

Display the 8-bit value from the ADC on a MUX 7-segment display. (Because you are only going to be
using 8-bit precision on the ADC, carefully consider how you would configure ADLAR to obtain data only
from ADCH.) After writing to each cathode, call a subroutine to delay for 5 ms. The ADC will be configured
exactly the same as in circuit 2.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure
output pins

use LDI and STS
to store numerals in

addr. 0x0100-0x0107

use LDI to initialize
register X to 0x0100

configure ADC

wait 25 clock cycles
for data to stabilize

read data from ADC

wait 14 clock cycles
for data to stabilize

convert 8-bit data
to BCD

display 100’s place
call delaySubroutine

display 10’s place
call delaySubroutine

display 1’s place
call delaySubroutine

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 166 Spring 2024 Edition

Lab 15 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• Compare the data and program memory used in circuit 1 to that used in lab 3, circuit 1.

• Compare the data and program memory used in circuit 3 to that used in lab 3, circuit 3. (If you
did not finish that circuit, contact Dr. P to obtain average values of data and program memory from
previous semesters.)

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 167 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

cbna Alyssa J. Pasquale, Ph.D. 168 Spring 2024 Edition

Pre-Lab 16
Carefully read the entirety of Lab 16, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. What memory address locations correspond to the following interrupts?

(a) RESET?

(b) INT0?

(c) ADC?

(d) TIMER1_COMPA?

2. Are interrupt pointers stored in data memory or program memory?

cbna Alyssa J. Pasquale, Ph.D. 169 Spring 2024 Edition

3. In circuit 2, fast PWM will be used to generate a frequency as close as possible to 1 kHz with timer/-
counter 0 counting to MAX.

(a) What value prescaler is necessary to achieve this objective?

(b) What is the actual frequency that corresponds to the use of this prescaler? Show all of your work.

4. In circuit 3, what value of OCR1A is required for 500 ms interrupts? Express this value in hexadecimal.

5. In circuit 4, why use the WDR instruction before configuring the WDTCSR register?

6. Consult lab 5, circuit 3. What are the two steps that are required to configure the WDTCSR register?

cbna Alyssa J. Pasquale, Ph.D. 170 Spring 2024 Edition

Lab 16: Interrupts and WDT in Assembly
In this lab, interrupts will be used in assembly to light an LED to different brightness levels or to blink an
LED on and off. The watchdog timer will be used as well. A special emphasis will be on understanding the
purpose of the status register of the microcontroller. AVR Concepts: .org directive, status register SREG

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-16

16.1 Interrupt Review
External interrupts were the focus of lab 5. In addition, software interrupts have been utilized in many
labs. These include timed interrupts (lab 6), SPI interrupts (lab 9), USART interrupts (lab 14), and the
analog/digital converter interrupt (lab 2). This lab will build off of that knowledge to implement interrupts
in assembly language.

Each interrupt vector is given a program address on the microcontroller. At this program address, a pointer
to a subroutine is given. That interrupt subroutine will then be accessed if the corresponding interrupt is
invoked. Refer to Appendix C for a list of all of the interrupt vectors and program addresses.

If an interrupt is enabled, it is vitally important to have a valid pointer located at the appropriate program
address. If there is an invalid pointer, then the program may not go to the correct location in program
memory when an interrupt is invoked. (This is similar to enabling interrupts in C and then not writing an
ISR(INTERRUPT_vect) function.)

Recall that interrupts are never invoked in software, they are automatically called in hardware when an event
has occurred. However, the microcontroller needs to be informed when the interrupt is done being serviced.
The following code shows how to return from interrupt instruction, using the RETI instruction.

1 InterruptServiceRoutine:
2 ; do whatever needs to be done in the ISR
3 RETI

16.2 .org Directive
In order to write a pointer to the correct program address, the program counter needs to be told to move
to a certain location in program memory. This is accomplished using the .org directive. Specifically, the
microcontroller needs to be told what to do in case of a RESET interrupt, and also what to do in case of any
of the interrupts that are specifically enabled in software.

The following lines of assembly code demonstrate how to enable both the RESET and INT0 interrupts.

1 .org 0x0000
2 RJMP setup
3 .org 0x0002
4 RJMP EXT_INT0
5
6 setup:
7 ; setup code goes here
8
9 loop:

10 ; repeating loop code goes here

cbna Alyssa J. Pasquale, Ph.D. 171 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-16

11 JMP loop
12
13 ; INT0 vector
14 EXT_INT0:
15 ; code to be executed during an INT0 interrupt
16 RETI

16.3 Status Register SREG

It is important to have a good understanding of the status register SREG when using assembly, especially
with interrupts. The global interrupt flag that exists in SREG has previously been discussed in the context of
disabling and enabling interrupts. However, there are many bits in SREG that control the flow of software. For
example, when compare or branch instructions are used in assembly, flags in SREG are checked to determine
whether or not to branch to a subroutine.

Because an interrupt can be invoked in between a compare instruction and a branch instruction, when a
particular value stored in SREG is of vital importance, it is necessary to store the value of SREG at the start
of all interrupt service routines, and then restore that data before returning back to the regular code. An
example follows.

1 INTERRUPT_SUBROUTINE:
2 IN r15 , SREG ; save the contents of SREG in a GP register
3 ; do whatever needs to be done in the ISR
4 OUT SREG , r15 ; restore the original contents of SREG
5 RETI

cbna Alyssa J. Pasquale, Ph.D. 172 Spring 2024 Edition

Circuit I: Pushbutton LED Toggle with Interrupts

When a pushbutton is pressed, an LED will light up. Otherwise, the LED will remain off.

Download the file lab16_circuit1.txt. Connect a pushbutton (with 10 kΩ pull-down resistor) to pin D2.
Connect an LED (with current-limiting resistor) to pin D11. The LED should light when the pushbutton is
pressed.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

configure D11
as output

configure
external interrupts

do nothing

INT0 ISR

clear D11

D2

set D11

1

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 173 Spring 2024 Edition

Circuit II: Variable Intensity LED

This circuit will have a potentiometer control the brightness of an LED using PWM. As the poten-
tiometer is rotated from one extreme to the next, the LED will go from being completely off to having
full brightness.

Use fast PWM counting to MAX at a frequency as close as possible to 1 kHz. You will use a potentiometer
connected to the pin of your choice to control the brightness of an LED. As you rotate the potentiometer
from one extreme to the other, the LED will either become brighter or dimmer.

Because you want to set the value of OCR0A, which is an 8-bit register, exactly equal to ADCH, carefully
consider how you will need to configure ADLAR such that the 8 most significant analog/digital converter
result bits are located in that register. The ADC will otherwise be configured exactly as you have done in
labs in which you used C code.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure OC0A
as output

configure TCCR0A,
TCCR0B, & OCR0A

configure ADC

do nothing

ADC ISR

OCR0A = ADCH

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 174 Spring 2024 Edition

Circuit III: Timed Blinking of LED

This circuit will blink an LED on and off at regular intervals.

Use timer/counter 1 to trigger an interrupt every 500 ms to toggle an LED located at pin D7. Do not use
PWM for this circuit. It is important to note the order of the flowchart given. Configure the timer/counter
1 registers before configuring the output compare register A. When writing to a 16 bit register in assembly,
it is imperative to write the high byte before writing to the low byte.

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure D7
as output

configure TCCR1A,
TCCR1B, & TIMSK1

write to OCR1AH
then OCR1AL

do nothing

COMPA ISR

toggle LED

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 175 Spring 2024 Edition

Circuit IV: Watchdog Timer

This circuit will flash a setup LED. Then, a second LED will be lit and the code will do nothing until
the WDT is triggered and a reboot occurs.

Set up two different colored LEDs to different digital pins on the Arduino. Write code that sets up the
WDT to timeout after 4 seconds. (It is important to write a WDR command before configuring the WDT
to prevent any possible premature time-outs.) This circuit is going to be a little different from lab 5
circuit 3. Rather than looping through increasingly large delay times, you will let the watchdog timer
time-out by doing nothing. A video demonstration of this circuit is available on Dr. P’s YouTube channel:
https://youtu.be/iWqjtBQRcCk

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure pins
turn on setup LED

WDR

configure WDTCSR
(takes 2 steps)

wait 500 ms

turn off setup LED
turn on main LED

WDR

do nothing

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 176 Spring 2024 Edition

https://youtu.be/iWqjtBQRcCk

Lab 16 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• (there are no special additions to make to this lab report)

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 177 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

cbna Alyssa J. Pasquale, Ph.D. 178 Spring 2024 Edition

Pre-Lab 17
Carefully read the entirety of Lab 17, then answer the following questions. Attach a separate sheet of paper,
if necessary, to show all work and calculations.

1. In circuit 1, register r16, which contains the contents of the PIND register, is complemented using the
COM instruction. Why is this?

2. In circuit 1, how is the pin-change interrupt configured to update the LEDs only on rising edges of the
pushbutton?

3. In circuit 1, what instruction is used to bitshift the contents of the PIND register?

4. In circuit 1, explain the purpose of the ANDI r16, 0x3F instruction that is included in the interrupt
service routine.

cbna Alyssa J. Pasquale, Ph.D. 179 Spring 2024 Edition

5. In circuit 2, what is the largest possible value of the sum that can exist?

6. In circuit 3, the rolling sum of DIP switch values will be displayed onto LEDs. If the DIP switch uses
8 pins, and one pin is used for a pushbutton, how many pins are left over for LEDs?

7. As a consequence of the above question, what is the highest value that can be stored in the sum in
order for the LED display not to overflow?

8. In circuit 4, what is the highest value that can be stored in the sum?

cbna Alyssa J. Pasquale, Ph.D. 180 Spring 2024 Edition

Lab 17: Greater Than 8-Bit Math in Assembly
In this lab, addition will be performed on numbers that are 8-bits or larger, leading to math that requires
more than one 8-bit register to store the result. Each circuit will add incrementally on to the last one, until
a rolling sum of data from a DIP switch can be displayed onto a MUX display.

For lab resources and information, go to the following URL or scan the
QR code. doctor-pasquale.com/microcontrollers-lab-17

17.1 Greater Than 8 Bit Operations
When writing C code, it is trivial to use datatypes such as int or long that store variables that take up more
than 8 bits of space. However, the ATmega328P is an 8-bit microcontroller, so (most) all of the registers
on the microcontroller are only capable of handling 8 bits of data at once. Therefore, to execute math on
data that is greater than 8-bits, it needs to be broken up into pieces. The following examples are for 16-bit
operations, but it is possible to scale these up if it is necessary to add data that has more than two bytes.

Each of the following examples in this lab introduction use the following general purpose registers for each
of the following pieces of data.

1 ; r16 = low byte A
2 ; r17 = high byte A
3 ; r18 = low byte B
4 ; r19 = high byte B
5 ; result is given in registers r16 (LOW) and r17 (HIGH)

17.1.1 Addition

Addition must be accomplished between two general purpose registers, as there are no immediate addition
instructions. As with most 16-bit arithmetic, it is necessary to add the low bytes first. This is the same
as with adding two numbers by hand: start with the least significant digit in case there are carries that
cascade to subsequent digits. All of the carries internal to each byte is dealt with automatically by the
microcontroller’s hardware. However, the carry from the low byte needs to be added into the high byte.
This is accomplished by using an add with carry instruction on the high byte.

1 ADD r16 , r18 ; r16 <-- r16 + r18
2 ADC r17 , r19 ; r17 <-- r17 + r19 + carry

17.1.2 Subtraction

Subtraction can be accomplished both using register addressing and immediate addressing. The register
addressing steps are very similar to those used for addition. Recall that in subtraction, borrows are necessary.
Just as with subtracting by hand, it is necessary to start with the lowest byte and then continue to the highest
byte.

1 SUB r16 , r18 ; r16 <-- r16 - r18
2 SBC r17 , r19 ; r17 <-- r17 - r19 - borrow

It is also possible to use immediate subtraction instructions. In this case, a constant, immediate value can
be subtracted from a GP register. It will be easiest to express this value as a hexadecimal number. The
following example demonstrates the subtraction of 200010 (0x07D0) from the data in registers r16 and r17.

cbna Alyssa J. Pasquale, Ph.D. 181 Spring 2024 Edition

https://doctor-pasquale.com/microcontrollers-lab-17

1 SUBI r16 , 0xD0 ; r16 <-- r16 - 0xD0
2 SBCI r17 , 0X07 ; r17 <-- r17 - 0x07 - borrow

17.1.3 Comparisons

Comparison between two 16-bit values can be accomplished using register addressing. This is very similar
to the previous operations. After the compare with carry instruction, the branch instruction can be used.

1 CP r16 , r18
2 CPC r17 , r19

17.2 Toggling in Assembly
At times, it is useful to store the two most recent pieces of data into a circular buffer. Rather than incre-
menting the array index (as is done in larger circular buffers), the index can be toggled using a bitwise XOR
with the number one. This will toggle a variable between 0 and 1. While this may have been straightforward
to do in C, it can still be accomplished in assembly, albeit in a very different manner.

