Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Exercises 6.6 Practice Problems
1.
Calculate the step size for an 8-bit ADC, given
\(V_{ref} = 1.28~\textrm{V}\text{.}\)
Answer.
\(\Delta V = 5~\textrm{mV}\)
Solution.
\begin{equation*}
\Delta V = \frac{V_{ref}}{2^n} = \frac{1.28~\textrm{V}}{2^{8}} = \frac{1.28~\textrm{V}}{256} = 5~\textrm{mV}
\end{equation*}
2.
Given the situation described in
ExerciseΒ 6.6.1, calculate the output if the analog input is
\(V_{in} = 0.7~\textrm{V}\text{.}\)
Answer.
Solution.
\begin{equation*}
\textrm{value} = 2^n \left(\frac{V_{out}}{V_{ref}}\right) = 2^8 \left(\frac{0.7~\textrm{V}}{1.28~\textrm{V}}\right) = 140_{10} = 10001100_2
\end{equation*}
3.
Given the situation described in
ExerciseΒ 6.6.1, calculate the output if the analog input is
\(V_{in} = 1.0~\textrm{V}\text{.}\)
Answer.
Solution.
\begin{equation*}
\textrm{value} = 2^n \left(\frac{V_{out}}{V_{ref}}\right) = 2^8 \left(\frac{1.0~\textrm{V}}{1.28~\textrm{V}}\right) = 200_{10} = 11001000_2
\end{equation*}
4.
How many bits of resolution does the ADC on the ATmega328P microcontroller have?
5.
True or false: The output of most sensors is analog.
Calculate the step size for the following ADCs, given
\(V_{ref} = 5~\textrm{V}.\)
6.
Answer.
\(\Delta V = 19.5~\textrm{mV}\)
Solution.
\begin{equation*}
\Delta V = \frac{V_{ref}}{2^n} = \frac{5~\textrm{V}}{2^{8}} = \frac{5~\textrm{V}}{256} = 19.5~\textrm{mV}
\end{equation*}
7.
Answer.
\(\Delta V = 4.9~\textrm{mV}\)
Solution.
\begin{equation*}
\Delta V = \frac{V_{ref}}{2^n} = \frac{5~\textrm{V}}{2^{10}} = \frac{5~\textrm{V}}{1024} = 4.9~\textrm{mV}
\end{equation*}
8.
Answer.
\(\Delta V = 1.2~\textrm{mV}\)
Solution.
\begin{equation*}
\Delta V = \frac{V_{ref}}{2^n} = \frac{5~\textrm{V}}{2^{12}} = \frac{5~\textrm{V}}{4096} = 1.2~\textrm{mV}
\end{equation*}
9.
Answer.
\(\Delta V = 76.3~\mu\textrm{V}\)
Solution.
\begin{equation*}
\Delta V = \frac{V_{ref}}{2^n} = \frac{5~\textrm{V}}{2^{16}} = \frac{5~\textrm{V}}{65536} = 76.3~\mu\textrm{V}
\end{equation*}
Given
\(V_{ref} = 2.56~\textrm{V}\text{,}\) calculate the corresponding analog voltage for each of the 8-bit ADC outputs.
10.
Answer.
Solution.
\begin{equation*}
V_{out} = V_{ref} \left(\frac{\textrm{value}}{2^n}\right) = 2.56~\textrm{V} \left(\frac{255}{2^8}\right) = 2.55~\textrm{V}
\end{equation*}
11.
Answer.
Solution.
\begin{equation*}
V_{out} = V_{ref} \left(\frac{\textrm{value}}{2^n}\right) = 2.56~\textrm{V} \left(\frac{153}{2^8}\right) = 1.53~\textrm{V}
\end{equation*}
12.
Answer.
Solution.
\begin{equation*}
V_{out} = V_{ref} \left(\frac{\textrm{value}}{2^n}\right) = 2.56~\textrm{V} \left(\frac{108}{2^8}\right) = 1.08~\textrm{V}
\end{equation*}