The T flag in SREG can be toggled every time the condition is met to change the value of the circular buffer
index. (Note that there is no toggle instruction; one of the objectives of circuit 2 in this lab will be to
determine how to accomplish this.) If the T flag is set, then data will be saved to a particular memory
location; otherwise it will be saved to a different memory location.

cbna Alyssa J. Pasquale, Ph.D. 182 Spring 2024 Edition

Circuit I: Display DIP Switch Value on LEDs with Pin Change Interrupt

This circuit will display the binary value of a DIP switch onto 8 LEDs. The LEDs will change their
values only when a pushbutton has a rising-edge.

Download the file lab17_circuit1.txt. Figure 17.1 is a schematic for this circuit. It is important to note
how the DIP switch is connected. There are no external resistors used because internal pull-ups are going
to be activated. Use a debounced pushbutton (with pull-down resistor) connected to pin A5 to trigger the
input (this is not shown on the schematic below).

DIP
switch

D7

D6

D5

D4

D3

D2

D1

D0

A1

D8

D9

D10

D11

D12

D13

A0

Figure 17.1: Circuit diagram for the DIP switch (left) and LEDs (right).

Do not take this circuit apart when you are done, as you will build on it for subsequent circuits!
When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. You will not
need to submit the software code.

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 183 Spring 2024 Edition

Circuit II: Add Two Most Recent DIP Switch Values onto LEDs

This circuit will display the sum of the two most recent DIP switch values in binary on LEDs. The
sum value will update every time a button is pressed.

Build onto the previous circuit. You will need one additional LED to represent the 9-bit output. This circuit
will add the most recent (stored when a pushbutton has a rising edge) two DIP switch values together, and
display the binary value of the output onto the LEDs. This will not be a rolling sum, it will just be the sum
of the most recent two DIP switch values.

Use the T flag in SREG to determine when you should store data to one GP register vs. another. Every time
the button is pressed, toggle the T flag and if it is set, save the DIP switch value to one GP register and if it
is cleared, save the DIP switch value to another GP register, and then add those two GP registers together
in the looping section of the code. Note that there are no toggle instructions for the T flag so you will have
to determine how to change the value from 0–1 or 1–0.

Do not take this circuit apart when you are done, as you will build on it for subsequent circuits!
When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure I/O pins

configure pin-change
interrupts

add contents of
two GP registers

light the LEDs
accordingly

PCINT1 ISR
check for rising edge

or leave ISR

input data
from PIND

T flag

save to a GP reg
toggle T flag

leave ISR

save to a
different GP reg

toggle T flag
leave ISR

0

1

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 184 Spring 2024 Edition

Circuit III: Add Rolling DIP Switch Values onto LEDs

This circuit will display the rolling sum of DIP switch values in binary on LEDs. The sum value will
update every time a button is pressed.

Build onto the previous circuit. You will now use as many LEDs as you can given the number of I/O pins
that exist on the Arduino Uno board. What changes in this circuit is that you will create a rolling sum of
all of the DIP switch values that are registered when the pushbutton has a rising edge.

Because you are always going to be storing new data into a single GP register, you no longer need to use
the T flag of SREG to determine where to store the data, as no toggling will take place. The difficulty in
this circuit is in dealing with numbers that are larger than 8-bits and in determining if the result data has
overflowed (cannot be shown using the number of LEDs that you have available on your circuit).

If you would like to manually reset the sum back to zero at any time, simply press the reset button on the
Arduino board. (This will save us from having to use another I/O pin on the Arduino and further limit our
maximum stored value.)

Do not take this circuit apart when you are done, as you will build on it for subsequent circuits!
When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

configure I/O pins

configure pin-change
interrupts

overflow?
clear sum
registers

light the LEDs
accordingly

PCINT1 ISR
check for rising edge

or leave ISR

input data
from PIND

update rolling sum
leave ISR

yes

no

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 185 Spring 2024 Edition

Circuit IV: Add Rolling DIP Switch Values onto MUX Display

This circuit will display the rolling sum of DIP switch values in decimal on a MUX 7-segment display.
The sum value will update every time a button is pressed.

Build onto the previous circuit. You will now use a MUX display instead of LEDs. Now you can store a
much larger rolling sum, as the MUX display is able to show numeral values up to 9,999. To convert your
rolling sum to BCD values, use the code provided to convert a number into four BCD values corresponding
to thousands, hundreds, tens, and ones places. Use the pointer register X to display each numeral value
as you did in Lab 15. The difficulty in this circuit is using the limited pins available on ports B and C to
configure the seven segments and four cathodes/anodes (depending on your MUX display configuration).

If you would like to manually reset the sum back to zero at any time, simply press the reset button on the
Arduino board. It is possible that this won’t work. In that case, simply re-upload your code to reset the
Arduino board. (This issue can be fixed if an external programmer is available.)

When the circuit is functioning properly, demonstrate it to your instructor to receive a stamp. Submit your
software code as directed by your instructor.

store numeral
encodings in SRAM

configure I/O pins
& interrupts

overflow?
clear sum
registers

convert binary
to BCD

display 1000’s place
delay 5 ms

display 100’s place
delay 5 ms

display 10’s place
delay 5 ms

display 1’s place
delay 5 ms

PCINT1 ISR
check for rising edge

or leave ISR

input data
from PIND

update rolling sum
leave ISR

yes

no

Program Memory: bytes

Data Memory: bytes

Instructor Stamp:

cbna Alyssa J. Pasquale, Ph.D. 186 Spring 2024 Edition

Lab 17 Report
Include the following information in your lab report. Your lab report may be completed in any approved
format listed in the syllabus. Take particular care to use accurate technical information (i.e. stay away
from ambiguous or imprecise words such as “always”, “best”, “sort of”, “several”, “lots of”, etc.). Include
headings for each section.

The Writing, Reading, Speech Assistance Center at COD is a great resource if you are not comfortable with
writing. Technical writing is an important aspect of being an engineer, whether or not you believe it to be
true at this stage in your career.

Note that the use of ChatGPT or other Artificial Intelligence in your lab report must abide by the require-
ments listed in the class syllabus.

Introduction
Give an overview of the objectives of the labs and the important concepts that were covered. Use your own
words – do NOT just copy the lab introduction.

Procedure and Results
Explain how each of the circuits was coded, and what they accomplished. Ensure that your explanation
explores both the software and hardware components to the overall functionality. Include the pins that were
used on the Arduino, an explanation of all constants and derived terms, any libraries that were used, etc.

Based on the feedback you’ve received on your code, and anything new you’ve learned since the lab, what,
if any, changes would you make to your code?

In this lab report, specifically include the following information in the Procedure and Results section:

• (there are no special additions to make to this lab report)

Circuit Diagrams
Include circuit diagrams using an approved schematic software (hand-drawn schematics will not be accepted).
Label each one with the corresponding circuit number(s). If any circuits had identical wiring, there is no
need to include two copies.

Challenges
Briefly describe any challenges that you or your lab partner(s) encountered in the lab, and how you overcame
them. If the challenges were not resolved, explain how you might prevent similar challenges from occurring
in the future. If there were no significant problems, describe how you were able to work well as a team to
accomplish that.

Conclusion
Wrap up all of the key concepts from your lab report in a paragraph.

Feedback (Optional)
Include an optional section with feedback about the lab. What did you find useful? What was difficult to
understand? What would you change? Were there any resources you wish you had to help you with the lab?
Does this give you any ideas of things you’d like to learn about going forward?

cbna Alyssa J. Pasquale, Ph.D. 187 Spring 2024 Edition

https://www.cod.edu/academics/learning_commons/writing/

cbna Alyssa J. Pasquale, Ph.D. 188 Spring 2024 Edition

Appendix A: Register and Fuse Descriptions

List of Registers and Fuses

ADCH and ADCL – ADC Data Register . 191

ADCSRA – ADC Control and Status Register A . 191

ADCSRB – ADC Control and Status Register B . 192

ADMUX – ADC Multiplexer Selection Register . 192

CLKPR – Clock Prescale Register . 194

DDRB – Port B Direction Register . 194

DDRC – Port C Direction Register . 194

DDRD – Port D Direction Register . 195

EICRA – External Interrupt Control Register A . 195

EIMSK – External Interrupt Mask Register . 195

Extended Fuse Byte . 196

High Fuse Byte . 196

Low Fuse Byte . 197

OCR0A – Timer/Counter 0 Output Compare Register A . 199

OCR0B – Timer/Counter 0 Output Compare Register B . 199

OCR1AH and OCR1AL – Timer/Counter 1 Output Compare Register A 199

OCR1BH and OCR1BL – Timer/Counter 1 Output Compare Register B 199

OCR2A – Timer/Counter 2 Output Compare Register A . 200

OCR2B – Timer/Counter 2 Output Compare Register B . 200

PCICR – Pin Change Interrupt Control Register . 200

PCMSK0 – Pin Change Mask Register 0 . 200

PCMSK1 – Pin Change Mask Register 1 . 201

PCMSK2 – Pin Change Mask Register 2 . 201

PINB – Port B Input Pins Address . 201

PINC – Port C Input Pins Address . 201

PIND – Port D Input Pins Address . 201

PORTB – Port B Data Register . 202

cbna Alyssa J. Pasquale, Ph.D. 189 Spring 2024 Edition

PORTC – Port C Data Register . 202

PORTD – Port D Data Register . 202

PRR – Power Reduction Register . 202

SPCR – SPI Control Register . 203

SPDR – SPI Data Register . 204

SPSR – SPI Status Register . 204

SREG – AVR Status Register . 204

TCCR0A – Timer/Counter 0 Control Register A . 205

TCCR0B – Timer/Counter 0 Control Register B . 207

TCCR1A – Timer/Counter 1 Control Register A . 207

TCCR1B – Timer/Counter 1 Control Register B . 210

TCCR1C – Timer/Counter 1 Control Register C . 211

TCCR2A – Timer/Counter 2 Control Register A . 211

TCCR2B – Timer/Counter 2 Control Register B . 212

TCNT0 – Timer/Counter 0 Register . 213

TCNT1H and TCNT1L – Timer/Counter 1 Register . 213

TCNT2 – Timer/Counter 2 Register . 213

TIMSK0 – Timer/Counter 0 Interrupt Mask Register . 214

TIMSK1 – Timer/Counter 1 Interrupt Mask Register . 214

TIMSK2 – Timer/Counter 2 Interrupt Mask Register . 214

UBRR0H and UBRR0L – USART Baud Rate Registers . 215

UCSR0A – USART Control and Status Register A . 215

UCSR0B – USART Control and Status Register B . 216

UCSR0C – USART Control and Status Register C . 217

UDR0 – USART I/O Data Register . 219

WDTCSR – Watchdog Timer Control Register . 219

cbna Alyssa J. Pasquale, Ph.D. 190 Spring 2024 Edition

ADCH and ADCL – ADC Data Register

The AVR has a 10-bit ADC, so data needs to be split between two registers. Depending on if the data
is left-adjusted or right-adjusted (as set in ADLAR), the data will be stored differently in the register.

ADLAR = 0

7 6 5 4 3 2 1 0

– – – – – – ADC9 ADC8

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

ADLAR = 1

7 6 5 4 3 2 1 0

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADC1 ADC0 – – – – – –

ADCSRA – ADC Control and Status Register A

This register stores information about how the ADC is to be used. It is used in conjunction with
ADCSRB.

7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

• ADEN – ADC enable. This bit must be set for the ADC to work.

• ADSC – ADC start conversion. This bit must be set for the ADC to start processing data.

• ADATE – ADC auto trigger enable. This bit must be set for the ADC to automatically process
data.

• ADIF – ADC interrupt flag. This bit is automatically set when the ADC is finished converting
and is automatically cleared upon servicing the corresponding interrupt service routine.

• ADIE – ADC interrupt enable. When set, this creates an interrupt condition every time the ADC
is finished converting data. This interrupt will be used to obtain the result of the conversion.

• ADPS[2:0] – ADC prescaler select bits. This has to do with how much slower the ADC clock
will be compared to the CPU clock.

ADPS2 ADPS1 ADPS0 Prescaler

0 0 0 CLKCPU ÷ 2

0 0 1 CLKCPU ÷ 2

0 1 0 CLKCPU ÷ 4

0 1 1 CLKCPU ÷ 8

1 0 0 CLKCPU ÷ 16

cbna Alyssa J. Pasquale, Ph.D. 191 Spring 2024 Edition

1 0 1 CLKCPU ÷ 32

1 1 0 CLKCPU ÷ 64

1 1 1 CLKCPU ÷ 128

ADCSRB – ADC Control and Status Register B

A single register is not large enough to contain all information about how to run the ADC, therefore
this register stores additional information about how the ADC is to be used.

7 6 5 4 3 2 1 0

– ACME – – – ADTS2 ADTS1 ADTS0

• ACME – Analog comparator multiplexer enable.

• ADTS[2:0] – ADC auto trigger source. These three bits are given values equal to the auto
trigger source that is required, provided in the table below.

ADTS2 ADTS1 ADPT0 Trigger Source

0 0 0 Free running mode

0 0 1 Analog comparator

0 1 0 External interrupt request 0

0 1 1 Timer/counter 0 compare match A

1 0 0 Timer/counter 0 overflow

1 0 1 Timer/counter 1 compare match B

1 1 0 Timer/counter 1 overflow

1 1 1 Timer/counter 1 capture event

ADMUX – ADC Multiplexer Selection Register

This register contains information about the reference voltage to be used by the ADC, and which pin
is to be used for data input.

7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0

• REFS[1:0] – Reference selection bits. These bits set the reference voltage for the ADC. The
possible voltage reference selections are given in the table. When using either AVCC or the
internal 1.1 V reference, it is recommended to put an external capacitor between the AREF pin
and ground if noise immunity is required.

REFS1 REFS0 Voltage Reference

cbna Alyssa J. Pasquale, Ph.D. 192 Spring 2024 Edition

0 0 AREF (VREF turned off)

0 1 AVCC

1 0 Reserved (not allowed)

1 1 Internal 1.1 V

• ADLAR – ADC left adjust result. This bit determines how the information for the 10-bit result is
saved in the two 16-bit registers. If ADLAR is set, the result will be left-adjusted (i.e. the MSB
will be saved in bit 7 of the high data register, and the LSB will be saved in bit 6 of the low
data register). If ADLAR is clear, the result will be right-adjusted (i.e. the MSB will be saved in
bit 1 of the high data register, and the LSB will be saved in bit 0 of the low data register).

• MUX[3:0] – Analog channel selection bits. The ADC can choose between several input pins from
which to convert data. The MUX[3:0] bits act as the 4-bit control bits on the input voltage
selection multiplexer. The possible input sources are given in the table below. If data needs
to come from several different pins, these bit values will need to be changed correspondingly in
the code.

MUX3 MUX2 MUX1 MUX0 Input Voltage Selection

0 0 0 0 ADC0

0 0 0 1 ADC1

0 0 1 0 ADC2

0 0 1 1 ADC3

0 1 0 0 ADC4

0 1 0 1 ADC5

0 1 1 0 ADC6

0 1 1 1 ADC7

1 0 0 0 Temperature Sensor

1 0 0 1 Reserved (not used)

1 0 1 0 Reserved (not used)

1 0 1 1 Reserved (not used)

1 1 0 0 Reserved (not used)

1 1 0 1 Reserved (not used)

1 1 1 0 1.1 V

1 1 1 1 0 V

cbna Alyssa J. Pasquale, Ph.D. 193 Spring 2024 Edition

CLKPR – Clock Prescale Register

This register configures the system clock prescaler value. It will affect every synchronous peripheral
on the ATmega328P microcontroller. Setting the prescaler is a two step process. First, the CLKPCE
bit must be set. Then, the register must be set equal to the corresponding value with CLKPCE clear
and the CLKPS bits configured as needed.

7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS[3:0]

• CLKPCE – Clock prescaler change enable. When written to one, the clock prescaler can be
configured within the next four clock cycles.

• CLKPS[3:0] – Clock prescaler select bits. These bits define the prescaler value used on the
system clock. Any value can be written to these bits regardless of the CKDIV8 fuse setting. The
possible values are given below. Values 1001 – 1111 are reserved.

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Prescaler

0 0 0 0 ÷ 1

0 0 0 1 ÷ 2

0 0 1 0 ÷ 4

0 0 1 1 ÷ 8

0 1 0 0 ÷ 16

0 1 0 1 ÷ 32

0 1 1 0 ÷ 64

0 1 1 1 ÷ 128

1 0 0 0 ÷ 256

DDRB – Port B Direction Register

7 6 5 4 3 2 1 0

– – DDB[13:8]

• DDB[13:8] – Refers to the data direction of digital pins 13–8. 0 (default) is input, 1 is output.

DDRC – Port C Direction Register

7 6 5 4 3 2 1 0

– – DDC[5:0]

• DDC[5:0] – Refers to the data direction of analog pins 5–0. 0 (default) is input, 1 is output.

cbna Alyssa J. Pasquale, Ph.D. 194 Spring 2024 Edition

DDRD – Port D Direction Register

7 6 5 4 3 2 1 0

DDD[7:0]

• DDD[7:0] – Refers to the data direction of digital pins 7–0. 0 (default) is input, 1 is output.

EICRA – External Interrupt Control Register A

This register stores information about how external interrupts should be triggered on pins D2 and
D3.

7 6 5 4 3 2 1 0

– – – – ISC11 ISC10 ISC01 ISC00

• ISC1[1:0] – Interrupt sense control 1 bits 1 and 0. These two bits control how the interrupt
on external pin INT1 (D3) will be triggered. The four options are shown in the table below.

• ISC0[1:0] – Interrupt sense control 0 bits 1 and 0. These two bits control how the interrupt
on external pin INT0 (D2) will be triggered. The four options are shown in the table below.

Bit 1 Bit 0 Description

0 0 Calls the ISR when the value on the pin is low

0 1 Calls the ISR when the value on the pin changes

1 0 Calls the ISR when the value on the pin changes from 1–0

1 1 Calls the ISR when the value on the pin changes from 0–1

EIMSK – External Interrupt Mask Register

This register contains two bits to enable interrupts on pins D2 and D3.

7 6 5 4 3 2 1 0

– – – – – – INT1 INT0

• INT1 – If this bit is set, interrupts will be enabled on external pin INT1 (D3).

• INT0 – If this bit is set, interrupts will be enabled on external pin INT0 (D2).

cbna Alyssa J. Pasquale, Ph.D. 195 Spring 2024 Edition

Extended Fuse Byte

This fuse configures the brown-out detection unit.

7 6 5 4 3 2 1 0

– – – – – BODLEVEL[2:0]

• BODLEVEL[2:0] – Brown-out detection trigger level. Programming these bits changes the cutoff
for brown-out detection on the microcontroller, according to the following table (which gives
values for minimum, maximum, and typical brown-out detection values). Values 000 – 011 are
reserved.

BODLEVEL2 BODLEVEL1 BODLEVEL0 VMIN (V) VTYP (V) VMAX (V)

1 1 1 brown-out detection disabled

1 1 0 1.7 1.8 2.0

1 0 1 2.5 2.7 2.9

1 0 0 4.1 4.3 4.5

High Fuse Byte

This fuse configures features that are relevant to programming and debugging the ATmega328P.

7 6 5 4 3 2 1 0

RSTDISBL DWEN SPIEN WDTON EESAVE BOOTSZ1 BOOTSZ0 BOOTRST

• RSTDISBL – External reset disable. If this bit is programmed (value of 0), pin PC6 can be used
as a general purpose I/O pin instead of a reset pin.

• DWEN – debugWIRE enable. If this bit is programmed (value of 0), the debugWIRE system will
be enabled.

• SPIEN – Enable serial program and data downloading. When programmed (value of 0), SPI
programming is enabled.

• WDTON – Watchdog timer always on. When programmed (value of 0), the watchdog timer is
always on.

• EESAVE – EEPROM memory preserved through chip erase. When programmed (value of 0),
memory in EEPROM is preserved when the data memory on the chip is rewritten.

• BOOTSZ[1:0] – Select boot size. These bits configure the size of the bootloader memory in
flash. When not using a bootloader, configure these to use the least amount of space. These
bits should be configured as given in the table below.

• BOOTRST – Select reset vector. If this bit is programmed (value of 0), program execution will
start from the bootloader section of code.

cbna Alyssa J. Pasquale, Ph.D. 196 Spring 2024 Edition

BOOTSZ1 BOOTSZ0
Bootloader
Size

Application
Memory

Bootloader
Memory

1 1 256 bytes 0x0000 – 0x3EFF 0x3F00 – 0x3FFF

1 0 512 bytes 0x0000 – 0x3DFF 0x3E00 – 0x3FFF

0 1 1024 bytes 0x0000 – 0x3BFF 0x3C00 – 0x3FFF

0 0 2048 bytes 0x0000 – 0x37FF 0x3800 – 0x3FFF

Low Fuse Byte

This fuse configures the clock source and startup time of the microcontroller.

7 6 5 4 3 2 1 0

CKDIV8 CKOUT SUT1 SUT0 CKSEL3 CKSEL2 CKSEL1 CKSEL0

• CKDIV8 – Divide clock by 8. If this bit is programmed (0), the system clock is prescaled by a
factor of 8. This can be changed in hardware with the CLKPR register.

• CKOUT – Clock output. If this bit is programmed (0), the clock is output on pin 0 of port B.

• SUT[1:0] – Select start-up time. These two bits control the start-up time of the ATmega328P
microcontroller. Clock sources require a sufficiently high value of Vcc before it starts oscillating,
and it must oscillate a sufficient number of times before the clock can be considered stable. A
time-out delay (tTOUT) is used after device reset to ensure a sufficient value of Vcc. The value
of these bits must be considered carefully based on the clock source (see CKSEL bits, below) and
whether or not the brown-out detection is used. (Using brown-out detection ensures there is a
sufficient value of Vcc and reduces the delay necessary at start-up.)

• CKSEL[3:0] – Select clock source. These four bits control the clock source used for the AT-
mega328P microcontroller. The clock options are given in the table below. All clock sources
not explicitly labeled as “internal” require an external crystal or ceramic oscillator.

CKSEL[3:0] Clock Source Frequency

1111 – 1110 Low Power Oscillator 8.0 – 16.0 MHz

1101 – 1100 3.0 – 8.0 MHz

1011 – 1010 0.9 – 3.0 MHz

1001 – 1000 0.4 – 0.9 MHz

0111 – 0110 Full Swing Oscillator 0.4 – 20 MHz

0101 – 0100 Low Frequency Crystal Oscillator 32.768 kHz

0011 Internal 128 kHz RC Oscillator 128 kHz

0010 Calibrated Internal RC Oscillator 7.3 – 8.1 MHz

0001 Reserved

0000 External Clock 0 – 20 MHz

cbna Alyssa J. Pasquale, Ph.D. 197 Spring 2024 Edition

The following values of CKSEL0 and SUT[1:0] are used with both low power and full swing ceramic
resonators and crystal oscillators. These clock sources must be connected between pins XTAL2 and
XTAL1 with appropriate capacitance values as given by the ATmega328P datasheet.

CKSEL0 SUT[1:0]
Oscillator
Source Conditions Start-Up Time tTOUT

0 00 Ceramic
resonator Fast start-up 258 CK 14 CK + 4.1 ms

0 01 Slow start-up 14 CK + 65 ms

0 10 BOD enabled 1K CK 14 CK

0 11 Fast start-up 14 CK + 4.1 ms

1 00 Slow start-up 14 CK + 65 ms

1 01 Crystal oscillator BOD enabled 16K CK 14 CK

1 10 Fast start-up 14 CK + 4.1ms

1 11 Slow start-up 14 CK + 65 ms

The following values of CKSEL0 and SUT[1:0] are used with 32.768 kHz watch crystal oscillators.

CKSEL0 SUT[1:0] Conditions Start-Up Time tTOUT

0 00 Fast start-up or BOD enabled 1K CK 4 CK

0 01 Slow start-up 4 CK + 4.1 ms

0 10 Stable frequency at start-up 4 CK + 65 ms

0 11 Reserved

1 00 Fast start-up or BOD enabled 32K CK 4 CK

1 01 Slow start-up 4 CK + 4.1 ms

1 10 Stable frequency at start-up 4 CK + 65 ms

1 11 Reserved

The following values of SUT[1:0] are used with both of the internal RC oscillators as well as with
the external clock.

SUT[1:0] Conditions Start-Up Time tTOUT

00 BOD enabled 6 CK 14 CK

01 Fast start-up 14 CK + 4.1 ms

10 Slow start-up 14 CK + 65 ms

11 Reserved

cbna Alyssa J. Pasquale, Ph.D. 198 Spring 2024 Edition

OCR0A – Timer/Counter 0 Output Compare Register A

This register contains an 8-bit value that is continuously compared with the value in TCNT0. A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC0A
pin.

7 6 5 4 3 2 1 0

OCR0A[7:0]

OCR0B – Timer/Counter 0 Output Compare Register B

This register contains an 8-bit value that is continuously compared with the value in TCNT0. A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC0B
pin.

7 6 5 4 3 2 1 0

OCR0B[7:0]

OCR1AH and OCR1AL – Timer/Counter 1 Output Compare Register A

These two registers contain a 16-bit value that is continuously compared with the value in TCNT1H and
TCNT1L. A match can be used to generate an output compare interrupt, or to generate a waveform
output on the OC1A pin.

7 6 5 4 3 2 1 0

OCR1A[15:8]

OCR1A[7:0]

OCR1BH and OCR1BL – Timer/Counter 1 Output Compare Register B

These two registers contain a 16-bit value that is continuously compared with the value in TCNT1H and
TCNT1L. A match can be used to generate an output compare interrupt, or to generate a waveform
output on the OC1B pin.

7 6 5 4 3 2 1 0

OCR1B[15:8]

OCR0B[7:0]

cbna Alyssa J. Pasquale, Ph.D. 199 Spring 2024 Edition

OCR2A – Timer/Counter 2 Output Compare Register A

This register contains an 8-bit value that is continuously compared with the value in TCNT2. A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC2A
pin.

7 6 5 4 3 2 1 0

OCR2A[7:0]

OCR2B – Timer/Counter 2 Output Compare Register B

This register contains an 8-bit value that is continuously compared with the value in TCNT2. A match
can be used to generate an output compare interrupt, or to generate a waveform output on the OC2B
pin.

7 6 5 4 3 2 1 0

OCR2B[7:0]

PCICR – Pin Change Interrupt Control Register

This register contains three bits which dictate whether or not interrupts are enabled on each of the
three I/O ports.

7 6 5 4 3 2 1 0

– – – – – PCIE2 PCIE1 PCIE0

• PCIE2 – If set, interrupts will be enabled on I/O pins in PORTD.

• PCIE1 – If set, interrupts will be enabled on I/O pins in PORTC.

• PCIE0 – If set, interrupts will be enabled on I/O pins in PORTB.

PCMSK0 – Pin Change Mask Register 0

This register allows pin-change interrupts to be enabled on individual pins in PORTB when their
respective bit locations are set.

7 6 5 4 3 2 1 0

PCINT[7:0]

cbna Alyssa J. Pasquale, Ph.D. 200 Spring 2024 Edition

PCMSK1 – Pin Change Mask Register 1

This register allows pin-change interrupts to be enabled on individual pins in PORTC when their
respective bit locations are set.

7 6 5 4 3 2 1 0

– PCINT[14:8]

PCMSK2 – Pin Change Mask Register 2

This register allows pin-change interrupts to be enabled on individual pins in PORTD when their
respective bit locations are set.

7 6 5 4 3 2 1 0

PCINT[23:16]

PINB – Port B Input Pins Address

7 6 5 4 3 2 1 0

– – PB[13:8]

• PB[13:8] – Stores the value on digital input pins 13–8.

PINC – Port C Input Pins Address

7 6 5 4 3 2 1 0

– – PC[5:0]

• PC[5:0] – Stores the value on analog input pins 5–0. (Digital mode only. ADC must be used
to access analog values.)

PIND – Port D Input Pins Address

7 6 5 4 3 2 1 0

PD[7:0]

• PD[7:0] – Stores the value on digital input pins 7–0.

cbna Alyssa J. Pasquale, Ph.D. 201 Spring 2024 Edition

PORTB – Port B Data Register

7 6 5 4 3 2 1 0

– – PORTB[13:8]

• PORTB[13:8] – Used to set or clear digital output pins 13–8. Setting these pins in input mode
activates the internal pull-up resistor.

PORTC – Port C Data Register

7 6 5 4 3 2 1 0

– – PORTC[5:0]

• PORTC[5:0] – Used to set or clear analog output pins 5–0 (used digitally). Setting these pins
in input mode activates the internal pull-up resistor.

PORTD – Port D Data Register

7 6 5 4 3 2 1 0

PORTD[7:0]

• PORTD[7:0] – Used to set or clear digital output pins 7–0. Setting these pins in input mode
activates the internal pull-up resistor.

PRR – Power Reduction Register

This register enables and disables peripheral devices on the microcontroller. When peripherals are
disabled, less power is consumed, but functionality is reduced.

7 6 5 4 3 2 1 0

PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC

• PRTWI – Power reduction TWI. Writing a one to this bit shuts down the TWI (two wire interface)
communication system by stopping the clock to the module.

• PRTIM2 – Power reduction timer/counter 2. Writing a one to this bit shuts down the timer/-
counter 2 module in synchronous mode.

• PRTIM0 – Power reduction timer/counter 0. Writing a one to this bit shuts down the timer/-
counter 0 module.

• PRTIM1 – Power reduction timer/counter 1. Writing a one to this bit shuts down the timer/-
counter 1 module.

• PRSPI – Power reduction SPI. Writing a one to this bit shuts down the SPI (serial peripheral
interface) communication system by stopping the clock to the module.

cbna Alyssa J. Pasquale, Ph.D. 202 Spring 2024 Edition

• PRUSART0 – Power reduction USART0. Writing a one to this bit shuts down the USART
(universal synchronous/asynchronous receiver/transmitter) communication system by stopping
the clock to the module.

• PRADC – Power reduction ADC. Writing a one to this bit shuts down the ADC (analog to digital
converter). The ADC must be disabled before shut down.

SPCR – SPI Control Register

This register configures serial peripheral interface (SPI) communication on the microcontroller.

7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

• SPIE – SPI interrupt enable. When set, allows interrupts to occur upon successful data transfer.

• SPE – SPI enable. When set, enables SPI communication.

• DORD – Data order. When clear, MSB is sent first. When set, LSB is sent first.

• MSTR – Primary/secondary select. When clear, the device is the secondary. When set, the device
is the primary.

• CPOL – Clock polarity. When clear, the clock will be low when idle. When set, the clock will
be high when idle.

• CPHA – Clock phase. When clear, data will be sampled on the leading clock edge. When set,
data will be sampled on the trailing clock edge.

• SPR[1:0] – SPI clock rate. These two bits, when used with SPI2X in the SPSR register, controls
the frequency of SCK. These rates are given in the table below.

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fOSC ÷ 4

0 0 1 fOSC ÷ 16

0 1 0 fOSC ÷ 64

0 1 1 fOSC ÷ 128

1 0 0 fOSC ÷ 2

1 0 1 fOSC ÷ 8

1 1 0 fOSC ÷ 32

1 1 1 fOSC ÷ 64

cbna Alyssa J. Pasquale, Ph.D. 203 Spring 2024 Edition

SPDR – SPI Data Register

This register is a read/write register used for data transfer. Writing to the register initiates data
transmission. Reading the register causes the shift register receive buffer to be read.

7 6 5 4 3 2 1 0

MSB LSB

SPSR – SPI Status Register

This register configures serial peripheral interface (SPI) communication on the microcontroller.

7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X

• SPIF – SPI interrupt flag. This bit is set when serial transfer is complete.

• WCOL – Write collision flag. The WCOL bit is set if the SPI data register (SPDR) is written
during a data transfer.

• SPI2X – SPI double speed bit. Doubles the bit rate. The data transfer frequencies are given in
the table accompanying the SPCR register.

SREG – AVR Status Register

This register contains information pertaining to the result of the most recently executed arithmetic
instruction.

7 6 5 4 3 2 1 0

I T H S V N Z C

• I – Global interrupt enable. Must be set for interrupts to be enabled. If cleared, interrupts are
disabled.

• T – Bit copy storage. Can be used as source or destination for a single bit. Used by the BLD
and BST instructions.

• H – Half carry flag. Is set when the half carry (carry out from the least-significant nibble) is 1.

• S – Sign bit. S = N ⊕ V

• V – Two’s complement overflow flag. Is set when there is an overflow.

• N – Negative flag. Is set when the result of the arithmetic instruction is negative.

• Z – Zero flag. Is set when the result of the arithmetic instruction is zero.

• C – Carry flag. Is set when there is a carry out from the most-significant bit.

cbna Alyssa J. Pasquale, Ph.D. 204 Spring 2024 Edition

TCCR0A – Timer/Counter 0 Control Register A

This register configures the mode of operation of TCNT0.

7 6 5 4 3 2 1 0

COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

• COM0A[1:0] – Compare match output A mode. These bits control the behavior of the output
compare pin OC0A (pin D6). These compare output modes are given in the tables below.

Compare Output Mode, non-PWM Mode
If waveform generation mode is configured as non-PWM, OC0A will function as follows.

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Compare Output Mode, Fast PWM Mode
If waveform generation mode is configured as fast PWM, OC0A will function as follows.

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1 WGM02 =0: Normal port operation, OC0A disconnected

WGM02 =1: Toggle OC0A on compare match

1 0 Clear OC0A on compare match, set OC0A at BOTTOM (non-inverting mode).

1 1 Set OC0A on compare match, clear OC0A at BOTTOM (inverting mode).

Compare Output Mode, Phase Correct PWM Mode
If waveform generation mode is configured as phase correct PWM, OC0A will function as follows.

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected

0 1 WGM02 =0: Normal port operation, OC0A disconnected

WGM02 =1: Toggle OC0A on compare match

1 0 Clear OC0A on compare match when up-counting, set OC0A on compare match
when down-counting (non-inverting mode).

1 1 Set OC0A on compare match when up-counting, clear OC0A on compare match
when down-counting (inverting mode).

cbna Alyssa J. Pasquale, Ph.D. 205 Spring 2024 Edition

• COM0B[1:0] – Compare match output B mode. These bits control the behavior of the output
compare pin OC0B (pin D5). The output compare modes are given in the tables below.

Compare Output Mode, non-PWM Mode
If waveform generation mode is configured as non-PWM, OC0B will function as follows.

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Toggle OC0B on compare match

1 0 Clear OC0B on compare match

1 1 Set OC0B on compare match

Compare Output Mode, Fast PWM Mode
If waveform generation mode is configured as fast PWM, OC0B will function as follows.

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Reserved (not allowed)

1 0 Clear OC0B on compare match, set OC0B at BOTTOM (non-inverting mode).

1 1 Set OC0B on compare match, clear OC0B at BOTTOM (inverting mode).

Compare Output Mode, Phase Correct PWM Mode
If waveform generation mode is configured as phase correct PWM, OC0B will function as follows.

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected

0 1 Reserved (not allowed)

1 0 Clear OC0B on compare match when up-counting, set OC0B on compare match
when down-counting (non-inverting mode).

1 1 Set OC0B on compare match when up-counting, clear OC0B on compare match
when down-counting (inverting mode).

• WGM0[1:0] – Waveform generation mode. Combined with the WGM02 bit found in the TCCR0B
register, these bits control the counting sequence of the counter. The options are given in the
table below.

WGM02 WGM01 WGM00 Mode of Operation TOP Value

0 0 0 Normal 0xFF

0 0 1 PWM, Phase Correct 0xFF

0 1 0 CTC OCR0A

cbna Alyssa J. Pasquale, Ph.D. 206 Spring 2024 Edition

0 1 1 Fast PWM 0xFF

1 0 0 Reserved (not allowed) –

1 0 1 PWM, Phase Correct OCR0A

1 1 0 Reserved (not allowed) –

1 1 1 Fast PWM OCR0A

TCCR0B – Timer/Counter 0 Control Register B

This register sets one of the three waveform generation mode bits for TCNT0 and selects the clock
source and prescaler.

7 6 5 4 3 2 1 0

FOC0A FOC0B – – WGM02 CS02 CS01 CS00

• FOC0x – Force output compare x. (x can be either A or B.) These bits must be cleared when using
a PWM mode. When set, an immediate compare match is forced on the waveform generation
unit.

• WGM02 – Waveform generation mode. See the description in register TCCR0A.

• CS0[2:0] – Clock select. These three bits select the clock source to be used, described below.

CS02 CS01 CS00 Description

0 0 0 No clock source (TCNT0 stopped)

0 0 1 CLKCPU ÷ 1

0 1 0 CLKCPU ÷ 8

0 1 1 CLKCPU ÷ 64

1 0 0 CLKCPU ÷ 256

1 0 1 CLKCPU ÷ 1024

1 1 0 External clock on T0 pin. Clock on falling edge.

1 1 1 External clock on T0 pin. Clock on rising edge.

TCCR1A – Timer/Counter 1 Control Register A

This register configures the modality of TCNT1 and sets two of the four waveform generation mode
bits.

7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10

• COM1A[1:0] – Compare match output A mode. These bits control the behavior of the output

cbna Alyssa J. Pasquale, Ph.D. 207 Spring 2024 Edition

compare pin OC1A (pin D9). The compare output modes are given in the table below.

Compare Output Mode, non-PWM Mode
If waveform generation mode is configured as non-PWM, OC1A will function as follows.

COM1A1 COM1A0 Description

0 0 Normal port operation, OC1A disconnected

0 1 Toggle OC1A on compare match

1 0 Clear OC1A on compare match

1 1 Set OC1A on compare match

Compare Output Mode, Fast PWM Mode
If waveform generation mode is configured as fast PWM, OC1A will function as follows.

COM1A1 COM1A0 Description

0 0 Normal port operation, OC1A disconnected

0 1 WGM1[3:0] = 14 or 15: Toggle OC1A on compare match

All other WGM settings: Normal port operation, OC1A disconnected

1 0 Clear OC1A on compare match, set OC1A at BOTTOM (non-inverting mode).

1 1 Set OC1A on compare match, clear OC1A at BOTTOM (inverting mode).

Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM
If waveform generation mode is configured as phase correct or phase and frequency correct PWM,
OC1A will function as follows.

COM1A1 COM1A0 Description

0 0 Normal port operation, OC1A disconnected

0 1 WGM1[3:0] = 9 or 11: Toggle OC1A on compare match

All other WGM settings: Normal port operation, OC1A disconnected

1 0 Clear OC1A on compare match when up-counting, set OC1A on compare match
when down-counting (non-inverting mode).

1 1 Set OC1A on compare match when up-counting, clear OC1A on compare match
when down-counting (inverting mode).

• COM1B[1:0] – Compare match output B mode. These bits control the behavior of the output
compare pin OC1B (pin D10). The compare output modes are given in the table below.

Compare Output Mode, non-PWM Mode
If waveform generation mode is configured as non-PWM, OC1B will function as follows.

cbna Alyssa J. Pasquale, Ph.D. 208 Spring 2024 Edition

COM1B1 COM1B0 Description

0 0 Normal port operation, OC1B disconnected

0 1 Toggle OC1B on compare match

1 0 Clear OC1B on compare match

1 1 Set OC1B on compare match

Compare Output Mode, Fast PWM Mode
If waveform generation mode is configured as fast PWM, OC1B will function as follows.

0 0 Normal port operation, OC1x disconnected

0 1 Normal port operation, OC1B disconnected

1 0 Clear OC1B on compare match, set OC1B at BOTTOM (non-inverting mode).

1 1 Set OC1B on compare match, clear OC1B at BOTTOM (inverting mode).

Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM
If waveform generation mode is configured as phase correct or phase and frequency correct PWM,
OC1B will function as follows.

0 0 Normal port operation, OC1B disconnected

0 1 Normal port operation, OC1B disconnected

1 0 Clear OC1B on compare match when up-counting, set OC1B on compare match
when down-counting (non-inverting mode).

1 1 Set OC1B on compare match when up-counting, clear OC1B on compare match
when down-counting (inverting mode).

• WGM1[1:0] – Waveform generation mode. Combined with the WGM1[3:2] bits found in the
TCCR1B register, these bits control the counting sequence of the counter. The options are given
in the table below.

WGM13 WGM12 WGM11 WGM10 Mode of Operation TOP Value

0 0 0 0 Normal 0xFFFF

0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF

0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF

0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF

0 1 0 0 CTC OCR1A

0 1 0 1 Fast PWM, 8-bit 0x00FF

0 1 1 0 Fast PWM, 9-bit 0x01FF

0 1 1 1 Fast PWM, 10-bit 0x03FF

cbna Alyssa J. Pasquale, Ph.D. 209 Spring 2024 Edition

1 0 0 0 PWM, Phase and Frequency Correct ICR1

1 0 0 1 PWM, Phase and Frequency Correct OCR1A

1 0 1 0 PWM, Phase Correct ICR1

1 0 1 1 PWM, Phase Correct OCR1A

1 1 0 0 CTC ICR1

1 1 0 1 Reserved (not allowed) –

1 1 1 0 Fast PWM ICR1

1 1 1 1 Fast PWM OCR1A

TCCR1B – Timer/Counter 1 Control Register B

This register sets two of the four waveform generation mode bits for TCNT1 and selects the clock
source and prescaler.

7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

• ICNC1 – Input capture noise canceler. When set the noise canceler is activated. This filters the
captured input values.

• ICES1 – Input capture edge select. A capture event is triggered on a falling edge when clear,
and on a rising edge when set.

• WGM1[3:2] – Waveform generation mode. See the description in register TCCR1A.

• CS1[2:0] – Clock select. These three bits select the clock source, described below.

CS12 CS11 CS10 Description

0 0 0 No clock source (TCNT1 stopped)

0 0 1 CLKCPU ÷ 1

0 1 0 CLKCPU ÷ 8

0 1 1 CLKCPU ÷ 64

1 0 0 CLKCPU ÷ 256

1 0 1 CLKCPU ÷ 1024

1 1 0 External clock on T1 pin. Clock on falling edge.

1 1 1 External clock on T1 pin. Clock on rising edge.

cbna Alyssa J. Pasquale, Ph.D. 210 Spring 2024 Edition

TCCR1C – Timer/Counter 1 Control Register C

7 6 5 4 3 2 1 0

FOC1A FOC1B – – – – – –

• FOC1A – In a non-PWM mode, when writing a logical one to this bit, am immediate compare
match is forced on the waveform generation unit.

• FOC1B – In a non-PWM mode, when writing a logical one to this bit, am immediate compare
match is forced on the waveform generation unit.

TCCR2A – Timer/Counter 2 Control Register A

This register configures the modality of TCNT2 and sets two of the three waveform generation mode
bits.

7 6 5 4 3 2 1 0

COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20

• COM2x[1:0] – Compare match output x mode. (x can be either A or B.) These bits control the
behavior of the output compare pin OC2x. (Pin OC2A is D11, pin OC2B is D3.) The compare
output modes are given in the table below.

Compare Output Mode, non-PWM Mode
If waveform generation mode is configured as non-PWM, OC2x will function as follows.

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected

0 1 Toggle OC2x on compare match

1 0 Clear OC2x on compare match

1 1 Set OC2x on compare match

Compare Output Mode, Fast PWM Mode
If waveform generation mode is configured as fast PWM, OC2x will function as follows.

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected

0 1 Reserved (not allowed)

1 0 Clear OC2x on compare match, set OC2x at BOTTOM (non-inverting mode).

1 1 Set OC2x on compare match, clear OC2x at BOTTOM (inverting mode).

cbna Alyssa J. Pasquale, Ph.D. 211 Spring 2024 Edition

Compare Output Mode, Phase Correct PWM Mode
If waveform generation mode is configured as phase correct PWM, OC2x will function as follows.

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected

0 1 Reserved (not allowed)

1 0 Clear OC2x on compare match when up-counting, set OC2x on compare match
when down-counting (non-inverting mode).

1 1 Set OC2x on compare match when up-counting, clear OC2x on compare match
when down-counting (inverting mode).

• WGM2[1:0] – Waveform generation mode. Combined with the WGM22 bit found in the TCCR2B
register, these bits control the counting sequence of the counter. These options are given in the
table below.

WGM22 WGM21 WGM20 Mode of Operation TOP Value

0 0 0 Normal 0xFF

0 0 1 PWM, Phase Correct 0xFF

0 1 0 CTC OCR0A

0 1 1 Fast PWM 0xFF

1 0 0 Reserved (not allowed) –

1 0 1 PWM, Phase Correct OCR0A

1 1 0 Reserved (not allowed) –

1 1 1 Fast PWM OCR0A

TCCR2B – Timer/Counter 2 Control Register B

This register sets one of the three waveform generation mode bits for TCNT2 and selects the clock
source and prescaler.

7 6 5 4 3 2 1 0

FOC2A FOC2B – – WGM22 CS22 CS21 CS20

• FOC2x – Force output compare x. (x can be either A or B.) These bits must be cleared when using
a PWM mode. When set, an immediate compare match is forced on the waveform generation
unit.

• WGM22 – Waveform generation mode. See the description in register TCCR2A.

• CS2[2:0] – Clock select. These three bits select the clock source to be used by TCNT2, with
options described below. CLKT2S = CLKCPU if used synchronously.

cbna Alyssa J. Pasquale, Ph.D. 212 Spring 2024 Edition

CS22 CS21 CS20 Description

0 0 0 No clock source (TCNT2 stopped)

0 0 1 CLKT2S ÷ 1

0 1 0 CLKT2S ÷ 8

0 1 1 CLKT2S ÷ 32

1 0 0 CLKT2S ÷ 64

1 0 1 CLKT2S ÷ 128

1 1 0 CLKT2S ÷ 256

1 1 1 CLKT2S ÷ 1024

TCNT0 – Timer/Counter 0 Register

This register contains the current value of TCNT0.

7 6 5 4 3 2 1 0

TCNT0[7:0]

TCNT1H and TCNT1L – Timer/Counter 1 Register

These registers contain the current value of TCNT1. Two registers are required to store the value
because TCNT1 is a 16-bit counter.

7 6 5 4 3 2 1 0

TCNT1[15:8]

TCNT1[7:0]

TCNT2 – Timer/Counter 2 Register

This register contains the current value of TCNT2.

7 6 5 4 3 2 1 0

TCNT2[7:0]

cbna Alyssa J. Pasquale, Ph.D. 213 Spring 2024 Edition

TIMSK0 – Timer/Counter 0 Interrupt Mask Register

This register configures TCNT0 interrupts.

7 6 5 4 3 2 1 0

– – – – – OCIE0B OCIE0A TOIE0

• OCIE0B – TCNT0 compare match B interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT0 compare match B.

• OCIE0A – TCNT0 compare match A interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT0 compare match A.

• TOIE0 – TCNT0 overflow interrupt enable. When set, and if the I-bit in SREG is set, an interrupt
will be executed any time the timer/counter overflows.

TIMSK1 – Timer/Counter 1 Interrupt Mask Register

This register configures TCNT1 interrupts.

7 6 5 4 3 2 1 0

– – ICIE1 – – OCIE1B OCIE1A TOIE1

• ICIE1 – TCNT1 input capture interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be triggered when an input is captured.

• OCIE1B – TCNT1 compare match B interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT1 compare match B.

• OCIE1A – TCNT1 compare match A interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT1 compare match A.

• TOIE1 – TCNT1 overflow interrupt enable. When set, and if the I-bit in SREG is set, an interrupt
will be executed any time the timer/counter overflows.

TIMSK2 – Timer/Counter 2 Interrupt Mask Register

This register configures TCNT2 interrupts.

7 6 5 4 3 2 1 0

– – – – – OCIE2B OCIE2A TOIE2

• OCIE2B – TCNT2 compare match B interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT2 compare match B.

• OCIE2A – TCNT2 compare match A interrupt enable. When set, and if the I-bit in SREG is set,
interrupts will be enabled on TCNT2 compare match A.

• TOIE2 – TCNT2 overflow interrupt enable. When set, and if the I-bit in SREG is set, an interrupt
will be executed any time the timer/counter overflows.

cbna Alyssa J. Pasquale, Ph.D. 214 Spring 2024 Edition

UBRR0H and UBRR0L – USART Baud Rate Registers

These registers contain the baud rate to be used in the USART module. Two registers are required
to store the value because it is a 12-bit value.

7 6 5 4 3 2 1 0

– – – – UBRR0[11:8]

UBRR0[7:0]

UCSR0A – USART Control and Status Register A

This register stores information about how the USART is to be used. It is used in conjunction with
UCSR0B and UCSR0C.

7 6 5 4 3 2 1 0

RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0

• RXC0 – USART receive complete. (Read-only) This bit is set when there is unread data in the
data receive buffer.

• TXC0 – USART transmit complete. This bit is set when all data has been shifted out of the
data transmit register UDR0.

• UDRE0 – USART data register empty. (Read only) This bit is set when the data transmit buffer
UDR0 is empty and is ready to receive new data.

• FE0 – Frame error. (Read only) This bit is set if a STOP bit is not detected at the appropriate
STOP time.

• DOR0 – Data OverRun. (Read only) This bit is set if there is an overrun error, which occurs
when new data comes in before the last set of data was processed.

• UPE0 – USART Parity Error. (Read only) This bit is set if parity checking was enabled and
there is a parity error.

• U2X0 – Double the USART Transmission Speed. Writing this bit to one will reduce the divisor
of the baud rate divider from 16 to 8 effectively doubling the transfer rate for asynchronous
communication. This bit should be 0 when using USART in synchronous mode.

• MPCM0 – Multi-processor Communication Mode. When set, this bit enables multi-processor
communication mode. The multi-processor communication mode enables several secondary
MCUs to receive data from a primary MCU.

USART in SPI mode
This register has different settings when using the USART in SPI mode.

7 6 5 4 3 2 1 0

RXC0 TXC0 UDRE0 – – – – –

• RXC0 – USART receive complete. (Read-only) This bit is set when there is unread data in the
data receive buffer.

cbna Alyssa J. Pasquale, Ph.D. 215 Spring 2024 Edition

• TXC0 – USART transmit complete. This bit is set when all data has been shifted out of the
data transmit register UDR0.

• UDRE0 – USART data register empty. (Read only) This bit is set when the data transmit buffer
UDR0 is empty and is ready to receive new data.

UCSR0B – USART Control and Status Register B

This register stores information about how the USART is to be used. It is used in conjunction with
UCSR0A and UCSR0C.

7 6 5 4 3 2 1 0

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80

• RXCIE0 – RX Complete Interrupt Enable. Setting this bit enables the USART Rx complete
interrupt.

• TXCIE0 – TX Complete Interrupt Enable. Setting this bit enables the USART Tx complete
interrupt.

• UDRIE0 – USART Data Register Empty Interrupt Enable. Setting this bit enables the USART
data register empty interrupt.

• RXEN0 – Receiver Enable. Setting this bit enables the USART to receive data.

• TXEN0 – Transmitter Enable. Setting this bit enables the USART to transmit data.

• UCSZ02 – Character Size. Combined with UCSZ0[1:0] bits found in UCSR0C, these bits control
the size of each character transmitted and received through the USART. These options are given
in the table below.

UCSZ02 UCSZ01 UCSZ00 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

• RXB80 – Receive Data Bit 8. (Read only) When operating with 9 data bits, this bit contains
the ninth bit of data received. Must be read before reading the low bits from UDR0.

• TXB80 – Transmit Data Bit 8. When operating with 9 data bits, this bit contains the ninth bit
of data to be transmitted. Must be written before writing the low bits to UDR0.

USART in SPI mode
This register has different settings when using the USART in SPI mode.

cbna Alyssa J. Pasquale, Ph.D. 216 Spring 2024 Edition

7 6 5 4 3 2 1 0

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 – – –

• RXCIE0 – RX Complete Interrupt Enable. Setting this bit enables the USART Rx complete
interrupt.

• TXCIE0 – TX Complete Interrupt Enable. Setting this bit enables the USART Tx complete
interrupt.

• UDRIE0 – USART Data Register Empty Interrupt Enable. Setting this bit enables the USART
data register empty interrupt.

• RXEN0 – Receiver Enable. Setting this bit enables the USART to receive data.

• TXEN0 – Transmitter Enable. Setting this bit enables the USART to transmit data.

UCSR0C – USART Control and Status Register C

This register stores information about how the USART is to be used. It is used in conjunction with
UCSR0A and UCSR0B.

7 6 5 4 3 2 1 0

UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0

• UMSEL0[1:0] – USART Mode Select. These bits control the modality of the USART. These
options are given in the table below.

UMSEL01 UMSEL00 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 Reserved

1 1 Primary SPI

• UPM0[1:0] – Parity Mode. These two bits control the parity generation (using the transmitter)
and parity checker (using the receiver). These options are given in the table below.

UPM01 UPM00 Parity Mode

0 0 Parity disabled

0 1 Reserved

1 0 Enabled, even parity

1 1 Enabled, odd parity

• USBS0 – Stop Bit Select. This bit selects the number of stop bits to be inserted by the trans-
mitter. If this bit is cleared (0), one stop bit will be inserted. If this bit is set (1), two stop bits
will be inserted.

• UCSZ0[1:0] – Character Size. These two bits are used in conjunction with UCSZ02 which is
located in UCSR0B.

cbna Alyssa J. Pasquale, Ph.D. 217 Spring 2024 Edition

• UCPOL0 – Clock Polarity. This bit is only used in synchronous mode. Write this bit to zero
when asynchronous mode is used. In synchronous mode, the two options are given in the table
below.

UCPOL0 Transmitted Data Updates On... Received Data Updates On...

0 Rising edge of XCK0 Falling edge of XCK0

1 Falling edge of XCK0 Rising edge of XCK0

USART in SPI mode
This register has different settings when using the USART in SPI mode.

7 6 5 4 3 2 1 0

UMSEL01 UMSEL00 – – – UDORD0 UCPHA0 UCPOL0

• UMSEL0[1:0] – USART Mode Select. These bits control the functionality of the USART module.
In SPI mode, both of these bits must be set. All options are given in the table below.

UMSEL01 UMSEL00 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 Reserved

1 1 Primary SPI

• UDORD0 – Data Order. When set, the LSB will be transmitted first. When cleared, the MSB
will be transmitted first.

• UCPHA0 – Clock Phase. Together with the clock polarity bit, this sets the SPI data mode and
timing.

• UCPOL0 – Clock Polarity. This bit together with the clock phase bit sets the SPI data mode
and timing. Options for these two bits are given in the table below.

UCPHA0 UCPOL0 SPI Mode Leading Edge Trailing Edge

0 0 0 Sample Setup

0 1 1 Setup Sample

1 0 2 Sample Setup

1 1 3 Setup Sample

cbna Alyssa J. Pasquale, Ph.D. 218 Spring 2024 Edition

UDR0 – USART I/O Data Register

This register contains either information that was received from the USART in receive mode, or
contains information to be transmitted out by the USART in transmit mode.

The transmit buffer can only be written when the UDRE0 flag in the UCSR0A register is set. Data
written to UDR0 when the UDRE0 flag is not set, will be ignored by the USART transmitter. When
data is written to the transmit buffer, and the transmitter is enabled, the transmitter will load the
data into the transmit shift register when the shift register is empty. Then the data will be serially
transmitted on the TxD0 pin.

7 6 5 4 3 2 1 0

UDR0[7:0]

WDTCSR – Watchdog Timer Control Register

This register contains information for enabling and configuring the watchdog timer (WDT). Config-
uring the WDT is a two-step process:

1. Simultaneously set the WDT change enable bit (WDCE) and the WDT system reset enable bit
(WDE)

2. Write the values of WDP[3:0] to the register with all other bits cleared

7 6 5 4 3 2 1 0

WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0

• WDIF – WDT interrupt flag. This bit is set when a WDT interrupt is triggered if the WDT
interrupt mode is enabled.

• WDIE – WDT interrupt enable. When set, this bit allows WDT interrupts.

• WDCE – WDT change enable. This bit must be set to configure the WDT.

• WDE – WDT system reset enable. When set, this bit allows WDT resets.

• WDP[3:0] – WDT prescaler bits. By changing these bits, the clock frequency of 128 kHz is
divided by a value, causing timeouts to occur at different intervals as defined in the table below.

WDP3 WDP2 WDP1 WDP0 Prescaler Time-Out Interval

0 0 0 0 2,048 16 ms

0 0 0 1 4,096 32 ms

0 0 1 0 8,192 64 ms

0 0 1 1 16,384 0.125 s

0 1 0 0 32,768 0.25 s

0 1 0 1 65,536 0.5 s

0 1 1 0 131,072 1.0 s

cbna Alyssa J. Pasquale, Ph.D. 219 Spring 2024 Edition

0 1 1 1 262,144 2.0 s

1 0 0 0 524,288 4.0 s

1 0 0 1 1,048,576 8.0 s

cbna Alyssa J. Pasquale, Ph.D. 220 Spring 2024 Edition

Appendix B: Pinout Diagrams

List of Pinout Diagrams
Digital Input Devices . 222

12-Character Keypad . 222
12-Character Keypad PCB . 222
Pushbutton, External Pull-Up Resistor (Active LOW) . 222
Pushbutton, External Pull-Down Resistor (Active HIGH) . 222
Debounced Pushbutton PCB . 222
Toggle Switch, External Pull-Down Resistor . 222

Displays . 223
Common Anode 7-Segment Display . 223
Sideways Common Anode 7-Segment Display . 223
Common Cathode 7-Segment Display . 223
Sideways Common Cathode 7-Segment Display . 223
Dual Common Anode 7-Segment Display . 223
Triple Common Anode 7-Segment Display . 223
Multiplexed Quad 7-Segment Display PCB . 223
RGB LED . 224
16x2 Character LCD Screen . 224
Serial Input 7-Segment Display PCB . 224

Sensors . 224
HC-SR04: Ultrasonic Detector . 224
IR Receiver (38 kHz) . 224
MAG-3110: 3-Axis Magnetometer . 225
Redbot 3-Axis Accelerometer . 225
Soft Pot . 225
TMP36 Temperature Sensor . 225

Motors . 225
DC Motor (Single Direction) . 225

Analog and Digital ICs . 225
ATmega328P Microcontroller DIP-28 . 225
4051 8-bit Analog MUX . 226
74165 8-bit PISO Shift Register . 226
74595 8-bit SIPO Shift Register . 226
74922: Keypad Encoder (Asynchronous Data Entry Mode) . 226
754410 Quadruple Half H Driver . 226

Transistors . 226
2N2222A NPN Transistor . 226

cbna Alyssa J. Pasquale, Ph.D. 221 Spring 2024 Edition

Digital Input Devices

12-Character Keypad

1

×

2

C
O

L
1

3

C
O

L
2

4

C
O

L
3

5

C
O

L
4

6

R
O

W
1

7

R
O

W
2

8

R
O

W
3

3

2

1

0

7

6

5

4

#

*

9

8

12-Character Keypad PCB

The following PCB has been wired up to ac-
cept the 12-character keypad data in asyn-
chronous mode and output a BCD value DCBA.

3

2

1

0

7

6

5

4

#

*

9

8

VCC GND D C B A DATA

Pushbutton, External Pull-Up Resistor
(Active LOW)

10 kΩ
Vcc

Vout

Pushbutton, External Pull-Down Resis-
tor (Active HIGH)

Vcc
10 kΩ

Vout

Debounced Pushbutton PCB

The following PCB has been wired up with
four debounced pushbuttons.

7414

P
B

4
P
B

3
P
B

2
P
B

1
VCC
GND
PB1
PB2
PB3
PB4

Toggle Switch, External Pull-Down Re-
sistor

Vcc
Vout

10 kΩ

cbna Alyssa J. Pasquale, Ph.D. 222 Spring 2024 Edition

Displays

Common Anode 7-Segment Display

cathode a

cathode f

anode

cath. LDP

cathode e cathode d

cath. RDP

cathode c

cathode g

cathode b

anode

Sideways Common Anode 7-Segment
Display

cathode e

cathode d

anode

cathode c
cathode dp

cathode g

cathode f

anode

cathode a

cathode b

Common Cathode 7-Segment Display

anode f
anode g

cathode

anode e

anode d anode c

anode DP

cathode

anode b

anode a

Sideways Common Cathode 7-Segment
Display

anode e

anode d

cathode

anode c
anode dp

anode g

anode f

cathode

anode a

anode b

Dual Common Anode 7-Segment Dis-
play

E1

D1

C1

DP1

E2

D2

G2

C2

DP2

F1

G1

A1

B1

anode 1

anode 2

F2

A2

B2

Display 1

Display 2

Triple Common Anode 7-Segment Dis-
play

E1

D1

anode 1

C1

DP1

E2

D2

C2

DP2

E3

D3

G3

C3

DP3

G1

F1

anode 1

A1

B1

F2

G2

A2

B2

anode 2

anode 3

F3

A3

B3

Display 1

Display 2

Display 3

cbna Alyssa J. Pasquale, Ph.D. 223 Spring 2024 Edition

Multiplexed Quad 7-Segment Display
PCB

a b c d e f g DP C1 C2 C3 C4

D
isplay

1

D
isplay

2

D
isplay

3

D
isplay

4

RGB LED

R

cathode
G

B

16x2 Character LCD Screen

Vcc

15
220 Ω

1
2

5

16

3

4RS

6E
7
8
9
10
11DB4
12DB5
13DB6
14DB7

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

• RS – Register Select

• E – Enable

• DB4 – Bit 4

• DB5 – Bit 5

• DB6 – Bit 6

• DB7 – Bit 7

cbna Alyssa J. Pasquale, Ph.D. 224 Spring 2024 Edition

Serial Input 7-Segment Display PCB

74595

VCC
GND
SER

RCLK
SRCLK

QH’

Sensors

HC-SR04: Ultrasonic Detector

Vcc Trig Echo GND

IR Receiver (38 kHz)

OUT GND Vcc

MAG-3110: 3-Axis Magnetometer

I2C secondary address: 0x0E

G
N

D
V
cc

SD
A

SC
L

IN
T

Redbot 3-Axis Accelerometer

I2C secondary address: 0x1D

SDA
Vcc

GND

SCL
Vcc
GND

Soft Pot

GND

Vcc
Vout

TMP36 Temperature Sensor

Vcc Vout GND

cbna Alyssa J. Pasquale, Ph.D. 225 Spring 2024 Edition

Motors

DC Motor (Single Direction)

M

Vcc

2N
2222

E

C
B

330 Ω
PWM pin

Analog and Digital ICs

ATmega328P Microcontroller DIP-28

14 15

13 16

12 17

11 18

10 19

9 20

8 21

7 22

6 23

5 24

4 25

3 26

2 27

1 28

ATmega328P

PC6

PD0

PD1

PD2

PD3

PD4

Vcc

GND

PB6

PB7

PD5

PD6

PD7

PB0

PC5

PC4

PC3

PC2

PC1

PC0

GND

AREF

AVcc

PB5

PB4

PB3

PB2

PB1

4051 8-bit Analog MUX

8 9

7 10

6 11

5 12

4 13

3 14

2 15

1 16

4051

Vss (GND)

Vee (GND)
Inhibit

Ch. 5

Ch. 7

Output
Ch. 6

Ch. 4 Vdd 5 V)

Ch. 2

Ch. 1

Ch. 0

Ch. 3

A

B

C

74165 8-bit PISO Shift Register

8 9

7 10

6 11

5 12

4 13

3 14

2 15

1 16

74165

SH LD
CLK

E

F

G

H

QH’

GND

Vcc

CLK INH

D

C

B

A

SER

QH

74595 8-bit SIPO Shift Register

8 9

7 10

6 11

5 12

4 13

3 14

2 15

1 16

74595

QB

QC

QD

QE

QF

QG

QH

GND

Vcc

QA

SER

RCLK

SRCLK

QH’
SRCLR

OE

cbna Alyssa J. Pasquale, Ph.D. 226 Spring 2024 Edition

74922: Keypad Encoder (Asynchronous
Data Entry Mode)

9 10

8 11

7 12

6 13

5 14

4 15

3 16

2 17

1 18

74922

ROW 1

ROW 2

ROW 3

ROW 41 nF

10 nF COL 4

COL 3

GND COL 2

COL 1

DATA

GND

D

C

B

A

VCC

754410 Quadruple Half H Driver

8 9

7 10

6 11

5 12

4 13

3 14

2 15

1 16

754410

1–2 EN

1A

1Y

Heat Sink

and Ground

2Y

2A

Vcc2

Vcc1

4A

4Y

Heat Sink

and Ground

3Y

3A

3–4 EN

Transistors

2N2222A NPN Transistor

C B E

cbna Alyssa J. Pasquale, Ph.D. 227 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 228 Spring 2024 Edition

Appendix C: Interrupt Vector Table

Interrupt Vector Table

Vector No. Address Source Interrupt Definition

1 0x0000 RESET
External pin, power-on reset, brown-out reset,
watchdog system reset

2 0x0002 INT0 External interrupt request 0

3 0x0004 INT1 External interrupt request 1

4 0x0006 PCINT0 Pin change interrupt request 0

5 0x0008 PCINT1 Pin change interrupt request 1

6 0x000A PCINT2 Pin change interrupt request 2

7 0x000C WDT Watchdog time-out interrupt

8 0x000E TIMER2 COMPA Timer/counter 2 compare match A

9 0x0010 TIMER2 COMPB Timer/counter 2 compare match B

10 0x0012 TIMER2 OVF Timer/counter 2 overflow

11 0x0014 TIMER1 CAPT Timer/counter 1 capture event

12 0x0016 TIMER1 COMPA Timer/counter 1 compare match A

13 0x0018 TIMER1 COMPB Timer/counter 1 compare match B

14 0x001A TIMER1 OVF Timer/counter 1 overflow

15 0x001C TIMER0 COMPA Timer/counter 0 compare match A

16 0x001E TIMER0 COMPB Timer/counter 0 compare match B

17 0x0020 TIMER0 OVF Timer/counter 0 overflow

18 0x0022 SPI, STC SPI serial transfer complete

19 0x0024 USART, RX USART Rx complete

20 0x0026 USART, UDRE USART data register empty

21 0x0028 USART, TX USART Tx complete

22 0x002A ADC ADC conversion complete

23 0x002C EE READY EEPROM ready

24 0x002E ANALOG COMP Analog comparator

25 0x0030 TWI 2-wire serial interface

26 0x0032 SPM READY Store program memory ready

cbna Alyssa J. Pasquale, Ph.D. 229 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 230 Spring 2024 Edition

Appendix D: Alternate Port Functions

Alternate Functions of Port B

Port Pin Alternate Functions

PB7 XTAL2 (Chip Clock Oscillator pin 2)

TOSC2 (Timer Oscillator pin 2)

PCINT7 (Pin Change Interrupt 7)

PB6 XTAL1 (Chip Clock Oscillator pin 1 or External clock input)

TOSC1 (Timer Oscillator pin 1)

PCINT6 (Pin Change Interrupt 6)

PB5 SCK (SPI Bus Primary clock Input)

PCINT5 (Pin Change Interrupt 5)

PB4 MISO (SPI Bus Primary Input/Secondary Output)

PCINT4 (Pin Change Interrupt 4)

PB3 MOSI (SPI Bus Primary Output/Secondary Input)

OC2A (Timer/Counter2 Output Compare Match A Output)

PCINT3 (Pin Change Interrupt 3)

PB2 SS (SPI Bus Secondary select)

OC1B (Timer/Counter1 Output Compare Match B Output)

PCINT2 (Pin Change Interrupt 2)

PB1 OC1A (Timer/Counter1 Output Compare Match A Output)

PCINT1 (Pin Change Interrupt 1)

PB0 ICP1 (Timer/Counter1 Input Capture Input)

CLKO (Divided System Clock Output)

PCINT0 (Pin Change Interrupt 0)

Alternate Functions of Port C

Port Pin Alternate Functions

PC6 RESET (Reset pin)

PCINT14 (Pin Change Interrupt 14)

PC5 ADC5 (ADC Input Channel 5)

cbna Alyssa J. Pasquale, Ph.D. 231 Spring 2024 Edition

SCL (2-wire Serial Bus Clock Line)

PCINT13 (Pin Change Interrupt 13)

PC4 ADC4 (ADC Input Channel 4)

SDA (2-wire Serial Bus Data Input/Output Line)

PCINT12 (Pin Change Interrupt 12)

PC3 ADC3 (ADC Input Channel 3)

PCINT11 (Pin Change Interrupt 11)

PC2 ADC2 (ADC Input Channel 2)

PCINT10 (Pin Change Interrupt 10)

PC1 ADC1 (ADC Input Channel 1)

PCINT9 (Pin Change Interrupt 9)

PC0 ADC0 (ADC Input Channel 0)

PCINT8 (Pin Change Interrupt 8)

Alternate Functions of Port D

Port Pin Alternate Functions

PD7 AIN1 (Analog Comparator Negative Input)

PCINT23 (Pin Change Interrupt 23)

PD6 AIN0 (Analog Comparator Positive Input)

OC0A (Timer/Counter0 Output Compare Match A Output)

PCINT22 (Pin Change Interrupt 22)

PD5 T1 (Timer/Counter1 External Counter Input)

OC0B (Timer/Counter0 Output Compare Match B Output)

PCINT21 (Pin Change Interrupt 21)

PD4 XCK (USART External Clock Input/Output)

T0 (Timer/Counter0 External Counter Input)

PCINT20 (Pin Change Interrupt 20)

PD3 INT1 (External Interrupt 1 Input)

OC2B (Timer/Counter2 Output Compare Match B Output)

PCINT19 (Pin Change Interrupt 19)

PD2 INT0 (External Interrupt 0 Input)

cbna Alyssa J. Pasquale, Ph.D. 232 Spring 2024 Edition

PCINT18 (Pin Change Interrupt 18)

PD1 TXD (USART Output Pin)

PCINT17 (Pin Change Interrupt 17)

PD0 RXD (USART Input Pin)

PCINT16 (Pin Change Interrupt 16)

cbna Alyssa J. Pasquale, Ph.D. 233 Spring 2024 Edition

cbna Alyssa J. Pasquale, Ph.D. 234 Spring 2024 Edition

Appendix E: C Datatypes

Integer Types

Data Type Length Range of Values

char 8 bits −128 to 127

unsigned char 8 bits 0 to 255

int 16 bits −32, 768 to 32,767

unsigned int 16 bits 0 to 65,535

long 32 bits −2, 147, 483, 648 to 2,147,483,647

unsigned long 32 bits 0 to 4,294,967,295

Examples

1 // signed char
2 char a = -67; // decimal
3 char a = 0b10111101; // binary
4 char a = 0xBD; // hexadecimal
5
6 // unsigned char
7 unsigned char x = 248; // decimal
8 unsigned char x = 0b11111000; // binary
9 unsigned char x = 0xF8; // hexadecimal

10
11 // unsigned long
12 unsigned long a = 1000910518; // decimal
13 unsigned long a = 0b00111011101010001010111010110110; // binary
14 unsigned long a = 0x3BA8AEB6; // hexadecimal
15
16 // signed long
17 long b = -3102; // decimal
18 long b = 0b11111111111111111111001111100010; // binary
19 long b = 0xFFFFF3E2; // hexadecimal
20
21 // alphanumeric characters
22 char a = ’X’ // alphanumeric
23 char a = 88; // decimal
24 char a = 0b01011000; // binary
25 char a = 0x58; // hexadecimal
26
27 // character arrays (" strings ")
28 char a[] = "Hello!"; // alphanumeric
29 char a[7] = "Hello!"; // alphanumeric
30 char a[] = {’H’,’e’,’l’,’l’,’o’,’!’,’\0’}; // alphanumeric
31 char a[] = {72, 101, 108, 108, 111, 33}; // decimal
32 char a[] = {0b01001000 , 0b01100101 , 0b01101100 , 0b01101100 , 0b01101111 ,0

b00100001 }; // binary

cbna Alyssa J. Pasquale, Ph.D. 235 Spring 2024 Edition

33 char a[] = {0x48 , 0x65 , 0x6C , 0x6C , 0x6F , 0x21} // hexadecimal

Floating-Point Types

Data Type Length Range of Values

float 32 bits −3.4× 1038 to 3.4× 1038

double 32 bits −3.4× 1038 to 3.4× 1038

The two types used on the Arduino Uno with the Arduino IDE, float and double, are both single-
precision type floating-point numbers. These numbers have a single sign bit, 8 exponent bits, and 23
fractional bits. The number they represent is described by equation 17.1, where s is the sign bit, f is
the fractional number, and e is the exponent.

(−1s)× (1.f)×
(
2e−127

)
(17.1)

cbna Alyssa J. Pasquale, Ph.D. 236 Spring 2024 Edition

Appendix F: C Operators

Assignment Operator

Operator Description

= Equals

Bitshift Operators

Operator Description

& Bitwise AND

| Bitwise OR

ˆ Bitwise XOR

˜ Bitwise NOT

>> Bitshift Right

<< Bitshift Left

Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

Comparison Operators

Operator Description

== Equal To

!= Not Equal To

> Greater Than

cbna Alyssa J. Pasquale, Ph.D. 237 Spring 2024 Edition

>= Greater Than or Equal To

< Less Than

<= Less Than or Equal To

Boolean Operators

Operator Description

&& AND

|| OR

! NOT

Compound Operators

Operator Description

++ Increment

– Decrement

+= Compound Addition

-= Compound Subtraction

*= Compound Multiplication

/= Compound Division

%= Compound Modulo

&= Compound Bitwise AND

|= Compound Bitwise OR

ˆ= Compound Bitwise XOR

>>= Compound Bitshift Right

<<= Compound Bitshift Left

cbna Alyssa J. Pasquale, Ph.D. 238 Spring 2024 Edition

Appendix G: Register Summary
The following list denotes all of the registers stored in the SRAM of the ATmega328P with their corresponding
address. Missing addresses denote reserved (unused) register spaces.

General Purpose Registers

0x00 r0 0x08 r8 0x10 r16 0x18 r24

0x01 r1 0x09 r9 0x11 r17 0x19 r25

0x02 r2 0x0A r10 0x12 r18 0x1A r26 (X low)

0x03 r3 0x0B r11 0x13 r19 0x1B r27 (X high)

0x04 r4 0x0C r12 0x14 r20 0x1C r28 (Y low)

0x05 r5 0x0D r13 0x15 r21 0x1D r29 (Y high)

0x06 r6 0x0E r14 0x16 r22 0x1E r30 (Z low)

0x07 r7 0x0F r15 0x17 r23 0x1F r31 (Z high)

I/O Registers

Note that these registers can and should be addressed using I/O direct addressing instructions such
as IN and OUT.

0x23 PINB 0x36 TIFR1 0x43 GTCCR 0x4E SPDR

0x24 DDRB 0x37 TIFR2 0x44 TCCR0A 0x50 ACSR

0x25 PORTB 0x3B PCIFR 0x45 TCCR0B 0x53 SMCR

0x26 PINC 0x3C EIFR 0x46 TCNT0 0x54 MCUSR

0x27 DDRC 0x3D EIMSK 0x47 OCR0A 0x55 MCUCR

0x28 PORTC 0x3E GPIOR0 0x48 OCR0B 0x57 SPMCSR

0x29 PIND 0x3F EECR 0x4A GPIOR1 0x5D SPL

0x2A DDRD 0x40 EEDR 0x4B GPIOR2 0x5E SPH

0x2B PORTD 0x41 EEARL 0x4C SPCR 0x5F SREG

0x35 TIFR0 0x42 EEARH 0x4D SPSR

cbna Alyssa J. Pasquale, Ph.D. 239 Spring 2024 Edition

Extended I/O Registers

Note that these registers must be addressed using data direct and indirect addressing instructions
such as STS and LDS (direct) and ST and LD (indirect).

0x60 WDTCSR 0x78 ADCL 0x86 ICR1L 0xB8 TWBR

0x61 CLKPR 0x79 ADCH 0x87 ICR1H 0xB9 TWSR

0x64 PRR 0x7A ADCSRA 0x88 OCR1AL 0xBA TWAR

0x66 OSCCAL 0x7B ADCSRB 0x89 OCR1AH 0xBB TWDR

0x68 PCICR 0x7C ADMUX 0x8A OCR1BL 0xBC TWCR

0x69 EICRA 0x7E DIDR0 0x8B OCR1BH 0xBD TWAMR

0x6B PCMSK0 0x7F DIDR1 0xB0 TCCR2A 0xC0 UCSR0A

0x6C PCMSK1 0x80 TCCR1A 0xB1 TCCR2B 0xC1 UCSR0B

0x6D PCMSK2 0x81 TCCR1B 0xB2 TCNT2 0xC2 UCRS0C

0x6E TIMSK0 0x82 TCCR1C 0xB3 OCR2A 0xC4 UBRR0L

0x6F TIMSK1 0x84 TCNT1L 0xB4 OCR2B 0xC5 UBRR0H

0x70 TIMSK2 0x85 TCNT1H 0xB6 ASSR 0xC6 UDR0

cbna Alyssa J. Pasquale, Ph.D. 240 Spring 2024 Edition

Appendix H: Instruction Set Summary
The following is a summary of the AVR instruction set. More details are available in the AVR Instruction
Set Manual.

Arithmetic and Logic Instructions

Mnemonic Operand(s) Description Operation

ADD Rd, Rr Add without carry Rd ← Rd + Rr

ADC Rd, Rr Add with carry Rd ← Rd + Rr + C

ADIW Rd, K Add immediate to word Rd ← Rd + 1:Rd + K

SUB Rd, Rr Subtract without carry Rd ← Rd - Rr

SUBI Rd, K Subtract immediate Rd ← Rd - K

SBC Rd, Rr Subtract with carry Rd ← Rd - Rr - C

SBCI Rd, K Subtract immediate with carry Rd ← Rd - K - C

SBIW Rd, K Subtract immediate from word Rd + 1:Rd ← Rd + 1:Rd - K

AND Rd, Rr Logical AND Rd ← Rd · Rr

ANDI Rd, K Logical AND with immediate Rd ← Rd · K

OR Rd, Rr Logical OR Rd ← Rd ∨ Rr

ORI Rd, K Logical OR with immediate Rd ← Rd ∨ K

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr

COM Rd One’s complement Rd ← 0xFF - Rd

NEG Rd Two’s complement Rd ← 0x00 - Rd

SBR Rd, K Set bit(s) in register Rd ← Rd ∨ K

CBR Rd, K Clear bit(s) in register Rd ← Rd · (0xFF - K)

INC Rd Increment Rd ← Rd + 1

DEC Rd Decrement Rd ← Rd - 1

TST Rd Test for zero or minus Rd ← Rd · Rd

CLR Rd Clear register Rd ← Rd ⊕ Rd

SER Rd Set register Rd ← 0xFF

MUL Rd, Rr Multiply unsigned R1:R0 ← Rd × Rr

MULS Rd, Rr Multiply signed R1:R0 ← Rd × Rr

MULSU Rd, Rr Multiply signed with unsigned R1:R0 ← Rd × Rr

FMUL Rd, Rr Fractional multiply unsigned R1:R0 ← (Rd × Rr) « 1

cbna Alyssa J. Pasquale, Ph.D. 241 Spring 2024 Edition

FMULS Rd, Rr Fractional multiply signed R1:R0 ← (Rd × Rr) « 1

FMULSU Rd, Rr
Fractional multiply signed with
unsigned R1:R0 ← (Rd × Rr) « 1

Branch Instructions

Mnemonic Operand(s) Description Operation

RJMP k Relative jump PC ← PC + k + 1

IJMP Indirect jump to (Z) PC ← Z

JMP k Jump PC ← k

RCALL k Relative subroutine call PC ← PC + k + 1

ICALL Indirect call to (Z) PC ← Z

CALL k Direct subroutine call PC ← k

RET Subroutine return PC ← STACK

RETI Interrupt return PC ← STACK

CPSE Rd, Rr Compare, skip if equal if (Rd = Rr)
PC ← PC + 2 or 3

CP Rd, Rr Compare Rd - Rr

CPC Rd, Rr Compare with carry Rd - Rr - C

CPI Rd, K Compare with immediate Rd - K

SBRC Rr, b Skip if bit in register cleared if (Rr(b) = 0)
PC ← PC + 2 or 3

SBRS Rr, b Skip if bit in register set if (Rr(b) = 1)
PC ← PC + 2 or 3

SBIC A, b Skip if bit in I/O register cleared if (I/O(A, b) = 0)
PC ← PC + 2 or 3

SBIS A, b Skip if bit in I/O register set if (I/O(A, b) = 1)
PC ← PC + 2 or 3

BRBS s, k Branch if status flag set if (SREG(s) = 1)
PC ← PC + k + 1

BRBC s, k Branch if status flag cleared if (SREG(s) = 0)
PC ← PC + k + 1

BREQ k Branch if equal if (Z = 1) PC ← PC + k + 1

BRNE k Branch if not equal if (Z = 0) PC ← PC + k + 1

BRCS k Branch if carry set if (C = 1) PC ← PC + k + 1

cbna Alyssa J. Pasquale, Ph.D. 242 Spring 2024 Edition

BRCC k Branch if carry cleared if (C = 0) PC ← PC + k + 1

BRSH k Branch if same or higher if (C = 0) PC ← PC + k + 1

BRLO k Branch if lower if (C = 1) PC ← PC + k + 1

BRMI k Branch if minus if (N = 1) PC ← PC + k + 1

BRPL k Branch if plus if (N = 0) PC ← PC + k + 1

BRGE k Branch if greater or equal, signed if (N ⊕ V = 0)
PC ← PC + k + 1

BRLT k Branch if less than, signed if (N ⊕ V = 1)
PC ← PC + k + 1

BRHS k Branch if half carry flag set if (H = 1) PC ← PC + k + 1

BRHC k Branch if half carry flag cleared if (H = 0) PC ← PC + k + 1

BRTS k Branch if T flag set if (T = 1) PC ← PC + k + 1

BRTC k Branch if T flag cleared if (T = 0) PC ← PC + k + 1

BRVS k Branch if overflow flag is set if (V = 1) PC ← PC + k + 1

BRVC k Branch if overflow flag is cleared if (V = 0) PC ← PC + k + 1

BRIE k Branch if interrupt enabled if (I = 1) PC ← PC + k + 1

BRID k Branch if interrupt disabled if (I = 0) PC ← PC + k + 1

Bit and Bit-Test Instructions

Mnemonic Operand(s) Description Operation

SBI A, b Set bit in I/O register I/O(A, b) ← 1

CBI A, b Clear bit in I/O register I/O(A, b) ← 0

LSL Rd Logical shift left Rd(n+1) ← Rd(n),
Rd(0) ← 0

LSR Rd Logical shift right Rd(n) ← Rd(n+1),
Rd(7) ← 0

ROL Rd Rotate left through carry
Rd(0) ← C,
Rd(n+1) ← Rd(n),
C ← Rd(7)

ROR Rd Rotate right through carry
Rd(7) ← C,
Rd(n) ← Rd(n+1),
C ← Rd(0)

ASR Rd Arithmetic shift right Rd(n) ← Rd(n+1), n = 0..6

cbna Alyssa J. Pasquale, Ph.D. 243 Spring 2024 Edition

SWAP Rd Swap nibbles Rd(3..0) ← Rd(7..4),
Rd(7..4) ← Rd(3..0)

BSET s Flag set SREG(s) ← 1

BCLR s Flag clear SREG(s) ← 0

BST Rr, b Bit store from register to T T ← Rr(b)

BLD Rd, b Bit load from T to register Rd(b) ← T

SEC Set carry C ← 1

CLC Clear carry C ← 0

SEN Set negative flag N ← 1

CLN Clear negative flag N ← 0

SEZ Set zero flag Z ← 1

CLZ Clear zero flag Z ← 0

SEI Global interrupt enable I ← 1

CLI Global interrupt disable I ← 0

SES Set signed test flag S ← 1

CLS Clear signed test flag S ← 0

SEV Set two’s complement overflow V ← 1

CLV Clear two’s complement overflow V ← 0

SET Set T in SREG T ← 1

CLT Clear T in SREG T ← 0

SEH Set half carry flag in SREG H ← 1

CLH Clear half carry flag in SREG H ← 0

Data Transfer Instructions

Mnemonic Operand(s) Description Operation

MOV Rd, Rr Move between registers Rd ← Rr

MOVW Rd, Rr Copy register pair Rd + 1:Rd ← Rr + 1:Rr

LDI Rd, K Load immediate Rd ← K

LD Rd, X Load indirect Rd ← (X)

LD Rd, X+ Load indirect and post-increment Rd ← (X), X ← X + 1

LD Rd, -X Load indirect and pre-decrement X ← X - 1, Rd ← (X)

cbna Alyssa J. Pasquale, Ph.D. 244 Spring 2024 Edition

LD Rd, Y Load indirect Rd ← (Y)

LD Rd, Y+ Load indirect and post-increment Rd ← (Y), Y ← Y + 1

LD Rd, -Y Load indirect and pre-decrement Y ← Y - 1, Rd ← (Y)

LDD Rd, Y + q Load indirect with displacement Rd ← (Y + q)

LD Rd, Z Load indirect Rd ← (Z)

LD Rd, Z+ Load indirect and post-increment Rd ← (Z), Z ← Z + 1

LD Rd, -Z Load indirect and pre-decrement Z ← Z - 1, Rd ← (Z)

LDD Rd, Z + q Load indirect with displacement Rd ← (Z + q)

LDS Rd, k Load direct from SRAM Rd ← (k)

ST X, Rr Store indirect (X) ← Rr

ST X+, Rr Store indirect and post-increment (X) ← Rr, X ← X + 1

ST -X, Rr Store indirect and pre-decrement X ← X - 1, (X) ← Rr

ST Y, Rr Store indirect (Y) ← Rr

ST Y+, Rr Store indirect and post-increment (Y) ← Rr, Y ← Y + 1

ST -Y, Rr Store indirect and pre-decrement Y ← Y - 1, (Y) ← Rr

STD Y + q, Rr Store indirect with displacement (Y + q) ← Rr

ST Z, Rr Store indirect (Z) ← Rr

ST Z+, Rr Store indirect and post-increment (Z) ← Rr, Z ← Z + 1

ST -Z, Rr Store indirect and pre-decrement Z ← Z - 1, (Z) ← Rr

STD Z + q, Rr Store indirect with displacement (Z + q) ← Rr

STS k, Rr Store direct to SRAM (k) ← Rr

LPM Load program memory R0 ← (Z)

LPM Rd, Z Load program memory Rd ← (Z)

LPM Rd, Z+
Load program memory and
post-increment Rd ← (Z), Z ← Z + 1

SPM Store program memory (Z) ← R1:R0

IN Rd, A In from I/O location Rd ← I/O(A)

OUT A, Rr Out to I/O location I/O(A) ← Rr

PUSH Rr Push register on stack STACK ← Rr

POP Rd Pop register from stack Rd ← STACK

cbna Alyssa J. Pasquale, Ph.D. 245 Spring 2024 Edition

MCU Control Instructions

Mnemonic Operand(s) Description Operation

NOP No operation

SLEEP Sleep

WDR Watchdog reset

BREAK Break (for on-chip debug only)

cbna Alyssa J. Pasquale, Ph.D. 246 Spring 2024 Edition

	A Note on Content
	A Note on Flowcharts
	License and Attribution Information
	Lab 1: Introduction to the Arduino Uno and AVR ATmega328P
	Arduino Uno
	ATmega328P I/O Ports
	Program Flow in Arduino IDE
	Datatype: char
	Bitwise Operators
	AVR Delay Functions

	Lab 2: Digital and Analog Input Devices
	Input Devices
	Pins D0 and D1
	Digital Inputs
	External Pull-up and Pull-down Resistors
	Internal Pull-up Resistors
	Analog Inputs
	Datatypes: int
	ATmega328P Analog to Digital Conversion
	Comparison and Boolean Operators
	Control Flow: Conditional
	Control Flow: Iterative
	Variable Scope
	volatile Variables

	Lab 3: Displays
	Segmented Displays
	Liquid Crystal Display (LCD) Screen
	ASCII Code
	Datatype Conversion: Numeric Integer to ASCII
	Data Arrays
	Compound Operators
	External Functions

	Lab 4: Sensors and Sensor Calibration
	Sensors
	Sensor Calibration
	Datatypes: long and float
	Integer vs. Floating-Point Operations
	Sensor Value Precision
	const Variables
	static Variables
	Dealing with Fluctuating Data and Sensor Noise

	Lab 5: External Interrupts
	Interrupts
	Interrupt Service Routines (ISRs)
	Configuring External Interrupts
	Configuring Pin Change Interrupts
	Watchdog Timer (WDT)
	Switch Case

	Lab 6: Timers/Counters and Timed Interrupts
	ATmega328P Timers/Counters
	Modes of Operation
	8-bit Timer/Counter 0 (TCNT0)
	16-bit Timer/Counter 1 (TCNT1)
	Reading and Writing 16-bit Timer/Counter Registers
	8-bit Timer/Counter 2 (TCNT2)
	Datatype Conversion: Long Integer to ASCII

	Lab 7: Pulse-Width Modulation and Motors
	Pulse-Width Modulation
	Controlling PWM Frequency with Timer/Counters
	Controlling PWM Duty Cycle with Timer/Counters
	Timer/Counter Registers for PWM Operation
	Motors

	Lab 8: Proportional and Integral Control
	Closed-Loop Feedback
	Proportional Control
	Proportional-Integral (PI) Control
	Proportional-Integral-Derivative (PID) Control
	Serial Plotter
	A Note on System Noise

	Lab 9: SPI: Serial Peripheral Interface
	SPI Communication
	ATmega328P SPI Primary and Secondary Modes
	SPI Registers on the AVR
	Data Rx / Tx on AVR
	74595 8-bit SIPO Shift Register
	74165 8-bit PISO Shift Register
	Control Flow: Iterative

	Lab 10: Power Consumption and ATmega328P without Arduino
	Clock Speed
	PRR – Power Reduction Register
	ATmega328P Fuses

	Lab 11: Transmitting and Receiving a Secret Message
	Lab 12: Ultrasonic Sensor
	Timer/Counter 1 Input Capture Unit
	HC-SR04 Ultrasonic Sensor

	Lab 13: Introduction to Assembly
	Assembly Program Flow
	Subroutines in Assembly
	Atmel Studio
	Determining Program Memory Usage
	Determining Data Memory Usage

	Lab 14: USART: Universal Synchronous / Asynchronous Receiver / Transmitter
	USART on the ATmega328P
	Protocol
	Modes of Operation
	USART Registers

	Lab 15: Pointers and ADC in Assembly
	Pointer Registers
	SRAM Data Space
	Data Direct Addressing
	Data Indirect Addressing
	Binary to BCD Conversion

	Lab 16: Interrupts and WDT in Assembly
	Interrupt Review
	.org Directive
	Status Register SREG

	Lab 17: Greater Than 8-Bit Math in Assembly
	Greater Than 8 Bit Operations
	Toggling in Assembly

	Appendix A: Register and Fuse Descriptions
	Appendix B: Pinout Diagrams
	Appendix C: Interrupt Vector Table
	Appendix D: Alternate Port Functions
	Appendix E: C Datatypes
	Appendix F: C Operators
	Appendix G: Register Summary
	Appendix H: Instruction Set Summary

